Бесплатный автореферат и диссертация по биологии на тему
Исследование структурных состояний ферментов рестрикции-модификации и их связи с каталитической активностью
ВАК РФ 03.00.03, Молекулярная биология
Содержание диссертации, кандидата биологических наук, Овечкина, Лидия Григорьевна
СПИСОК СОКРАЩЕНИЙ.
ВВЕДЕНИЕ.
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР. СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ ФЕРМЕНТОВ
РЕСТРИКЦИИ-МОДИФИКАЦИИ.
1.1. ПРИРОДА И ФУНКЦИИ ФЕРМЕНТОВ R-M СИСТЕМ.
1.1.1. Обеспечение защитной функции.
1.1.2. Участие в экспрессии генов.
1.1.3. Функции репликации и репарации.
1.1.4. Регуляция различных клеточных процессов.
1.2. СУЩЕСТВУЮЩИЕ ТИПЫ R-M СИСТЕМ.
1.2.1. R-M системы типа I.
1.2.2. R-M системы типа II.
1.2.3. R-M системы типа III.
1.3. МЕХАНИЗМ КАТАЛИЗА МЕТИЛИРОВАНИЯ ДНК.
1.3.1. Классификация ДНК - метилтрансфераз.
1.3.2. ДНК -[С5-цитозин]-метилтрансферазы.
1.3.3. ДНК амино-метилтрансферазы.
1.4. СТЕХИОМЕТРИЧЕСКИЕ ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ R-M СИСТЕМ ТИПА II СО СПЕЦИФИЧЕСКОЙ ПОСЛЕДОВАТЕЛЬНОСТЬЮ ДНК.
1.4.1. Взаимодействие эндонуклеаз рестрикции.
1.4.2. Взаимодействие МТаз.
1.4.3. Исследование ДНК-ферментных взаимодействий с использованием олигонуклеотидных дуплексов.
1.4.4. Кинетические исследования МТаз.
Глава 2. МАТЕРИАЛЫ И МЕТОДЫ.
2.1.Подготовка олигонуклеотидов.
4.2. Субстрат-связывающие свойства BamHI МТазы при взаимодействии с 20-членным олигонуклеотидным дуплексом.
4.3. Сшивка субъединиц BamHI МТазы глутаровым альдегидом.
Глава 5. КАТАЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАЗЛИЧНЫХ СТРУКТУРНЫХ ФОРМ Т4 Dam И BamHI
МЕТИЛТРАНСФЕРАЗ.
5.1. Характеристики предстационарной фазы реакции в условиях насыщения Dam МТазы фага Т4 субстратами.
5.2. Кинетические параметры одного оборота метилирования субстрата Dam Т4 МТазой.
5.3. Стационарная кинетика метилирования синтетического олигонуклеотидного дуплекса BamHI МТазой.
5.4. Кинетические параметры одного оборота реакции метилирования BamHI метилазой.
5.5. Характеристики предстационарной фазы реакции в условиях насыщения BamHI МТазы субстратами.
5.6. Различные комплексы Dam Т4 Мазы и BamHI МТазы с субстратами и их возможная роль в реакции.
Введение Диссертация по биологии, на тему "Исследование структурных состояний ферментов рестрикции-модификации и их связи с каталитической активностью"
Современные исследования в области молекулярной биологии и генетики трудно представить без широкого применения ферментов бактериальных систем рестрикции-модификации, специфически гидролизующих и модифицирующих ДНК.
Способность эндонуклеаз рестрикции катализировать гидролиз определенных специфических последовательностей ДНК сделала их одним из наиболее удобных инструментов генной инженерии. Метилазы катализируют перенос метальной группы от 8-аденозилметионина к остаткам аденина или цитозина внутри тех же узнаваемых последовательностей с образованием Ш-метиладенина, С5-метилцитозина или Ш-метилцитозина и Э-аденозил-Ь-гомоцистеина.
В течение последнего десятилетия наиболее пристальное внимание исследователей привлекает биологическое метилирование ДНК, которое связано практически со всеми важнейшими аспектами функционирования генетического аппарата клетки, такими как защита ДНК от действия эндонуклеаз рестрикции, репликация и репарация, транскрипция и экспрессия генов, инактивация Х-хромосомы и укладка хроматина, накопление генетических мутаций и канцерогенез. У некоторых бактерий, средой обитания которых являются организмы человека и животных, процесс метилирования связан с проявлением патогенности. Полифункциональность метилирования ДНК вызвала к жизни целый ряд направлений таких исследований как "метилирование и рак", "генетический импринтинг и эпигенетика", "репарация ДНК и мутагенез", "метилирование и старение" и др.
