Бесплатный автореферат и диссертация по биологии на тему
Решетчатые имитационные модели динамики популяций травянистых растений разных жизненных форм
ВАК РФ 03.00.16, Экология
Автореферат диссертации по теме "Решетчатые имитационные модели динамики популяций травянистых растений разных жизненных форм"
На правах рукописи
Р
Михайлова Наталья Вячеславовна
РЕШЕТЧАТЫЕ ИМИТАЦИОННЫЕ МОДЕЛИ ДИНАМИКИ ПОПУЛЯЦИЙ ТРАВЯНИСТЫХ РАСТЕНИЙ РАЗНЫХ ЖИЗНЕННЫХ ФОРМ
Специальность 03 00.16 - экология
Автореферат диссертации на соискание ученой степени кандидата биологических наук
□ОЗША^и х
Тольятти - 2008
003164201
Работа выполнена в лаборатории вычислительной экологии Института математических проблем биологии РАН
Научный руководитель:
доктор биологических наук Александр Сергеевич Комаров
Официальные оппоненты:
доктор биологических наук Владимир Кириллович Шитиков
доктор физико-математических наук, доктор биологических наук Дмитрий Игоревич Иудин
Ведущая организация:
Институт проблем экологии и эволюции им. А.Н. Северцова РАН
Защита диссертации состоится 19 февраля 2008 г. в 13 часов на заседании диссертационного совета Д 002.251.01 при Институте экологии Волжского бассейна РАН по адресу: 445003, Самарская обл., г. Тольятти, ул. Комзина, 10
Тел. (8482) 489977. Факс (8482) 489504. E-mail: ievbras@mail ru
С диссертацией можно ознакомиться в библиотеке Института экологии Волжского бассейна РАН, с авторефератом - в сети Интернет на сайте ИЭВБ РАН по адресу: ИйрУЛотт ievbran.ru
Автореферат разослан «J8j> января 2008 г.
Ученый секретарь диссертационного совета, кандидат биологических наук / A.JI Маленев
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы Решение проблемы сохранения биоразнообразия и восстановления растительных сообществ после нарушений требует детального анализа динамики ценопопуляций и сообществ растений в изменяющихся условиях местообитаний
Исследование восстановления ценопопуляций невозможно без учета возрастной и пространственной структуры ценопопуляций, а также особенностей взаимодействия между отдельными особями Использование индивидуально-ориентированных моделей, базирующихся на пространственном подходе, дает возмоямость исследовать динамику популяций растений, определяемую особенностями их организации в целом как системы взаимодействующих элементов
Предлагаемые в работе решетчатые модели, относящиеся к классу пространственных индивидуально-ориентированных моделей, позволяют исследовать динамику ценопопуляций растений с учетом параметров семенного и вегетативного размножения, пространственной структуры расселения, а также исследовать влияние неоднородности местообитания на успешность инвазии
Цель работы состояла в анализе инвазионных процессов и динамики ценопопуляций травянистых растений разных жизненных форм с помощью специально разработанного семейства имитационных решетчатых моделей Задачи исследования
1 Разработать решетчатые (с упрощенным введением пространственных взаимоотношений между растениями) модели инвазии ценопопуляций травянистых растений разных жизненных форм на основе концепции дискретного опрсания онтогенеза и типизации биоморф Провести калибрацию и верификацию моделей по опубликованным экспериментальным данным
2 На основе разработанных моделей оценить влияние способов размножения (ве1-етативного, семенного) и расселения (автохории, зоохории) на скорость захзата свободной территории модельными видами
3 Проанализировать динамику ценопопуляций в неоднородных местообитаниях с раз тачной долей микроучастков, непригодных для заселения, выявить критические для ценопопуляции значения этой доли, выше которой самоподдержание ценопопуляции невозможно
Научная новизна. Впервые созданы имитационные решетчатые модели динамики популяций растений, учитывающие особенности как вегетативного, так и семенного самоподдержания популяций растений разных биоморф Созданы вычислительные алгоритмы, позволяющие имитировать пространственные особенности вегетативного разрастания дтя растений разных жизненных форм Рассмогрено влияние вегетативного и семенного способов самоподдержания (по отдельности и в совокупности) и способов расселения (автохории, зоохории) на развитие ценопопуляций травянистых растений Выявлены критические доли непригодных для заселения микроучастков, препятствующие инвазии модельных видов растений на неоднородную территорию
Теоретическое значение работы. С помощью созданных моделей и проведенных на их основе вычислительных экспериментов показана возможность анализа динамики популяций растений разных жизненных форм со сложной пространственной структурой разрастания Введенный в семействе моделей учет онтогенетических состояний и задание параметров моделирования в виде диапазонов или вероятностей позволяют также имитировать поведение ценопопуляций растений
с учетом динамической и морфологической поливариантности особей Оказалось возможным сформулировать модели с небольшим числом значимых параметров, что позволяет строить упрощенные модели ценопопуляций растений, дающие возможность исследовать вопросы сохранения и восстановления редких и исчезающих видов с учетом особенностей их местообитаний
Практическая значимость результатов Предложен подход, позволяющий провести количественную оценку скоростей внедрения травянистых растений в нарушенные местообитания с учетом семенного и вегетативного способов самоподдержания, а также с учетом зоохории Подход реализован с помощью имитационных моделей, учитывающих неоднородности местообитания, что позволяет оценить в каждом конкретном случае время, необходимое для восстановления популяции травянистых растений, а также выявить возможные факторы, ограничивающие успешную инвазию исследуемых видов
Связь темы диссертации с плановыми исследованиями Работа проводилась в рамках двух научных тем, выполненных в Институте математических проблем биологии РАН 1) "Методы оценки биоразнообразия растительного покрова", 19992003 гг, номер государственной регистрации 01 99 00 07319, 2) "Количественная оценка разнообразия растительности темнохвойных лесов Европейской России", 2004-2006 гт, номер государственной регистрации 01 2 00 409638
На разных этапах выполнения исследований по данной теме работа поддерживалась грантами РФФИ № 02-04-48965, 07-04-0095
Реализация результатов исследования Разработанная система моделей используется в следующих учебных курсах а) «Системный анализ и математическое моделирование в экологии», Пущинский государственный университет, б) «Модечирование в экологии», Пущинский филиал МГУ им М В Ломоносова
Апробация работы Материалы диссертации докладывались на международных конференциях и семинарах VIII международной конференции «Математика, компьютер, образование» (Пущино, 2001), IV, V и VI Европейских конференциях по экологическому моделированию (Блед, Словения, 2004, Пущино, 2005, Триест, Италия, 2007), Международном ботаническом конгрессе (Вена, Австрия, 2005), I международной конференции по математической биологии и биоинформатике (Пущино, 2006), Международном симпозиуме по экологическому восстановлению нарушенных лесных экосистем и устойчивому лесопользованию в северовосточной Азии (Шеньян, Китай, 2007), а также на российских конференциях и школах VII молодежной конференции ботаников (Санкт-Петербург, 2000), Всероссийских научных конференциях «Принципы и способы сохранения биоразнообразия» (Йошкар-Ола, 2001, 2004, 2006), Пущинских школах-конференциях молодых ученых «Биология - наука XXI века» (2000, 2003, 2005, 2006), III Всероссийской школе-конференции «Актуальные проблемы геоботаники» (Петрозаводск, 2007)
Личное участие автора Автором совместно с научным руководителем были сформулированы цель и задачи исследования Автором разработаны алгоритмы вегетативного разрастания и семенного размножения растений разных жизненных форм с учетом их онтогенетических состояний На базе алгоритмов создано семейство решетчатых моделей популяций, основанных на клеточно-автоматном подходе Автором проведена калибрация моделей на основе экспериментальных данных, полученных в Неруссо-Деснянском Полесье на юго-востоке Брянской области (Россия) к б н НЕ Богдановой Проведены вычислительные эксперименты,
соответствующие поставленным в диссертации задачам Автором совместно с научным руководителем проведен анализ результатов моделирования и сформулированы выводы
Основные положения диссертации, выносимые на защиту Показана возможность исследования пространственной и временной динамики популяций растений разных жизненных форм с помощью решетчатых имитационных моделей, основанных на небольшом числе определяемых в эксперименте параметров
Публикации. По материалам исследования опубликовано 18 работ, из них 14 -по теме диссертации, в том числе одна в журнале, входящем в перечень ведущих рецензируемых научных журналов и изданий ВАК, 6 публикаций в зарубежных изданиях
Структура и объем диссертации Диссертационная работа изложена на 125 страницах, состоит из введения, четырех глав, заключения и выводов Список литературы включает 179 наименований, в том числе 85 на иностранных языках Текст иллюстрирован 18 таблицами и 55 рисунками
Благодарности Работа не состоялась бы без чуткого руководства и всесторонней поддержки научного руководителя д б н АС Комарова и обстоя! ельных консультаций со стороны д б н JIА Жуковой, д б н О В Смирновой, к б н Б А Тороповой, к б н Л Г Ханиной Автор выражает благодарность за помощь и консультации своим коллегам к б н MB Бобровскому, к б н НЕ Богдановой, Е В Зубковой, к б н И Е Сизову, и признателен коллективу лаборатории вычислительной экологии ИМПБ РАН и лаборатории моделирования экосистем ИФХиЬПП РАН, а также преподавателям и студентам Пущинского государственного университета за всестороннюю поддержку
()т всей души благодарю мужа Алексея за творческие идеи и постоянную подцер кку
ГЛАВА 1. ПОДХОДЫ К МОДЕЛИРОВАНИЮ ДИНАМИКИ ПОПУЛЯЦИЙ РАСТЕНИЙ РАЗНЫХ ЖИЗНЕННЫХ ФОРМ
Е! первой главе диссертационной работы дается обзор дискретных методов моделирования динамики ценопопуляций растений (ЦП), которая понимается как совокупность особей данного вида в пределах одного ценоза (Петровский, 1961, Корчагин, 1964, Работнов, 1969, Уранов, 1967, 1975, цит по Ценопопуляции растений, 1976)
Для изучения условий самоподдержания ЦП необходимо детальное исследование численности и онтогенетической структуры ЦП При описании онтогенетической структуры ЦП используется концепция дискретного описания онтогенеза (Работнов, 1950, Уранов, 1975) Согласно этой концепции онтогенез растения можно представить как ряд сменяющихся друг за другом онтогенетических состояний - этапов онтогенеза с присущими им индикаторными морфологическими и биочогическими признаками, определенным положением особи в пространстве и особыми взаимоотношениями со средой (Ценопопуляции растений, 1976)
Для анализа и прогноза динамики численности растений в ЦП используются математические матричные модели (Свирежев, Лсгофет, 1978, Розенберг, 1984, Логофег, 1991, 2002, Leslie, 1945, Leikovich, 1965, Goodman, 1969, Werner, 1975, Werner and Caswell, 1977, Caswell, Werner, 1978, Levench and Levin, 1979, Sarukhan, 1980, Law, 1981, 1983, Caswell, 1982a,b, 2001, Logofet, 1993 и др) С помощью этого аналитического аппарата удается на базе экспериментальных данных, содержащих
информацию о каждой особи в ЦП растений в течение нескольких сроков наблюдений, определить тенденции развития ЦП Описание онтогенетической структуры ЦП в дискретных терминах онтогенетических состояний в последнее время также используется в матричных моделях (Logofet, 2002, Volis, 2004, Logofet et al, 2006)
Недостатком матричного моделирования является невозможность учесть особенности самоподдержания, зависящие от пространственной структуры ЦП При этом известно, что пространственные взаимоотношения могут сильно изменить условия существования и сосуществования ЦП различных видов (Czaran, Bartha, 1992)