По мнению большинства исследователей, универсальная роль метилировния ДНК может осуществляться путем изменения доступности функционально важных участков генов для связывания с соответствующими регуляторными белками. Поэтому выяснение механизма действия ДНК-метилтрансфераз и способов регуляции этого процесса остается одной из актуальнейших задач в молекулярной биологии, генетике и медицине.
Доступность и относительная простота организации ферментов рестрикции-модификации типа II многих прокариот, привлекают к ним внимание специалистов в области изучения белково-нуклеиновых взаимодействий. Из множества аспектов таких исследований стехиометрическое соотношение фермента и субстрата приобретает особый смысл, так как без решения этой проблемы невозможна корректная интерпретация многочисленных экспериментальных данных.
Целью данной работы явилось изучение структурных состояний ферментов рестрикции-модификации типа II при взаимодействии с синтетическими олигонуклеотидными субстратами, содержащими или не содержащими соответствующие специфические сайты узнавания. В качестве объектов исследования мы использовали высокоочищенные препараты таких ферментов, как эндонуклеаза рестрикции Mval, катализирующая гидролиз специфической последовательности CC^AAQGG, Dam ДНК-[К6-аденин] метилтрансфераза фага Т4 (Dam Т4 МТаза), катализирующая метилирование экзоциклической N6-аминогруппы аденина палиндромной последовательности GATC, и ДНК-[Ж-цитозин] метилтрансфераза из Bacillus amiloliquefaciens (BamHI МТаза), которая катализирует перенос метильной группы в положение N4 первого остатка цитозина палиндромной последовательности GGATCC.
В своих исследованиях мы руководствовались следующими основными задачами: определение стехиометрических соотношений компонентов фермент-субстратных взаимодействий в растворах; - определение условий образования различных структурных форм ферментов; 8
- сопоставление исследуемых структурных состояний ферментов с их каталитической активностью.
Изучение фермент-субстратных комплексов в растворах проводилось с использованием методологии исследования, основанной на применении взаимодополняющих подходов. Наряду с определением молекулярных масс ферментов и их комплексов с помощью гель-фильтрации и ультрацентрифугирования в градиенте плотности сахарозы осуществлялась регистрация комплексов ДНК с белками методом "задержки в геле", ковалентная сшивка олигомерных форм белка глутаровым альдегидом и кинетические исследования в стационарных и предстационарных условиях. Все это позволило сопоставить структурные состояния исследуемых метилтрансфераз с их каталитической активностью.
На защиту выносится существование различных, обладающих функциональной активностью форм исследованных ферментов.
Заключение Диссертация по теме "Молекулярная биология", Овечкина, Лидия Григорьевна
ВЫВОДЫ
1. Методами гель-фильтрации и ультрацентрифугирования в градиенте концентраций сахарозы показано, что в комплексе с олигонуклеотидными дуплексами, содержащими симметричные сайты узнавания, наблюдается димеризация эндонуклеазы рестрикции Mval и Dam Т4 МТазы.
2. Экспериментами с использованием сшивки белковых молекул глутаровым альдегидом впервые определены условия, в которых ферменты BamHI МТаза и Dam Т4 МТаза в присутствии субстратов являются мономерами - ([МТаза]«[дуплекс]) или олигомерами, преимущественно димерами, - ([МТаза]»[дуплекс]).
3. В отличие от Dam Т4 МТазы, BamHI МТаза в свободном состоянии существует преимущественно в виде димера, для диссоциации которого необходимо присутствие избытка обоих субстратов - SAM и ДНК дуплекса.
4. Высокочувствительным методом ковалентной сшивки впервые визуализировано образование фермент-субстратных комплексов Dam Т4 МТазы и BamHI МТазы с неспецифическим олигонуклеотидом.
5. Впервые сопоставлена каталитическую активность различных ферментных форм BamHI и Dam Т4 МТаз измерением предстационарной кинетики реакции метилирования специфического дуплекса и кинетики одного оборота реакции:
- в условиях, когда ферменты имеют мономерную структуру, скорость химической стадии переноса метильной группы, катализируемая Dam Т4 МТазой, примерно в 25 раз выше скорости стационарной стадии реакции, а катализируемая BamHI МТазой - лишь в 1.4 раза;
93
- в условиях, когда оба фермента могут функционировать в виде димера, в ходе одного оборота реакции достигается полная модификация обеих мишеней.