Существует ряд подходов, позволяющих имитировать пространственную структуру генет растений разных биоморф (под генетой понимают особь, возникшую из семени, и все ее вегетативное потомство (Бигон, Харпер,1989))
1 Архитектурные модели (Bell, Tomlinson, 1980)
2 L-системы (Lindenmayer, 1974,1987, Кислюк, 1995)
3 Фрактальный или топологический подход (Вerntson, 1995)
4 Динамические пространственно-временные модели Одной из первых опубликованных динамических пространственно-временных моделей длиннокорневищных растений, описанных в терминах онтогенетических состояний, является решетчатая модель популяции зверобоя пятнистого (Комаров, Портнов, 1987) Пространство в модели представляется правильной квадратной решеткой, в ячейках которой расположены укорененные побеги растений Сформулированы правила появления, направления и укоренения дочерних побегов Эта модель дает возможность проследить динамику численности ЦП растений целиком, структуру размещения особей на плоскости и изменения онтогенетического спектра ЦП Дальнейшее развитие этой модели (Комаров, 2001, 2003), использующее концепцию биоморф, позволило моделировать вегетативное размножение корневищных видов
Решетчатые модели, к которым относятся и модели, разработанные автором диссертационной работы, базируются на клеточно-автоматном подходе, появившемся как аппарат моделирования растительных сообществ в 80-х годах (Комаров, 1982, 1988, Ermentrout, Edelstein-Keshet, 1993, Bascompte, Sole, 1995) Они демонстрируют нелинейные свойства, заключающиеся в том, что пространственно-временные модели с простыми правилами развития отдельных особей могут приводить к сложной динамике ЦП Как правило, такие модели реализуются в виде имитирующих программ на каком-нибудь из известных алгоритмических языков программирования
Разработаны модели, позволяющие для моделирования динамики ЦП растений совмещать клеточно-автоматный подход с пространственными правилами развития отдельной особи (Комаров, 1985, Комаров, Портнов, 1987, Inghe, 1990, Komarov et al, 2003), а также исследовать растительные сообщества, состоящие из взаимодействующих ЦП (Комаров, Паленова, 2001, Комаров, 2004, Winkler, Schmid, 1995, Colasanti, Hunt, 1997, Winkler, Klotz, 1997)
Разработанные автором решетчатые модели имитируют не только сложную геометрию вегетативного разрастания растений разных жизненных форм, но и семенное размножение особей с учетом пространственных особенностей размещения семян, позволяя моделировать развитие ЦП, осуществляющих самоиоддержание вегетативным и семенным способом В них также легко ввести зоохорный способ разноса семян
ГЛАВА 2. МОДЕЛИ ИНВАЗИИ ЦЕНОПОПУЛЯЦИЙ РАСТЕНИЙ РАЗНЫХ ЖИЗНЕННЫХ ФОРМ
Во второй главе диссертационной работы приводится подробное описание построенной автором серии решетчатых моделей и объектов исследования Серия моделей была построена для имитации расселения ЦП растений неявно толицентрической и явнополицентрической биоморфы В качестве представителей неявнополицентрической биоморфы был взят копытень европейский (Аяагигч еигораеит С), короткокорневищный вид, явнополицентрической - сныть обыкновенная (Ае%орос1шт ройа^гапа Ь), длиннокорневищный вид и звездчатка ланцетолистная (Я/сИапа Ио!ох1еа Ь), наземностолонообразующий вид Эти виды выбраны как наиболее часто встречающиеся неморальные виды, которые являются яркими представителями различных популяционных стратегий (конкурентный вид -сныть обыкновенная, реактивный вид - звездчатка ланцетолистная и толерантный вид - копытень европейский)
Для имитации развития ЦП в качестве элемента (ЭЦП) была выбрана фитоценотическая счетная единица (Уранов, 1965, Уранов, Михайлова, 1974) а) для явнополицеитрических видов растений ЭЦП является до начала вегетативного разраст ания особь целиком, затем - парциальный побег или парциальный куст, б) для неявно полицентрических видов растений в качестве ЭЦП до начала вегетативного разрастания - особь целиком, а затем - партикута (побег, отделившийся от материнского растения)
На основе имеющихся экспериментальных данных, а также особенностей онтогенетического и морфологического развития ЭЦП, автором работы были выделены необходимые для моделирования видоспецифичные параметры ЭЦП, определяющие длительности онтогенетических состояний, параметры вегетативного разраст ания и семенного размножения, описана геометрия вегетативного разрастания При ¡том в разработанных алгоритмах удалось использовать минимально достаточное число параметров (табл 1) Предполагается, что в модели о итоге тстические состояния ЭЦП меняются синхронно, не более одного раза за один временной шаг
Основными предположениями, сформулированными в моделях в виде правил, являют ся следующие
• ценопопуляция задана в виде совокупности элементов ценопопуляции (ЭЦП), расположенных на плоской квадратной решетке, что позволяет легко определить соседство и таким образом учесть пространственную структуру,
• решетка состоит из ячеек, в каждой из которых в определенный момент времени мо -кет находиться не ботее одного ЭЦП,
• размер ячейки решетки видоспецифичен и определяется средней длиной годичного прироста корневищ или столонов,
• вре менной шаг модели равен одному году,
онтогенетическое состояние ЭЦП оценивается на конец вегетационного периода В модели выделяются следующие онтогенетические состояния р - проросток, j -ювенильное, ип - имматурное, V - виргинильное, g - генеративное, в - сенильное
ТАБЛИЦА 1
Численные параметры, используемые для моделирования динамики ЦП
(по данным О В Смирновой (1987), Н Е Богдановой (2003))_
Вид/Параметры Сныть обыкновенная Копытень европейский Звездчатка ланцетолистная
Максимальная длительность жизни ЭЦП (годы) 13(3)* 10 3
Минимальный возраст начала вегетативного разрастания (годы) 6(2)* 2 2
Радиус вегетативного разрастания (м/год) 0,19 - 0,30 0,03 0,26 - 0,43
Максимальное чисто вегетативных отбегов на ЭЦП (шт /год) 3 2 40
Минимальный возраст цветения (годы) 8(2)* 6 2
Вероятность цветения ЭЦП (доли ед) 0,01 0,90 0,30
Максимальное чисто прижившихся семян на ЭЦП (шт /год) 175 5 5
Максимальная дальность разноса семян автохорным способом (м) 1,5 0,1 0,4
Максимальная дальность разноса семян зоохорньм способом (м) 3,5 5,5 5,0
* Сныть обыкновенная изменяет свое поведение в зависимости от усювий освещенности (Смирнова, 1967) Так, при сильной освещенности сныть обыкновенная быстрее проходит основные онтогенетические состояния, активно цветет, имеет высокую потенциальную семенную продуктивность (значения в скобках), чем в условиях слабой освещенности Для остальных модельных видов эти параметры мало различаются на освещенных местах и в тени
Инициализация модети происходит имитированием на первом шаге случайного независимого засевания с заданной вероятностью (имитирующего начальную численность) узлов модельной решетки растениями в начальном онтогенетическом состоянии (в нашем случае проростками) Ясно, что инициализация может оказаться различной в зависимости от структуры начального размещения, которая имитируется с помощью псевдослучайных чисел Эта особенность позволяет нам использовать метод Монте-Карло (Ермаков, Михайлов, 1976) для оценки статистической устойчивости полученных результатов В этом случае мы делаем N независимых прогонов модели, различающихся начальной пространственной структурой размещения, и затем определяем для исследуемых параметров средние значения и их статистические характеристики
После этого на каждом шаге по времени повторяются следующие операции
1 Возраст всех ЭЦП увеличивается на единицу, в связи с чем возможен переход в следующее онтогенетическое состояние или отмирание
2 ЭЦП имматурного онтогенетического состояния переходят в виргинильное состояние только тогда, когда они имеют соседние свободные ячейки для вегетативного разрастания Алгоритмы вегетативного разрастания для
короткокорневшцного, различаются (рис 1 ) А Б
длиннокорневищного и наземностолонообразующего видов
В
и • • п
• • • • • ■
• к. t г т • w
vl £ ж IL1 • [1
1] Ш2 £ К. w □
Рис 1 Алгоритм вегетативного разрастания на 1 временной шаг А - копытня европейского, Б - сныти обыкновенной и В - звездчатки ланцетолистной Условные обозначения ЭЦП семенного происхождения - А, отбеги--► , дочерние ЭЦП - 0
3 ЭЦП, достигшие генеративного онтогенетического периода, зацветают и образуют семена, которые распределяются по решетке и прорастают на стедующий год в зависимости от используемых в модели параметров семенного возобновления, перечне генных выше Модель позволяет имитировать автохорный разнос семян, соответствующий рассеиванию зачатков в природе без участия агентов разноса, и зоохорный — распространение семян и плодов животными Автохория, как и вегетативное разрастание, обеспечивают освоение ближайших участков, а зоохория — более дальних участков Дальность разноса семян разными способами видоспецифична, задается на основе экспериментальных данных (табл 1 )
Дтя количественной оценки скорости захвата территории ЦП модельных видов проводились вычислительные эксперименты, имитирующие распространение ЦП с помощью вегетативного разрастания и семенного размножения Отдельно оценивалось влияние зоохорного разноса семян на захват территории
ГЛАВА 3. МОДЕЛИРОВАНИЕ ИНВАЗИИ ЦЕНОПОПУЛЯЦИЙ ТРАВЯНИСТЫХ РАСТЕНИЙ В ОДНОРОДНЫЕ МЕСТООБИТАНИЯ
По описанным выше алгоритмам с параметрами из табл 1 проводилась имитация разрастания модельных видов на однородной территории На рис 2 -4 показано пространственное распределение ЭЦП модельных популяций на территории 40x40 ячеек, при этом размер ячейки решетки видоспецифичен и составляет 0,1 м для сныти обыкновенной, 0,05 м для звездчатки ланцетолистной и 0,03 м для копытня европейского Развитие ЦП начинается с трех ЭЦП семенного происхождения, случайно расположенных на территории
Скорость инвазии ЦП травянистых растений исследуемых видов (табл 2) оценивалась на модельной площадке с условным размером 5м х 5м Развитие ЦП начиналось с одной особи семенного происхождения, расположенной в углу площадки, с параметрами онтогенетического развития, вегетативного разрастания и семенного размножения, указанными в табл 1 Территория считается захваченной ЦП, если каждая ячейка решетки в какой-либо момент времени была занята ЭЦП
Рис. 2. Пространственное распределение ЭЦП звездчатки ланцетолистной на модельной территории размером 40х 40 ячеек на 2-мг, 3-м и 5- м шагах по времени. Треугольник серого цвета отмечает ЭЦП семенного происхождения, квадраты серого цвета -ЭЦП вегетативного происхождения, темно-серым цветом обозначены цветущие ЭЦП
Рис. 3. Пространственное распределение ЭЦП сныти обыкновенной на модельной территории размером 40х 40 ячеек на 2-м, 3-м и 4-м шагах по времени. Обозначения см, выше
Рис. 4. Пространственное распределение ЭЦП копытня европейского на модельной территории размером 40х 40 ячеек на 4-м, 8-м и 12-м шагах по времени. Обозначения см, выше
Из литературы известно, что у копытня европейского, в отличие от сныти обыкновенной и звездчатки ланцетолистной, наблюдается уменьшение интенсивности побегообразования с увеличением возраста и размера особи. Причина этого в том, что у копытня европейского боковые ветви относительно равномерно распределяются не только по периферии клона, но и внутри него. Это приводит к высокой экологической плотности клонов копытня и подавлению роста клонов разлагающимися остатками материнских растений. В связи с этим, особь копытня европейского живет 50-60 лет (длительность жизни особей сныти обыкновенной и звездчатки ланцетолистной неопределенно долгая) (Смирнова, 1987). Эта
и
особенность была заложена в алгоритм разрастания ЭЦП копытня европейского как уменыдение вероятности побегообразования с увеличением возраста и размера ЭЦП. При таких правилах копытень европейский не способен полностью захватить модельную территорию без семенного размножения.