94
Работа выполнена при поддержке Российского фонда фундаментальных исследований и Международного фонда Джона Е. Фогарти. Автор выражает искреннюю благодарность всем коллегам, в соавторстве с которыми получены основные результаты диссертации: Горбунову Ю.А., Малыгину Э.Г., Поповой С.Р., Зиновьеву В.В., Янулайтису A.A., Вайткявичюсу Д.П., Косых В.Г., Евдокимову A.A., Линдстрему У.М., Рейху И.О., Шлагману C.JI. и Хаттману С., а также глубокую признательность Закабунину А.И. за ценное обсуждение результатов, Маркович H.A. и Евдокимову A.A. за помощь при оформлении диссертации.
Глава 6. ЗАКЛЮЧЕНИЕ
Фундаментальная научная проблема белково-нуклеинового узнавания содержит в себе множество аспектов, среди которых стехиометрическое соотношение между ферментом и субстратом приобретает особый смысл, так как позволяет непосредственно моделировать схемы каталитической реакции на молекулярном уровне.
Исследование стехиометрии фермент-субстратных взаимодействий в R-M системах было начато нами давно с исследования эндонуклеазы рестрикции Mval. Прямыми методами гель-фильтрации и ультрацентрифугирования в градиенте концентраций сахарозы была продемонстрирована димеризация фермента в присутствии двуцепочечного дуплекса, которая является, по-видимому, необходимой стадией образования каталитически активной формы фермент-субстратного комплекса. Полученный результат согласуется с общими представлениями об эндонуклеазах рестрикции, как о симметричных структурах, взаимодействующих с симметричными субстратами.
В отношении ДНК метилтрансфераз, входящих в R-M системы, вопрос о стехиометрических соотношениях компонентов фермент-субстратного взаимодействия не является столь однозначным.
Исследованные нами ДНК МТаза из Bacillus amiloliquefaciens и ДНК Dam МТазы фага Т4 относятся к одному и тому же классу амино-МТаз. На первый взгляд амино-МТазы ближе друг к другу в сравнении с С5- МТазами. Они не только имеют общую мишень модификации -экзоциклическую NH2-rpynny, но и обладают сходными последовательностями в основных консервативных мотивах [71]. Однако, остатки аденина и цитозина, имеющие различные энергетические и динамические характеристики в процессе "выворачивания" основания из двойной спирали, по-видимому, вносят свой вклад в структурные различия механизмов метилирования. Поэтому, хотя и наблюдается общее сходство, одновременно выявлены некоторые структурные и кинетические детали функционирования, различные для обоих ферментов. В частности, последними исследованиями Евдокимова A.A. показано [226], что скорость процесса метилирования ДНК, катализируемого Dam Т4 МТазой, при высоких концентрациях SAM не обнаруживает тенденции к насыщению, чего мы не наблюдаем для BamHI МТазы.
Эксперименты по сшивке субъединиц глутаровым альдегидом наглядно продемонстрировали, в каких условиях исследованные МТазы являются мономерами, а в каких имеют олигомерную структуру. Показано, что, в отличие от Dam Т4 МТазы, фермент BamHI МТазы в свободном состоянии в растворе в мономерном виде не существует. Его преимущественная форма - димер, а также более тяжелые формы: тримеры, тетрамеры и пр. Опыты по «задержке в геле» также показали, что даже при низких концентрациях фермента дуплекс образовывал комплекс с мультимерным ферментом, не способным проникнуть глубоко в гель, оставаясь в его верхних слоях. BamHI МТаза пока представляет единственный пример отсутствия стехиометрически простых комплексов в условиях стандартного метода «задержки в геле». Dam Т4 МТаза, которая в свободном состоянии в растворе является мономером, ассоциирует под воздействием дуплекса ДНК, в концентрациях существенно меньших концентрации фермента. Однако совокупное воздействие обоих субстратов на состояние как BamHI МТазы, так и Dam Т4 МТазы в тройном комплексе приводит с повышением концентрации олигонуклеотидного дуплекса к диссоциации белковых олигомеров до мономеров.
Метод ковалентной сшивки позволил наблюдать также, что оба фермента взаимодействуют с неспецифическими олигонуклеотидами. Это можно рассматривать как первую стадию связывания МТаз с полимерной
ДНК, которая сопровождается линейной диффузией фермента к специфическому участку узнавания.