ТАБЛИЦА 2.
Время захвата (в годах) территории 5м X 5м ЦП модельных видов__
Вид Семенное размножение отсутствует Семенное размножение присутствует
автохорный разнос семян автохорный и зоо-хорный разнос семян
Сныть обыкновенная, слабая освещенность 35 - -
Сныть обыкновенная, сильная освещенность 31 12 7
Звездчатка ланцетолистная 29 29 11
Копытень европейский нет захвата 341 32
Оценка скорости захвата территории ЦП модельных видов травянистых растенлй (табл. 2.) показала, что для изученных видов трав важными факторами являются геометрия вегетативного разрастания, скорость вегетативного разрастания, особенности семенного размножения и длительности онтогенетических состояний. Для популяционного поведения звездчатки ланцетолистной наиболее значимым является вегетативное разрастание, именно оно обеспечивает быстрое освоение свободной территории. Разрастание ЦП копытня европейского в отсутствие семеш.ого расселения незначительно. Для расселения ЦП копытня европейского и звездчатки ланцетолистной критическое значение играет наличие животных как агента а разноса. Сныть обыкновенная сравнительно быстро захватывает территорию во все?; случаях.
Сравнение числа генет на единицу площади территории при развитии ЦП с вегета-ивным расселением и семенным размножением показывает, что в отсутствие конкуренции для ЦП копытня европейского самоподдержание осуществляется преимущественно семенным способом, для звездчатки ланцетолистной -вегетативным, а для сныти обыкновенной - смешанным (рис. 5.).
1 5 9 13 17 21
--копытень европейский
—сныть обыкновенная -- ■ звездчатка ланцетолистная
25 29 33 37 шаги моделирования
Рис. 5.
Динамика числа генет ЦП модельных видов при имитации семенного размножения
Для оценки влияния пространственного размещения особей в ЦП исследуемых видов был проведен ряд модельных экспериментов, в которых развитие ЦП травянистых растений начиналось с 10 ЭЦП семенного происхождения При этом первоначальное размещение ЭЦП на модельной территории было двух типов фронт инвазии (ЭЦП расположены вдоль одной их границ модельной территории) и множественный случайный источник инвазии (ЭЦП случайно разбросаны по территории) (табл 3)
ТАБЛИЦА 3
Время захвата (в годах) территории 5м X 5м ЦП модельных видов в зависимости от
источника инвазии фронт / множественный случайный источник
Вид Семенное размножение отсутствует Семенное размножение присутствует
автохорный разнос семян автохорный и зоо-хорный разнос семян
Сньпъ обыкновенная, сильное затенение 28/16 - -
Сныть обыкновенная, высокая освещенность 24/16 11/6 7/5
Звездчатка ланцетолистная 24/13 22/12 10/7
Копытень европейский нет захвата 260/26 170/23
На основании модельных экспериментов установлено, что первоначальное размещение ЭЦП семенного происхождения на модельной решетке является фактором, влияющим на скорость инвазии Так, случайное расположение ЭЦП семенного происхождения на модельной решетке заметно ускоряет захват территории по сравнению с расположением ЭЦП вдоль одной из границ модельной территории, особенно ярко это проявляется у ЦП звездчатки ланцетолистной как наиболее вегетативно подвижного вида
В результате модельных экспериментов были получены онтогенетические спектры исследуемых ЦП После полного захвата территории онтогенетический спектр ЦП не изменяется и его можно считать стабильным Вид стабильного онтогенетического спектра (рис б ) согласуется с экспериментальными данными по базовым онтогенетическим спектрам ЦП растений Так, для ЦП копытня европейского характерны левосторонние спектры с максимумом на прегенеративном периоде, на ] и 1т состояниях (Жукова и др 2001) Для сныти обыкновенной по экспериментальным данным характерны неполночленные спектры с максимумом на генеративных онтогенетических состояниях, для звездчатки ланцетолистной -спектры с максимумом на виргинильных и генеративных онтогенетических состояниях (Смирнова, 1977)
Для определения стабильной скорости роста популяции на основании результатов прогонов разработанной имитационной решетчатой модели была построена матричная модель, особи в которой (ЭЦП) классифицированы по онтогенетическим состояниям После стабилизации динамики ЦП в решетчатой модели полученные параметры (численности возрастных групп и матрицы переходов) использовались в качестве входных параметров для матричной модели Построение матричной модели подробно описано в диссертационной работе
А
Б
В
с
=г
о
н _й_. с и со о с
50% 40% 30% Н 20% 10% 0%
КЗ
1 6
ш
р ¡т V д
50% 40% 30% 20% 10% 0%
- и Ж Щи
Ц
...... 1 I
с:
0
50%
20% 10% 0%
щ,
.
Щ - 1Ж т
11 II У1 III
Рис. 6.
Онтогенетические спектры ЦП, полученные при вычислительных экспериментах: А - сныти обыкновенной, Б - звездчатки ланцетолистной, В - копытня европейского
Анализ результатов вычислительных экспериментов матричной модели выявил наличие видоспецифичной скорости развития. Для ЦП модельных видов скорости роста стабильной популяции составляют для сныти обыкновенной 1,35, для звездча тки ланцетолистной - 1,29, для копытня европейского - 1,22, т.е. при наличии неограниченных ресурсов популяции могли бы увеличивать свою численность на 2035%. На рис. 7. приводится график сравнения динамики численности ЦП сныти обыкновенной, полученной с помощью матричной и решетчатой моделей, начиная с 10 шага моделирования, на 20 шагов моделирования.
Рис. 7.
Сравнение динамики численности ЦП сныти обыкновенной, моделируемой с помощью матричной и решетчатой модели с 10 по 30 шаги развития
с 700000 ^ 600000
0 500000 5 400000
1 300000 200000 100000
3000
10 12 14 16 18 20 22 24 26 28 30 - матричная модель шаги моделирования
—■— решетчатая модель
Так как в матричной модели отсутствует предел для роста численности ЭЦП, накладываемый пространственными ограничениями, то мы видим экспоненциальный рост ЦП при использовании матричной модели и ограниченный рост ЦП в решетчатой модели. Возникновение этой разницы очевидно. Более интересным является различие в онтогенетических спектрах ЦП при использовании матричной и решетчатой моделей (Рис. 8.). Легко увидеть, что различие в численности онтогенетических групп может достигать 1,5 раз, причем в матричной модели отногенетический спектр остается постоянным, отражая постоянный собственный вектор матрицы, в то время как онтогенетический спектр имитационной модели претерпевает сложные, иногда квазистохастические колебания (последнее подробно описано в диссертации).
[
с 0.5
т 0.4
ё о.з
о
Т 0.2 ш
£ 0.1 Л
§ о
§ р ] ¡т V д
о
X
¡5 0 матричная модель ■ решетчатая модель
Рис. 8.
Сравнение онтогенетических спектров ЦП сныти обыкновенной, моделируемой с помощью матричной и решетчатой моделей на 100 шаг моделирования
ГЛАВА 4. МОДЕЛИРОВАНИЕ ИНВАЗИИ ЦЕНОИОПУЛЯЦИЙ РАСТЕНИЙ В НЕОДНОРОДНЫЕ МЕСТООБИТАНИЯ
В четвертой главе диссертационной работы рассмотрены результаты модельных экспериментов, имитирующих инвазию ЦП исследуемых видов на неоднородных местообитаниях. При этом оцениваются условия, определяющие успешность инвазии исследуемых ЦП травянистых растений. Под неоднородностью будем понимать наличие на занимаемой территории микроучастков, заселение которых ЭЦП невозможно. Это аналогично наличию в природе на территории захвата неблагоприятных для вида факторов: как абиотических (камни, переувлажнение почвы), так и биотических (наличие особей других видов растений).
В разработанной модели может имитироваться любая доля таких микроучастков на территории, расположенных случайно и независимо - от полного их отсутствия (такие модельные эксперименты описаны в главе 3), до максимального значения. Установлено, что начиная с некоторой доли непригодных микроучастков ЦП не может развиваться. Эти значения видоспецифичны и были названы критическими для инвазии. Все параметры моделей при вычислительном эксперименте сохраняются такими же, как и ранее (табл. I.).
Рис. 9.
Сравнение средних значений относительной площади захваченной территории (и среднеквадратичных отклонений) для ЦП разных видов при разных сценариях модели: А - без семенного размножения, Б— с семенным размножением, с учетом автохорного и зоохорного разноса семян. Значения получены методом Монте-Карло при 30
прогонах модели
------1
Ш сныть обыкновенная
Ш звездчатка ланцетолистная
О копытень европейский
Критические доли непригодных микроучастков для ЦП исследуемых видов без семенного размножения оказались различны (рис. 9.): 0,5 для сныти обыкновенной и 0,6 для звездчатки ланцетолистной. Эти результаты оказываются близкими к выводам теории перколяции (Эфрос, 1982), по которой пороговая плотность прохождения по свободным ячейкам квадратной решетки от одной границы до другой (протекающий кластер) составляет 0,59. Звездчатка ланцетолистная способна к развитию на территории с долей непригодных микроучастков, равной 0,6 за счет очень длинных наземных столонов (до 10 ячеек решетки). Показано, что для звездчатки ланцетолистной возможна более успешная инвазия в условиях высокой плотности непригодных микроучастков даже в отсутствие семенного расселения.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 доля непригодных микроучастков
О 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 доля непригодных микроучастков
Наличие семенного размножения увеличивает устойчивость ЦП всех исследуемых видов Критические доли непригодных микроучастков для ЦП копытня европейского и звездчатки ланцетолистной составляют 0,7 Семенное размножение позволяет ЦП сныти обыкновенной существовать на территории при доле непригодных микроучастков 0,8 (примерно в 10% случаев) Самоподдержание ЦП сныти обыкновенной при такой доле непригодных микроучастков объясняется высокой семенной продуктивностью вида
ЗАКЛЮЧЕНИЕ
В основе разработанных имитационных моделей лежат алгоритмы, являющиеся универсальными для моделирования видов, относящихся к одной биоморфе, которая определяет пространственную динамику вегетативного расселения дочерних особей В работе показано, что с помощью такого подхода к моделированию и разработанного семейства моделей можно проводить исследование видов, сходных с модельными по биоморфе (Смирнова, 1987)
Модели, имитирующие захват территории ЦП травянистых видов растений, могут использоваться для прогнозирования темпов восстановления ЦП травянистых растений после нарушений разного рода Так, при полном уничтожении в опаде и в почве диаспор растений (например, после распашки, верхового пожара или многократных низовых пожаров) осуществляется фронтальное восстановление, зависящее от поступления диаспор из соседних сообществ и размеров нарушенной территории При частичном уничтожении диаспор (после рубок с сохранением части напочвенного покрова, редких низовых пожаров, сенокошения и выпаса) осуществляется мозаичный способ самоподдержания, зависящий от расстояний между микрорефугиумами - участками сообщества, где диаспоры не были уничтожены полностью (Богданова, 2006)
Модельное исследование динамики захвата территории ценопопуляциями исследуемых видов позволяет оценить роль не только вегетативного, но и семенного расселения Модельные эксперименты показали, что на устойчивость ЦП копытня европейского оказывает влияние увеличение семенной продуктивности Для других видов этого эффекта не наблюдается, тк у сныти обыкновенной и звездчатки ланцетолистной сравнительно быстро формируется плотная заросль, и тогда для самоподдержания наиболее важную роль играет освобождение пространства за счет элиминации особей, а не количество семян
При построении имитационных решетчатых моделей для формализации развития растений концепция дискретного описания онтогенеза использовалась только российскими исследователями (Комаров, Паленова, 2001, Комаров, 2003, Котагоу й а1, 2003) Развитие имитационного моделирования способно дать ответы на многие вопросы, связанные с поливариантностью онтогенеза, жизненностью особей, ролью фитогенного поля в пространственной структуре и динамике численности ценопопуляций
Моделирование взаимоотношений ЦП травянистых растений позволит решать проблемы сохранения биоразнообразия растительных сообществ Решетчатые модели позволяют также имитировать развитие сообщества ЦП травянистых растений разных жизненных форм Однако, это требует усложнения модели, т к возникает вопрос о размере ячейки решетки, который по правилам модели, видоспецифичен Кроме того, проведенные модельные эксперименты выявили ограничение модели модель является двумерной, в одной ячейке решетки в определенный момент времени может
находиться не более одного ЭЦП Таким образом, модели не позволяют учитывать свойственную растениям ярусность Так, например, в природе звездчатка ланцетолистная способна размещаться под пологом, сформированным другими видами травянистых растений, в частности, сныти обыкновенной, и успешно развиваться в таких условиях
Способом решения этих вопросов может служить создание моделей, в которой каждый вид будет развиваться на отдельной модельной решетке Тогда модельная территория будет представлять собой совокупность уровней, количество которых соответствует количеству моделируемых видов плюс уровень неоднородности самой территории Задание правил взаимодействия этих уровней позволит моделировать совместную динамику ЦП в растительном сообществе
ВЫВОДЫ
1 Разработанное семейство решетчатых моделей, их калибрация с использованием экспериментальных данных, верификация модели по базовым онтогенетическим спектрам показали применимость таких моделей для анализа динамики ценопопуляций травянистых растений явно- и неявнополицентрических биоморф При этом могут быть решены следующие задачи прогноз динамики численности, возрастного спектра, выяв пение чувствительных популяционных и онтогенетических характеристик, которые могут быть испочьзованы как управляющие параметры для принятия мер по восстановлению или сохранению ценопопутяции
2 Скорость захвата территории модельными видами зависит от длительности онтогенетических состояний, параметров вегетативного разрастания и интенсивности семенного размножения Моделирование показало, что скорость расселения ценопопуляций травянистых растений увеличивается при разносе семян животными для снкгги обыкновенной и звездчатки ланцетолистной в 2-3 раза, для копытня европейского - в 10 раз
3 Вычислительные эксперименты показывают, что в отсутствие конкуренции за свободную территорию цеиопопуляция звездчатки ланцетолистной осуществляет самоподдержание в основном вегетативным образом, копытня европейского -семенным, а сныти обыкновенной - смешанным
4 С г очощью модели показано существование пороговых значений доли непригодных микроучастков, выше которых самоподдержание популяций прекращается В отсутствие семенного размножения критические доли непригодных микроучастков составляют 50-60%, при семенном размножении - 7080%
СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ
Михайлова Н В , Комаров А С , Паленова М М Клеточно-автоматная модель развит! дерновинного злака // Сборник материалов конференции «Математика, Компьютер, Образование» Пущино, 2001 С 309
Михайлов А В, Михайлова Н В Camod - клеточно-автоматная модель развитич лопутяции дерновых злаков И Сборник материалов VII конференции молоды с ученых "Биология - наука XXI века» Пущино, 2003 С 252
Михайлова НВ, Богданова НЕ, Михайлов А В Моделирование освоения территории одновидовыми зарослями неморальных видов трав // Сборник материалов
Всероссийской научной конференции «Принципы и способы сохранения биоразнообразия» Йошкар-Ола, Марий Эл, 2004 С 127
Mikhailova N V, Komarov A S, Mikhailov А V Application of cellular automata modeling for plants invasion model U Proceedmgs of 4th European Conference on Ecological Modeling Bled, Slovenia, 2004 P 97
Михайлова H В, Богданова H E Имитационная модель образования монодоминантных зарослей неморальных видов трав II Сборник материалов DC Конференции молодых ученых "Биология - наука XXI века» Пущино, 2005 С 288
Mikhailova N V , Bogdanova N Е Application of cellular automata modeling for plants invasion model // Proceedmgs of International Botanical Congress Vienna, Austria,
2005 P 572
Mikhailova N V, Bogdanova N E Lattice model of mvasive dynamics of short- and long- rhizomes grasses // Proceedings of 5th European Conference on Ecological Modelmg Pushchino, 2005 P 127
Богданова H E , Михайлова H В Влияете различных источников инвазии на скорость захвата гетерогенной территории тремя неморальными видами трав (модельный подход) /I Сборник материалов X Конференции молодых ученых "Биология - наука XXI века» Пущино, 2006 С 288
Михайлова Н В, Богданова Н Е, Михайлов А В Скорость освоения территории неморальными видами трав (модельный подход) // Бюлл МОИП Сер биологическая 2006 т 111 Вып 1 С 37-44
Михайлова Н В, Комаров А С Имитационная решетчатая модель для исследования инвазии популяций короткокорневищных и длиннокорневшцных видов трав на гетерогенной территории II Сборник материалов Всероссийской научной конференции "Принципы и способы сохранения биоразнообразия» Йошкар-Ола,
2006 С 97
Komarov, A S , Mikhailova, N V, Mikhailov, А V , Zhukova, L A Spatial-temporal algorithmic models of biodiversity maintaining using the concept of discrete description of plant ontogeny II Proceedmgs of The 1st International Conference "Mathematical biology and Bioinformatics" Pushchino, 2006 P 156-157
Mikhailova, N V, Komarov, A S Lattice models of clonal plant population spread on heterogeneous territory II Proceedmgs of 6th European Conference on Ecological Modelmg Tnest, Italy, 2007 P. 350-351
Михайлова H В Моделирование развития популяций неморальных видов трав разных типов биоморф на территории с микрогеоморфологическими неоднородностями решетчатая модель // С А Кутенков, А В Сонина, В В Тимофеева (ред) Актуальные проблемы геоботаники III Всероссийская школа-конференция II часть Петрозаводск Карельский научный центр РАН 2007 С 268272
Mikhajlova, N V, Mikhajlov, А V, Komarov, A S Lattice model of mvasive dynamics of short- and long- rhizomes grasses // International Symposium on Ecological Restoration on Degraded Forest Ecosystem and Sustainable Forest Management m Northeast Asia Shenyang, China, 2007 P 3
Подписано в печать 16 01 2008 г Печать трафаретная
Заказ № 8 Тираж 100 экз
Типография «11-й ФОРМАТ» ИНН 7726330900 115230, Москва, Варшавское ш, 36 (495) 975-78-56, (499) 788-78-56 лте аШогеГега! ги
Содержание диссертации, кандидата биологических наук, Михайлова, Наталья Вячеславовна
Введение.
Глава 1.Подходы к моделированию динамики популяций растений . разных жизненных форм.
1.1. Основные представления концепции дискретного описания онтогенеза растений. Базовый онтогенетический спектр как основная
I • I характеристика состояния ценопопуляции;.;.
1.2. Аналитические подходы к исследованию состояния популяции-.
1.3. Матричные модели.
1.3.1. Матрица Лесли, и ее расширения.
1.3.2. Исследование популяций с двойной классификацией особей'.
1.4. Модели геометрии пространственного разрастания растений.
1.4.1. Концепция биоморф.