Каталитическую активность различных ферментных форм МТаз BamHI и Dam Т4 удалось сопоставить измерением предстационарной кинетики определения «всплеска» реакции метилирования специфического дуплекса и кинетики одного оборота метилирования.
Анализ кинетики одного оборота, когда доминантной ферментной формой исследованных МТаз является димер, выявил, что оба фермента катализируют метилирование мишенных остатков в обеих цепях ДНК. При этом модификация с участием BamHI МТазы протекает в одну стадию, тогда как реакция, осуществляемая Dam Т4 МТазой, представляет собой двустадийный процесс. Можно предположить, однако, что реакция протекает аналогично Dam Т4 МТазе в две стадии, обладающие одинаковыми скоростями, т.к. полученные результаты могут быть описаны уравнением с двумя экспонентами. Правда, полученная при этом кривая, несколько хуже описывает экспериментальные данные.
Сравнивая полученные кинетические параметры различных форм исследуемых ферментов, нужно отметить, что для Dam Т4 МТазы мы наблюдаем существенное различие констант скорости мономера и димера, в то время как для BamHI МТазы эти скорости отличаются незначительно.
В заключение следует обратить внимание на необходимость соблюдать известную осторожность при интерпретации кинетических аномалий в поведении ферментов. Для понимания механизма фермент-субстратных взаимодействий требуются различные исследовательские приемы и подходы. В данной работе положено начало изучению модификации 20-членного дуплекса BamHI МТазой, которое планируется продолжить с использованием флуоресцентного метода исследования, позволяющего фиксировать различные структурные состояния молекул.
Библиография Диссертация по биологии, кандидата биологических наук, Овечкина, Лидия Григорьевна, Кольцово
1. Roberts R.J., Halford S.E. Type II restriction enzymes // Nucleases. Eds. Linn S., Lloyd R.S., Roberts R.J. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993. P. 35-88.
2. Roberts R.J., Macelis D. Endonucleases Restriction // Nucl. Acids Res. 1996. V. 24. P. 223-235.
3. Smith H.O. Nucleotide sequence specificity of restriction endonucleases // Science. 1979. No. 4403. P. 445-462.
4. Wilson G.G. Organization of restriction-modification systems // Nucl. Acids Res. 1991. V. 19. No. 10. P. 2539-2566.
5. Wilson G.G., Murray N.E. Restriction and modification systems // Annu. Rev. Genet. 1991. V. 25. P. 585-627.
6. Webb J.L., King G., Ternent D., Titheradge A.J., Murray N.E. Restriction by EcoKI is enhanced by co-operative interactions between target sequences and is dependent on DEAD box motifs // EMBO J. 1996. V. 15. No. 8. P. 2003-2009.
7. Gautsch J.W., Wilson M.C. Delayed de novo methylation in teratocarcinoma suggests additional tissue-specific mechanism for controlling gene expression // Nature. 1983. V. 301. No. 5895. P. 32-37.
8. Feinberg A.P., Vogelstein B. Hypomethylation distinguishes genes of some human cancer from their normal counterparts // Nature. 1983. V. 301. No. 5895. P. 89-92.
9. Barras F., Marinus M.G. The great GATC: DNA methylation in E. coli // Trends Genet. 1989. V. 5. No. 5. P. 139-143.
10. Palmer B.R., Marinus M.G. The dam and dcm strains of Escherichia coli-a review // Gene. 1994. V. 43. No. 1. P. 1-12.
11. Pfeiffer W.Z.G., Zachan H.G. Accessibility of expressed and non-expressed genes to a restriction nuclease // Nucl. Acids. Res. 1980. V. 8. P. 4621-4638.
12. Heitman J. On the origins, structures and functions of restriction-modification enzymes // Genet. Eng. 1993. V. 15. P. 57-108.
13. Schlagman S.L., Hattman S. Molecular cloning of a functional dam+ gene coding for phage T4 DNA adenine methylase // Gene. 1983. V. 22. No. 23. P. 139-156.
14. Herman J.G., Modrich P. Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme I I J. Biol. Chem. 1982. V. 257. No. 5. P. 2605-2612.
15. Modrich P. Methyl-directed DNA mismatch correction // J Biol Chem. 1989. V. 264. No. 12. P. 6597-6600.
16. Polaczek P.C., Kwan K., Liberies D.A., Campbell J.L. Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli II Mol. Microbiol. 1997. V. 26. No. 2. P. 261-275.