1.4.2. Моделирование особенностей геометрии ветвления коротко- и длиннокорневищных,растений.
1.4.3. Клеточно-автоматные модели.
1.4.4. Пространственные модели инвазии.
Введение Диссертация по биологии, на тему "Решетчатые имитационные модели динамики популяций травянистых растений разных жизненных форм"
В 1950 году Т.А. Работнов (1950) сформулировал принцип исследования растительных сообществ как системы взаимодействующих популяций. Этот принцип был развит А.А.Урановым (1975) и трансформирован в концепцию популяционной организации биоценозов и биоценотического покрова в целом. Такое популяционное видение растительных сообществ привело к формированию/ важных концепций структурного и динамического строения биоценозов (Восточно-европейские леса, 2004).
Эти концепции могут быть использованы для решения проблем сохранения биоразнообразия, составления прогнозов развития природных систем при разного рода воздействиях. В то. же время большое количество экологических параметров и несопоставимость собственных времен природных систем со временем наблюдения за ними, как правило, не позволяют исследователям получить необходимые количественные параметры для решения проблем. В связи с этим в экологии все большее значение приобретают методы математического моделирования.
Использование различных подходов к моделированию живых систем позволяет: провести долговременные вычислительные эксперименты, в которых время моделирования во много раз превышает как максимальные сроки наблюдений, так и собственные времена жизни моделируемого объекта; выявить ключевые характеристики или совокупности характеристик, определяющих направление дальнейшего развития популяций или сообществ живых организмов; среди множества возможных экологических параметров выбрать наиболее значимые для решения конкретной экологической проблемы.
С увеличением антропогенной нагрузки перед экологами острее встает вопрос восстановления поврежденных экосистем. Он состоит в восстановлении структуры, функции, разнообразия и динамики специфичной экосистемы. Один из способов восстановления экосистем (Stephenson, 1999; Kloor, 2000) заключается в восстановлении видового состава и структуры экосистемы до прежнего уровня путем активной реинтродукции и, в частности, путем высаживания и засевания территории растениями исходных видов. Для успешности реинвазии необходимо выявить факторы, воздействующие на успех и скорость, инвазии. Выявлению этих факторов способствует применение методов математического моделирования.
С 80-х годов XX века в экологическом моделировании активно используется подход, в рамках которого основным объектом модели является индивид - individual-based models (Комаров, 1982, 1986; Курдюмов и др., 1989; Грабовский, 1995; Huston et al., 1988; Hogeveg, Hesper, 1990; DeAngelis, Gross,. 1992; DeAngelis et al., 1994; Balzter et al., 1998; Komarov et al., 2003 и др.). Индивид рассматривают как уникальную, дискретную единицу. Модели, "основанные на индивиде", строят снизу вверх, начиная с "частей" (индивидов) системы (популяции). С помощью этого подхода проводится анализ совместной динамики множества1 дискретных объектов, имеющих пространственные координаты, каждый, из которых меняет во времени свое состояние и характеристики по тем или иным правилам.
Поскольку обычно в популяционных исследованиях наблюдения за растениями представляют собой дискретные по времени данные переписи — регистрации состояния каждого растения изучаемой' популяции в определенные моменты времени, - то для исследования развития1 и структуры популяции целесообразно использовать дискретное имитационное моделирование, в основе которого лежит дополненный и расширенный клеточно-автоматный подход. Особенностью данного модельного подхода является то, что, задавая простые правила поведения элементов,популяции на малой пространственно-временной шкале, можно получить сколь угодно сложную нелинейную динамику на всем -моделируемом пространстве для длительных промежутков времени (Комаров, 2004; Wolfram, 1983, 1984;
Ermentrout, Edelstein-Keshet, 1993; Bascompte, Sole, 1995; Wiegand, Jeltsch, 2000; Komarov et al., 2003).
В настоящей работе предложен ряд индивидуально-ориентированных пространственных имитационных моделей популяций растений, позволяющих оценить параметры восстановления и самоподдержания растительных популяций при различных нарушениях. Эти модели, будучи вначале классическими клеточно-автоматными моделями, в дальнейшем оказались более сложными. И, хотя формально можно определить соответствующий клеточный автомат, это определение не приводит ни к каким упрощениям или демонстрации общих свойств. Поэтому мы называем их решетчатыми моделями, так как в нашей работе пространство, на котором происходит популяционная жизнь модельных растений, задано целочисленной решеткой, что позволяет упростить некоторые вычислительные алгоритмы. Решетчатые модели хорошо и давно известны в статистической физике (Ландау, Лившиц, 1965) и в физике твердого тела (Хаманн, 1986).
Предлагаемые в работе решетчатые модели позволяют провести-качественную и количественную оценку особенностей восстановления популяций растений, при этом учитывать параметры семенного и вегетативного размножения, а также исследовать влияние неоднородности местообитания на успешность инвазии.
Исследование механизмов инвазии растительных ЦП в нарушенные местообитания может быть использовано при объяснении причин изменения видового разнообразия лесных сообществ в ходе сукцессий, при планировании экспериментов по восстановлению лесных систем (Богданова, 2006).
В основу разработанных моделей заложены следующие основные концепции строения биоценозов: концепция дискретного описания онтогенеза (Работнов, 1950; Уранов, 1975); представления о биологически обусловленном базовом онтогенетическом спектре популяций видов разных жизненных форм и стратегий (Заугольнова, 1976); концепция популяционных стратегий, представления о потенциях и позициях видов (Смирнова, 1987); концепция популяционных узоров (Watt, 1947; Whitteker, 1953; Whitteker, Levin, 1977; Forest succession, 1981; Whitmore, 1988), основанная на представлении о видоспецифичной пространственной структуре популяций всех членов сообщества или видоспецифичном популяционном узоре (популяционной мозаике).
Цель работы состояла в анализе инвазионных процессов и динамики ценопопуляций травянистых растений разных жизненных форм с помощью специально разработанного семейства имитационных решетчатых моделей.
Задачи исследования:
1. Разработать решетчатые (с упрощенным введением пространственных взаимоотношений между растениями) модели инвазии ценопопуляций травянистых растений разных жизненных форм на основе концепции дискретного описания онтогенеза и биоморф. Провести калибрацию и верификацию моделей по опубликованным экспериментальным данным.
2. На основе разработанных моделей оценить влияние способов размножения (вегетативного, семенного) и расселения (автохории, зоохории) на скорость захвата свободной территории модельными видами.
3. Проанализировать динамику ценопопуляций в неоднородных местообитаниях с различной долей микроучастков, непригодных для заселения; выявить критические для ценопопуляции значения этой доли, выше которой самоподдержание ценопопуляции невозможно.
Научная новизна. Впервые созданы имитационные решетчатые модели динамики популяций растений, . учитывающие особенности как вегетативного, так и семенного самоподдержания популяций растений разных биоморф. Созданы вычислительные алгоритмы, позволяющие имитировать пространственные особенности вегетативного разрастания для растений разных жизненных форм. Рассмотрено влияние вегетативного и семенного способов самоподдержания (по отдельности и в совокупности) и способов расселения (автохории, зоохории) на развитие ценопопуляций травянистых растений. Выявлены критические доли непригодных для заселения микроучастков, препятствующие инвазии модельных видов растений на неоднородную территорию.
Теоретическое значение работы. С. помощью* созданных моделей и проведенных на их основе вычислительных экспериментов Р показана-, возможность анализа динамики популяций растений, разных, жизненных форм со сложной пространственной структурой' разрастания. Введенный в семействе моделей учет онтогенетических состояний-и задание'параметров1 моделирования в виде диапазонов, или вероятностей- позволяют также имитировать поведение ценопопуляций растений с учетом динамической и морфологической поливариантности особей. Оказалось возможным сформулировать модели с небольшим числом значимых параметров, что позволяет строить упрощенные модели ценопопуляций растений, дающие возможность исследовать вопросы сохранения; и восстановления редких и исчезающих видов с учетом особенностей их местообитаний.
Практическая значимость результатов. Предложен подход, позволяющий провести количественную оценку скоростей внедрения травянистых растений в нарушенные, местообитания с учетом семенного и вегетативного способов самоподцержания, а также с учетом зоохории. Подход реализован с помощью имитационных моделей,' учитывающих неоднородности местообитания, что позволяет оценить в каждом конкретном случае время, необходимое для восстановления популяции травянистых растений, а также выявить возможные факторы, ограничивающие успешную инвазию исследуемых видов.
Связь темы диссертации с плановыми исследованиями. Работа проводилась в рамках двух научных тем, выполненных в Институте математических проблем биологии РАН: 1) "Методы оценки биоразнообразия растительного покрова", 1999-2003 гг., номер государственной регистрации 01.99.00 07319; 2) "Количественная оценка разнообразия растительности темнохвойных лесов Европейской России", 2004-2006 гг., номер государственной регистрации 01.2.00 409638.
На разных этапах выполнения исследований по данной теме работа поддерживалась грантами РФФИ № 02-04-48965, 07-04-0095.
Реализация результатов исследования. Разработанная система моделей используется в следующих учебных курсах: а) «Системный анализ и математическое моделирование в экологии», Иущинский государственный* университет; б) «Моделирование в экологии», Пущинский филиал МГУ им. М.В .Ломоносова.
Апробация работы. Материалы диссертации докладывались на т * международных конференциях и семинарах: VIII международной конференции «Математика, компьютер, образование» (Пущино, 2001); IV, V и VI Европейских конференциях по экологическому моделированию (Блед, Словения, 2004; Пущино, 2005; Триест, Италия, 2007); Международном ботаническом конгрессе (Вена, Австрия, 2005); I международной конференции по математической биологии и биоинформатике, (Пущино, 2006); Международном симпозиуме по экологическому восстановлению нарушенных лесных экосистем и устойчивому лесопользованию в северовосточной Азии (Шеньян, Китай, 2007); а также на российских конференциях и школах: VII молодежной конференции ботаников (Санкт-Петербург, 2000); Всероссийских научных конференциях «Принципы и способы сохранения биоразнообразия» (Йошкар-Ола, 2001, 2004, - 2006); Пущинских школах-конференциях молодых ученых «Биология - наука XXI века» (2000, 2003, 2005, 2006); III Всероссийской школе-конференции «Актуальные проблемы геоботаники» (Петрозаводск, 2007).
Личное участие автора. Автором совместно с научным руководителем были сформулированы цель и задачи исследования. Автором разработаны алгоритмы вегетативного разрастания и семенного размножения растений разных жизненных форм с учетом их онтогенетических состояний. На базе алгоритмов создано семейство решетчатых моделей популяций, основанных на клеточно-автоматном подходе. Автором проведена калибрация моделей на основе экспериментальных данных, полученных в Неруссо-Деснянском Полесье на юго-востоке Брянской области (Россия) к.б.н. Н.Е. Богдановой. Проведены вычислительные эксперименты, соответствующие поставленным в диссертации задачам. Автором совместно- с научным- руководителем проведен анализ результатов моделирования.и сформулированы выводы.
Основные положения диссертации, выносимые на защиту. Показана возможность теоретического исследования пространственной и временной динамики популяций растений разных жизненных форм с помощью решетчатых имитационных моделей, основанных на небольшом числе определяемых в эксперименте параметров.
Публикации. По материалам исследования опубликовано 18 работ, из них 14 - по теме диссертации, в том числе одна в журнале, входящем в перечень ведущих рецензируемых научных журналов", и изданий» ВАК, 6 публикаций в зарубежных изданиях.
Структура диссертации. Диссертационная работа состоит из введения, четырех глав, заключения, библиографического списка.
Заключение Диссертация по теме "Экология", Михайлова, Наталья Вячеславовна
Выводы г
1. Разработанное семейство решетчатых моделей, их калибрация с использованием экспериментальных данных, верификация модели по базовым онтогенетическим спектрам показали применимость таких моделей для анализа динамики ценопопуляций травянистых растений явно- и неявнополицентрических биоморф. При. этом могут быть решены следующие задачи: прогноз динамики численности, онтогенетического спектра, выявление чувствительных популяционных и онтогенетических характеристик, которые могут быть использованы как управляющие параметры для принятия мер по восстановлению или сохранению ценопопуляции.
2. Скорость захвата территории модельными видами зависит от длительности онтогенетических состояний, параметров вегетативного разрастания и интенсивности семенного размножения. Моделирование показало, что скорость расселения ценопопуляций травянистых растений увеличивается при разносе семян животными: для сныти обыкновенной и звездчатки ланцетолистной в 2-3 раза, для копытня европейского - в 10 раз.
3. Вычислительные эксперименты показывают, что в отсутствие конкуренции за свободную территорию ценопопуляция звездчатки ланцетолистной осуществляет самоподдержание в основном вегетативным образом, копытня европейского - семенным, а сныти обыкновенной - смешанным.
4. С помощью модели показано существование пороговых значений доли непригодных микроучастков, выше которых самоподдержание популяций прекращается. В отсутствие семенного размножения критические доли непригодных микроучастков составляют 50-60%, при семенном размножении — 70-80%.
Заключение)
В основе: разработанных имитационных моделей: лежат алгоритмы, являющиеся универсальными для моделирования видов, относящихся к одинаковой биоморфе, которая определяет пространственную динамику вегетативного расселения дочерних особей: В работе показано, что с помощью такого подхода к моделированию можно проводить исследование видов, сходных с модельными по биоморфе.
Модели, имитирующие захват территории ЦП травянистых видов растений; могут использоваться для прогнозирования темпов.восстановления/ ЦП травянистых растений после нарушении разного -рода. Так;; при полном уничтожении: в опаде и в почве диаспор растений; (например, после распашки, верхового пожарам или? многократных; низовых пожаров) осуществляется: фронтальное: восстановление, зависящее от; поступления-диаспор, из соседних сообществ и размеров; нарушенной территории. При частичном уничтожении: диаспор (после: рубок с сохранением части напочвенного: покрова; , редких низовых пожаров; сенокошения-, и выпаса) осуществляется мозаичный способ самоподдержания; зависящий, от расстояний: между микрорефугиумами - участками сообщества, где диаспоры не.были уничтожены полностью (Богданова, 2006):,
Модельное: исследование динамики захвата: . территории! ценопопуляциями исследуемых видов? позволяет оценить . роль не только? вегетативного; но » семенного расселения. Модельные эксперименты^ показали, что на устойчивость. ЦП копытня европейского оказывает влияние увеличение, семенной продуктивности. Для других видов этого эффекта не наблюдается, т.к. у сныти обыкновенной и звездчатки ланцетолистной сравнительно быстро ' формируется плотная заросль, и тогда для самоподдержания ¡наиболее важную роль играет освобождение пространства за счет элиминации особей, а не количество семян.
При построении имитационных решетчатых моделей для формализации развития растений концепция дискретного описания онтогенеза использовалась только российскими исследователями (Комаров, Паленова, 2001; Комаров, 2003; Котагоу е! а1., 2003). Развитие имитационного моделирования способно дать ответы на многие вопросы, связанные с поливариантностью онтогенеза, жизненностью особей, ролью фитогенного поля в пространственной структуре и динамике численности ценопопуляций.
Моделирование взаимоотношений ЦП травянистых растений позволит решать проблемы сохранения биоразнообразия растительных сообществ. Решетчатые модели позволяют также имитировать развитие сообщества ЦП травянистых растений разных жизненных форм. Однако, это требует усложнения модели, т.к. возникает вопрос о размере ячейки решетки, который по правилам модели, видоспецифичен. Кроме того, проведенные модельные эксперименты выявили ограничение модели: модель является двумерной, в одной ячейке решетки в определенный момент времени?может находиться не более одного ЭЦП. Таким образом, модели не позволяют учитывать свойственную растениям ярусность.
Способом решения этих вопросов может служить создание моделей, в которой каждый вид будет развиваться на отдельной модельной решетке, а модельная территория будет представлять собой совокупность уровней, количество которых соответствует количеству моделируемых видов плюс уровень неоднородности самой территории. Задание правил взаимодействия этих уровней позволит моделировать совместную динамику ЦП в растительном сообществе.
Библиография Диссертация по биологии, кандидата биологических наук, Михайлова, Наталья Вячеславовна, Пущино
1. Александрова В.Д. Изучение смен растительного покрова // Полевая геоботаника. M.-JL: Наука, 1964. Т. 3. 300-447 с.
2. Биологическая флора Московской области. М.: МГУ, 1974—2000. Вып. 1-14. 154 с.
3. Богданова Н.Е. Скорость освоения территории неморальными видами трав в мелколиственном лесу //Материалы двух международных форумов: доклады / Научные труды, государственного заповедника Присурский. Т. 11. Чебоксары; М., 2003. С. 179-185.
4. Богданова Н.Е. Формирование травяного покрова хвойно-широколиственных и широколиственных лесов в. ходе восстановительных сукцессий в Неруссо-Деснянском полесье. Автореф. дис . канд. биол. наук. Москва, 2006. 21с. ■
5. Богданова Н.Е., Михайлова Н.В. Влияние различных источников инвазии на скорость захвата гетерогенной территории тремя неморальными видами трав (модельный' подход) // Сборник материалов X Конференции молодых ученых. Пущино, 2006. С. 288.
6. Вайнагий И.В. О методике изучения семенной продуктивности растений // Бот. журн. 1974. Т. 59. № 6. С. 826-831.
7. Варшавский В. И. Коллективное поведение автоматов. М.: Наука, 1973. 407 с.
8. Воецкий А. Д. Изучение закономерности распространения жизненных форм растений и способов диссиминации. Автореф. дис . канд. биол. наук. Ульяновск, 2000. 159 с.
9. Воробьев Г.И., Мухаммедшин К.Д., Девяткин Л.М. Лесное хозяйство мира. М., 1984. 246 с.
10. Восточно-Европейские леса (история в голоцене и современность) / Под ред. О.В. Смирновой. М.: Наука, 2004. 2т. 768 с.
11. Грабовский В.И. Клеточные автоматы как простые модели сложных систем. // Успехи современной биологии. 1995.Т Т. 115.В Вып. 4. С. 412-419:
12. Голубев В. Н. Материалы и эколого-морфологической и генетической характеристике'жизненных форм травянистых растений//Бот. журн.1957. Т. 42. №7; С. 1055-1072.
13. Горышина Т. К. Экспериментально-экологический анализ сезонной' ритмиюг ранневесенних дубравных эфемероидов // Бот. журн; 1963. Т.43. № 11. С. 1569-1582:
14. Диагнозы и ключи возрастных состояний луговых растений. М.: МГПИ им. В.И. Ленина. 1980: Ч: I. 112 е., Ч: Ш 1983а. 98 е., Ч.Ш. 19836. 80 с., 1997. 141 с.
15. Диагнозы и ключи возрастных состояний лесных растений М:: Прометей, 1989. 105 с.
16. Ермаков: С.М., Михайлов Г.А. Статистическое моделирование. М.: . Наука, 1982. 389 с.
17. Жукова Л.А. Оценка экологической валентности видов- основных эколого-ценотических групп // Восточно-европейские леса: .история в голоцене и современность / Под ред. Смирновой О.В. Т. 1. М.: Наука, 2004. С. 256-289.
18. Заугольнова Л.Б. Типы возрастных спектров нормальных ценопопуляций растений // Ценопопуляции растений (основные понятия и структура). М.: Наука, 1976. 216 с.
19. Зозулин Г. М. Подземные части основных видов растений и ассоциаций плакоров Среднерусской лесостепи в связи с вопросами формирования растительного покрова // Тр. центр-черноземн. зап. Вып. 51. М., 1959.314 с.
20. Кислюк О.С., Паленова М.М., 1994, Структурное имитационное моделирование наземно-ползучих трав с моноподиально нарастающими удлиненными плагиотропными побегами // Ж. общ. биол. Т. 55. №6. С. 708-715.
21. Комаров A.C. Вычислительный эксперимент в исследованиях популяций вегетативно-подвижных травянистых растений / В сб.: Математическое моделирование биогеоценотических процессов. Ред.I
22. Ю.М.Свирежев. М., Наука. 1985. С. 70-79.
23. Комаров A.C. Имитационные модели нелинейной динамики сообществ растений. Автореф. дисс. докт. биол. наук. Тольятти, 2004. 38 с.
24. Комаров А. С. Математические модели в популяционной биологии растений // Ценопопуляции растений (очерки популяционной биологии) / Под. ред. Т. И. Серебряковой. М., 1998. С. 137-155.
25. Комаров А. С. О возможности математического моделирования динамики ценопопуляций травянистых растений / В кн: Динамика ценопопуляций травянистых растений. Киев, 1987. С. 58-69.
26. Комаров A.C. О некоторых марковских моделях в популяционной экологии растений / В сб.: Взаимодействующие марковские процессы и их применение в биологии. Ред. Р.Л.Добрушин, В.И.Крюков. Пущино, ОНТИНЦБИ АН'СССР, 1986. С. 120-124.
27. Комаров А. С. Простые структуры растительного покрова, устойчивые к внешним нарушениям // Взаимодействующие Марковские процессы и их применение к математическому моделированию биологических систем. Пущино, 1982. С. 136-143.
28. Комаров А. С., Паленова М. М. Моделирование взаимодействующих популяций вегетативно-подвижных трав // Бюл. МОИП. Отд. биол. 2001. Т. 106. №5. С. 35-41.
29. Корсмо Э. Сорные растения современного земледелия. М.-Л., 1933. 423 с.
30. Корчагин A.A. Внутривидовой (популяционный),состав растительных сообществ и методы его изучения //Полевая^ геоботаника. Т. 3. М.-Л:И.: Изд-во АН СССР. 86-115.
31. Курдюмов С.П., Малинецкий Г.Г., Потапов А.Б. Синергетика новые направления. М.: Знание, 1989. С. 40.
32. Левина Р. Е. Способы распространения плодов и семян. М., 1957. 358 с.
33. Михайлова Н:В., Богданова Н.Е. Имитационная- модель образования монодоминантных зарослей неморальных видов трав // Сборник материаловТХ Конференции молодых ученых:,Пущино; 2005. С. 288
34. Михайлова НШ:, Комаров A.C., Паленова М:М. Клеточно-автоматная модель развития дерновинного злака // Сборник материалов конференции «Математика; Компьютер, Образование». Пущино, 2001. С. 309.
35. Морозова О. В. Леса заповедника "Брянский лес" и Неруссо-Деснянского полесья (синтаксономическая характеристика). Брянск, 1999. 98 с.
36. Никитин: С. А. Некоторые особенности биологии и произрастания лесных, растений* в лесопарковых условиях Серебряноборского лесничества // Леса Подмосковья (Материалы к биогеоценотическому изучению). 1965. С. 169-201
37. Одум, Ю: Основы экологии. 1975; 384 с: . ••
38. Онтогенетический атлас лекарственных растений. Том 1. Учебное пособие. Йошкар-Ола, МарГУ, 1997. 240 с.114 .
39. Онтогенетический атлас. лекарственных растений; Том 2. Учебное пособие. Йошкар-Ола, МарГУ, 2000. 268 с.
40. Онтогенетический атлас лекарственных растений. Том 3. Учебное пособие. Йошкар-Ола, МарГУ, 2003. 240 с.
41. Онтогенетический атлас лекарственных растений. Том 4. Учебное пособие. Йошкар-Ола, МарГУ, 2004: 240 с.
42. Определитель сосудистых растений; центра; европейской России / Губанов И.А., Киселева К. В:, Новиков В. С., Тихомирова В. Н. М.: Аргус, 1995. 560 с.
43. Петровский В.В. 1961. Синузии как формы совместного, существования растений. Бот. журн. 46. №11. С. 45. Пугачевский А.В. Ценопопуляции ели: Структура, динамика, факторы регуляции. Мн. :Навука и тэхника, 1992. 204 с.
44. Работнов ТА. Жизненный цикл многолетних травянистых растений в луговых ценозах: // Тр. БИН АН СССР. Сер. 3. Геоботаника. 1950. Вып. 6. С. 7-204.
45. Работнов Т. А. Некоторые вопросы изучения ценотических популяций. Бюлл. МОИП. Сер. Биологическая. Т. 74. № 1. С. 15. ! .
46. Рюэль Д. Статистическая механика/ Строгие результаты. М.: Мир. 1971.256 с.
47. Серебряков И. Г. О ритме сезонного развития растений подмосковных лесов //Вестн. МГУ. 1947. № 6. С. 75-108.
48. Серебряков И. Г. Морфология вегетативных органов высших растений. М.: Сов. Наука, 1952. 391 с.
49. Серебряков И. Г., Серебрякова Т. И. О двух типах формирования корневищ у травянистых многолетников // Бюлл. МОИП. Сер. Биологическая. 1965. Т.70. №. 1. С. 67-81.
50. Свирежев Ю.М., Логофет Д.О. Устойчивость биологических сообществ. М.:Наука, 1987. 352 с.
51. Синай Я.Г. Теория фазовых переходов. М.: Наука. 1980. С. 350.
52. Смирнова О. В. Некоторые особенности жизненных циклов вегетативно-подвижных растений // Вопросы биологии и экологии доминантов и эдификаторов растительных сообществ. Пермь, 1968а. С. 153-158.
53. Смирнова О. В. Онтогенез и возрастные группы осоки волосистой {Сагех pilosa) и сныти обыкновенной (Aegopodium podagraria) Н Онтогенез и возрастной состав, популяций цветковых растений. М., 19676. С. 100-113.
54. Смирнова О.В. Объем счетной единицы при изучении ценопопуляций растений различных биоморф // Ценопопуляции растений (основные понятия и структура). М.:Наука, 1976. 216 с.
55. Смирнова О. В. Сныть обыкновенная // Биологическая флора Московской области. М.: Изд-во МГУ, 1974. Вып. 1. С. 131-141.
56. Смирнова О. В. Структура травяного покрова широколиственных лесов. М., 1987. 206 с.
57. Смирнова О. В. Численность и возрастной состав популяций некоторых компонентов травяного покрова дубрав // Вопросы морфогенеза цветковых растений и строения их популяций. М.: Наука, 19686. С. 155-182.
58. Смирнова, О.В. Заугольнова, Л.Б. Ханина, Л.Г. Торопова H.A. «Популяционные и фитоценотические методы анализабиоразнообразия растительного покрова» // Сохранение и восстановление биоразнообразия. М.: Издательство НУМЦ, 2002. 312 с.
59. Смирнова О. В., Зворыкина К.В. Копытень европейский // Биологическая флора Московской области. М., 1974. Т.1. С. 41-51.
60. Смирнова О. В., Торопова Н. А. О сходстве жизненных циклов и возрастного состава популяций некоторых длиннокорневищных растений дубрав // Возрастной состав популяций цветковых растений в связи с их онтогенезом. М., 1974. С. 56-69.
61. Сукачев В. Н. О влиянии интенсивности борьбы за существование между растениями на их развитие // Докл. АН СССР. 1941. Т. 30. № 8. С. 752-755.
62. Сукачев В. Н. О внутривидовых и межвидовых отношениях среди растений//Бот. журн. 1953. Т. 38. Вып. 1. С. 57-96.
63. Удра И. Ф. Расселение растений и вопросы палео- и биогеографии. Киев., 1988. 197 с.
64. Уланова Н.Г., Демидова А.Н., Клочкова И.Н., Логофет Д.О. Структура и динамика популяции вейника седеющего Calamagostis canescens: модельный подход // Журнал общей биологии. 2002. т. 63. №6. С. 509521.
65. Уранов A.A. Онтогенез и возрастной состав популяций (вместо предисловия). // Онтогенез и возрастной состав популяций цветковых растений . М.: Наука, 1967. 198 с.
66. Уранов A.A. Возрастной спектр ценопопуляций как функция времени и энергетических волновых процессов // Научн. докл. высш. школы. Биол. Науки. 1975. №2 (№37). С. 7 34.
67. Хендел С. Н.; Битти Э. Дж. Распространение семян муравьями // В мире науки. 1990. Т. 263. №10. С. 54-61.
68. Ценопопуляции растений (основные понятия и структура). М.:Наука, 1976.216 с.
69. Ценопопуляции растений. Очерки популяционной. биологии. М.: Наука, 1988. 184 с.
70. Цетлин М. Л. Исследования по теории автоматов и.моделированию биологических систем.М.: Наука, 1959/ 316 с.
71. Цыганов Н.Д. Фитоиндикация экологических режимов в подзоне хвойно-широколиственных лесов. М., 1983. 196 с.
72. Цыпляновский A.M., Глотов Н.В., Жукова Л.А., Комаров А.С. Генетико-демографическая модель подорожника большого (Plantago major) // Экология и генетика* популяций: Йошкар-Ола, 1998: С. 316317.
73. Шик М. М. Сезонное развитие травяного покрова дубравы // Уч. зап. МГПИ им. В.И. Ленина. 1953. Т. 73. вып. 2. С. 159-250.
74. Andersen, Mark С. Comments on Theoretical-Biology. 1994. V. 3. P. 365.
75. Auld B.A., Coote B.G. INVADE: towards the simulation of plant spread // Agriculture Ecosystems and Environment. 1990. V. 30. P: 121-128.
76. Auld B.A., Coote B.G. A model of spreading- plant populations // Oikos. 1980. V. 34. P. 287-292.
77. Balzter H., Braun P.W., Kohler W. Cellular automata models for vegetation dynamics//Ecol. Modelling. 1998. N. 107. P.l 13-125.
78. Bascompte J., Sole R.V. Rethinking complexity: Modelling spatiotemporal dynamics in ecology // Trends in Ecology & Evolution. 1995. V. 10. N. 9. P. 125.
79. Beissinger S.R., Westphal M.I. On the use of demographic models of population viability in endangered species management // Journal of Wildlife Management. 1998. V. 62. P.821-841.
80. Berntson G.M. The characterization of topology: a comparison of four topological indices for rooted binary trees // Journal of Theoretical Biology. 1995. V. 177. P. 271-281.
81. Bertson G. Topological scaling and plant root system architecture: developmental and functional hierarchies //New Phytology. 1997. V. 135. P. 621-634.
82. Caswell H. Optimal life histories and the maximization-of reproductive value: a general theorem for complex life cycles // Ecology. 1982a. V. 63. N. 2. P. 1218-1222.
83. Caswell H. Stable population structure and reproductive value for populations with complex life cycles // Ecology. 1982b. V.63. N.2. P.1223-1231.
84. Caswell H. Matrix Population Models: Construction, Analysis, and1.terpretation. Sunderland, MA: Sinauer Associates, 2001. 402 p.
85. Caswell H., Werner P. Transient behavior and life history analysis of teasel (Dispacus sylvestris Huds.) //Ecology. 1978. V. 59. P. 53-66.
86. Caughley G. Directions in conservation biology // Joural Animal Ecology. 1994. V. 63. P. 215-244.
87. Clapham C. A concise Oxford dictionary of mathematics. Oxford: Oxford University Press. 1990. 201 p.
88. Cochran M.E., Ellner S. Simple methods for calculating age-based life-history parameters for stage-structured populations // Ecological Monograths. 1992. V. 62. P. 345-364.
89. Colasanti R.L., Hunt R. Resource dynamics and plant growth: a self-assembling model for individual, population and communities // Functional ecology. 1997. V. 11. P. 133-145.119
90. Collingham Y.C., Hill M.O., Huntley B. The migration of sessile organisms: a simulation model with measurable parameters // Journal of Vegetation Science. 1996. V. 7. P. 831-846.
91. Cooke D., Leon J.A. Stability of population growth determined by 2X2 Leslie matrix with density-dependent elements // Biometrics. 1976. V. 32. P. 435-442.
92. De Kroon H:, Plaisier A., van Groenendael J., Caswell, H. Elasticity: the relative contribution of demographic parameters to population growth rate //Ecology. 1986. V. 67. P. 1427-1431.
93. De Kroon H., van Groenendael J., Ehrle'n, J. Elasticities: a review of methods and model limitations // Ecology. 2000. V. 81. P. 607-618.
94. DeAngelis D.L., Gross L.J. Individual-Based-Models and Approaches in* Ecology // Populations, Communities and Ecosystems. New York,' London: Chapman & Hall, 1992. 525 p.
95. Ellnerw S.P., Akira S., Yoshihiro H.; Hirotsugu M. Speed of invasion in lattice population models:pair-edge approximation // Journal on Mathematical Biology. 1998. V.36. P. 469-484. .
96. Enright N.J. The ecology of Araucaria species in New Guinea. III. Population dynamics of sample stands // Austral Journal of Ecology. 1982. V. 7. P. 227-237.
97. Enright N., Ogden J. Applications of transition matrix models in forest dynamics: Araucaria in Papua New Guinea and Nothofagus in New Zealand // Austral Journal of Ecology. 1979. V. 4. P. 3-23.
98. Ermentrout G.B., Edelstein-Keshet L. Cellular automata approaches to biological modelling // Journal of Theoretical Biology. 1993. V. 160. P. 97133.
99. Eriksson O. Stochastic population dynamics of clonal plants: Numerical experiments with ramet and genet models // Ecological Research. 1994. V. 9. P. 257-268.
100. Forest succession: Concept and application / Ed. D.C. West et al. N.Y. etc.: Springer, 1981. 517 p.
101. Gatsuk L.F., Smirnova O.V., Vorontzova I.T., Saugolnova L.V., Zhukova L.A. Age states of plants of various growth forms: a review // Journal of Ecology. 1980. V. 68. № 4. P. 675-696.
102. Goodman L.A. The analysis of population growth when the birth and death rates depend upon several factors // Biometrics. 1969. V. 25. P. 659-681.
103. Gurney W.S.C., Nisbet R.M. Ecological dynamics. New York, NY: Oxford University Press, 1998. 346 p.
104. Hansen P.E. Leslie matrix model // Papers of "mathematical ecology / Csetenyi A. Budapest: Department of mathematics, Karl Marx University of economics, 1986. P. 1-139.
105. Higgins S.I., Richardson D.M., Cowling R.M. Modelling invasive plant spread: the role of plant-environment interactions and model structure // Ecology. 1996. V. 77. P. 2043-2054.
106. Hogeveg P., Hesper B. Individual-oriented modeling in ecology // Mathematical Computative Modeling. 1990. V. 13. P. 105-116.
107. Huston M., DeAngelis D., Post W. New computer models unify ecological theory//Bioscience. 1988. V. 38. P. 682-691.
108. Inghe O. Computer simulation of flowering rhythms in perennials — is there a new area to explore in the quest for chaos? // Journal of Theoretical Biology. 1990. N. 147. P. 449-469.
109. Inghe O. Genet and ramet survivorship under different mortality regimes -a cellular automata model // Journal of theoretical biology. 1994. N. 180. P. 454-489.
110. Jeltsch F., Milton S.J., Dean W.R.J., van Rooyen N. Analysing shrub encroachment in the southern Kalahari: a grid-based modelling approach // Journal of Applied Ecology. 1997. V. 34. P. 1497-1508.
111. Kisljuk O.S., Kuznetzova T.V., Agafonova A.A. On the modelling of clone geometry in Asarum europaeum // Journal of Theoretical Biology.- 1996. V. 178. P. 399-404.
112. Komarov A.S., Palenova M.M., Smirnova O.V. The concept of discrete description of plant ontogenesis and cellular automata models of plant populations // Ecological Modelling. 2003. V. 170. P. 427-439.
113. Kull T. Genet and ramet dynamics of Cypripedium calceolus in different habitats// AbstractaBotanica. 1995. V. 19. P. 95-104.
114. Law R. A . A model for the dynamics of a plant population containing individuals classified by age and size // Ecology. 1983. V. 64(2). P. 224230.
115. Lefkovitch L.P. The study of population growth in organisms grouped by stages // Biometrics. 1965. V. 21. P. 1-18.
116. Leslie P.H. On the use of matrices in certain population mathematics // Biometrika. 1945. V. 33. P. 183-212.
117. Leslie P.H. Some further notes on the use of matrices in population mathematics // Biometrika. 1948. V. 35. N. 3-4. P. 213-245.
118. Leverich W.J., Levin D.A. Age-Specific Survivorship and Reproduction in Phlox drumrnondii II American Naturalist. 1979. V. 113. P. 881.
119. Lindenmayer A. Adding continuous components to L-systems // Lecture Notes in Computer Science. V. 15. // eds. G. Rozenbeg, A. Salomaa. Berlin: Springer-Verlag, 1974. P. 53-68.
120. Logofet D.O. Matrices and graphs. Boca Raton, FL: CRC Press, 1993. 2141. P
121. Mikhailova N.V., Bogdanova N.E. Application of cellular automata modeling for plants invasion model // Proceedings of International Botanical Congress. Vienna, Austria, 2005. P. 572.
122. Mikhailova N.V., Bogdanova N.E. Lattice model of invasive dynamics of short- and long- rhizomes grasses // Proceedings of European Conference on Ecological Modeling. Pushchino, 2005. P. 127.
123. Mikhailova N.V., Komarov A.S., Mikhailov A.V. Application of cellular automata modeling for plants invasion model // Proceedings of European Conference on Ecological Modeling. Bled, Slovenia, 2004. P. 97.
124. Pukkala T., Kolstrom T. Simulation of the development of Norway spruce stands using a transition matrix // Forest ecology and management. 1988. V. 25. P. 255-267.
125. Richter 0., Zwerger P., Bottcher U. Modelling spatio-temporal dynamics of herbicide resistance // Weed Research. 2002. V. 42. N. 1. P. 52-64.
126. Schemske D.W., Husband B.C., Ruckelshaus M.H., Goodwillie C., Parker I.M., Bishop J.G. Evaluating approaches to the conservation of rare and endangered plants // Ecology. 1994. V. 75. P. 584-606.,
127. Schippers P., van Groenendael J. M. Vleeshouwers L. M., Hunt R. Herbaceous plant strategies in disturbed habitats // Oikos. 2001. V. 95. P. 198-210.
128. Seabloom E.W., Harpole W.S., Reichman O.J., Tilman D. Invasion, competitive dominance, and resourse use by exotic and native California grassland species // Proceedings of National Academy of Science. USA, 2003. V. 100. P. 13384-13389.
129. Shea K., Kelly, D. Estimating biocontrol agent impact with matrix models: Carduus nutans in New Zealand // Ecol. Appl. 1998. V. 8. P. 824-832.
130. Shea K., Chesson P. Community ecology theory as a framework for biological invasion // Trends of Ecology and Evolution. 2002. V. 17. P. 170-176.
131. Shea K., Kelly D., Sheppard A.W., Woodburn T.L. Context-dependent ^ biological control of an invasive thistle // Ecology. 2005. V. 86. P. 3174—3181.
132. Silva J.F., Raventos J., Caswell H. Population responses to fire in a tropical savanna grass, Andropogon semiberbis: a matrix model approach // The Journal of Ecology. 1991. V. 79. P. 345-356.
133. Silvertown J., Franco M., Pisanty I., Mendoza A. Comparative plant demography relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials // Journal of Ecology. 1993. V. 81. P. 465-476.
134. Takada T., Hara T. The relationship between the transition matrix model and the diffusion model. Journal of Mathematical Biology. 1994. V. 32. P. 789-807.
135. Thomson, D.M. Matrix models as a tool for understanding invasive plant and.native plant interactions // Conservation Biology. 2005. V. 19. P.917-928.
136. Usher M.B. A matrix model for forest management // Biometrics. 1969. V. 25. P: 309-315.
137. Valverde T., Silvertown J. A metapopulation model for Primula vulgaris, a temperate forest understorey herb // The Journal of Ecology. 1997. V. 85. N. 2. P. 193-210.i
138. Wallinga J. The role of space in plant population dynamics: annual weeds as an example // Oikos. 1995. V. 74. P.-377-383.
139. Watti A.S. Pattern and Process -in plant communities // The Journal of Ecology. 1947. Vol. 35. P. 1-22.
140. Werner P.A. Prediction of fate from rosette size in teasel {Dispacus fullonum L.) // Oecologia. 1975. V. 20. P. 197-201.
141. Werner P.A., Caswell H. Population growth rates and age versus stage-distribution models for teasel {Dispacus sylvestris Huds.) // Ecology. 1977. V. 58. P. 1102-1111.
142. Whitmore T.C. The influence of tree population dynamics on forest species composition // Plant population ecology. Oxford: Blackwell, 1988. P. 273292.
143. Whittaker R.H. A consideration of climax theory: The climax as population patterns //Ecological Monograths. 1953. V. 23. P. 41-78.
144. Whittaker R.H., Levin A.S. The role of mosaic phenomena in natural communities // Theoretical Population Biology. 1977. V. 12. N. 2. P. 117139.
145. Wiegand T., Jeltsch F. Long-term dynamics in arid and semiarid ecosystems -synthesis of a workshop // Plant Ecology. 2000. V. 150. P. 36.
146. Winkler E., Schmid B. Clonal strategies of herbaceous plant species: a simulation study on population growth and competition // Abstracta Botanica. 1995. V. 19. P. 17-28.
147. Winkler E., Klotz S. Clonal plant species in a dry-grassland community: a simulation study of long-term population dynamics // Ecological Modeling. 1997. V. 96. P. 125-141.
148. Wolfram S. Statistical mechanics of cellular automata // Reviews of Modern Physics. 1983. V. 55. N. 3. P. 601 644.
149. Wolfram S. Cellular automata as models of complexity // Nature. 1984. V. 311. P. 419.
150. Wolfram S. A new kind of science. Champaign, II.: Wolfram Media Inc, 2002. 256 p.
- Михайлова, Наталья Вячеславовна
- кандидата биологических наук
- Пущино, 2008
- ВАК 03.00.16
- Особенности популяционной жизни некоторых наземно-ползучих трав
- Сравнительный морфогенез и структура вегетативных органов растений хозяйственно ценных видов рода Oenothera L.
- Экологические и биоморфологические закономерности пространственно-онтогенетической структуры популяций растений, динамика и мониторинг
- Биоморфология некоторых длиннокорневищных видов растений и структура их ценопопуляций на юге Сибири
- Флора железнодорожных насыпей южной части Приволжской возвышенности