17. Ramchandani S., Bhattacharya S.K., Cervoni N., Szyf M. DNA methylation is a reversible biological signal // Proc. Natl. Acad. Sei. 1999. V. 96. No. 11. P. 6107-6112.
18. Doerfler W. et al. // Nucleic Acid Methylation. New York: Wiley and Sons, Inc. 1990. P. 329-349.
19. Jackson Grusby L., Laird P.W., Magge S.N., Moeller B.J., Jaenisch R. Mutagenicity of 5-aza-2'-deoxycytidine is mediated by the mammalian DNA methyltransferase // Semin. Cancer Biol. 1996. No. 7. P. 261-268.
20. Heithoff D.M., Sinsheimer R.L., Low D.A., Mahan M.J. An essential role for DNA adenine methylation in bacterial virulence // Science. 1999. V. 284. No. 5416. P. 967-970.
21. Hale W.B., van der Woude M.W., Braaten B.A., Low D.A. Regulation of uropathogenic Escherichia coli adhesion expression by DNA methylation // Mol. Genet. Metab. 1998. V. 65. No. 3. P. 191-196.
22. Xu Q., Peek R.M., Jr., Miller G.G., Blaser M.J. The Helicobacter pylori genome is modified at CATG by the product of Hpyl M // J. Bacteriol. 1997. V. 179. No. 21. P. 6807-6815.
23. Xu Q., Morgan R.D., Roberts R.J., Blaser M.J. Identification of typell restriction and modification systems in Helicobacter pylori reveals theirsubstantial diversity among strains // Proc. Natl. Acad. Sei. U. S. A. 2000. V. 97. P. 9671-9676.
24. Peek R.M., Jr., van Doom L.J., Donahue J.P., Tham K.T., Figueredo C., Blaser M.J., Miller G.G. Quantitative detection of Helicobacter pylori gene expression in vivo and relationship to gastric pathology // Infect. Immun. 2000. V. 68. P. 5488-5495.
25. Alm R.A., Ling L.L., King B.L., Brown E.D., Doig P.C., Smith D.R., Noonan В., Guild B.C. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori II Nature . 1999. V. 397. No. 6715. P. 176-180.
26. Kong H., Lin L., Porter N., Stickel S., Byrd D., Posfai J., Roberts R.J. Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome I I Nucl. Acids Res. 2000. V. 28. No. 17. P. 3216-3223.
27. Лихтенштейн A.B., Киселева Н.П. Метилирование ДНК и канцерогенез // Биохимия. 2001. Т. 66. Вып. 3. С. 293-317.
28. Smith S.S., Crocitto L. DNA methylation in eukaryotic chromosome stability revisited: DNA methyltransferase in the management of DNA conformation space // Mol. Carcinog. 1999. V. 26. No. 1. P. 1-9.
29. Bird A. DNA methylation de novo // Science. 1999. V. 286. No. 5448. P.2287-2288.
30. Kakutani T.R., E.J., Jeddeloh J.A., Flowers S.K., Munakata K., Richards E.J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations // Proc. Natl. Acad. Sei. 1996. V. 93. No. 22. P. 12406-12411.
31. Vertino P.M. Eukaryotic DNA Methyltransferases // S-adenosylmethionine-dependent methyltransferases: structures and functions. / Eds. Cheng X., Blumenthal R.M. Singapore: World Scientific, 1999. P. 341-372.
32. Buryanov Y.I., Zakharchenko N.S., Shevchuk T.V., Bogdarina I.G. Effect of the M-iscoRII methyltransferase-encoding gene on the phenotype of Nicotiana tabacum transgenic cells 11 Gene. 1995. V. 157. No. 1-2. P. 283287.
33. Мазин A.JI. О механизме репликативного и пострепликативного метилирования ДНК как генераторе мутаций в клетке // Мол. Биология. 1993. Т. 27. № 4. Р. 967-979.
34. Szyf M. Targeting DNA methyltransferase in cancer // Cancer Metastasis Rev. P. 219-231. 1998. V. 17. No. 2. P. 219-231.
35. Kim Y.C., Grable J.C., Love R., Green P.J., Rosenberg J.M. Refinement of EcoRI endonuclease crystal structure: a revised protein chain tracing // Science. 1990. V. 249. P. 1307-1309.
36. Cheng X., Kumar S., Klimasauskas S., Roberts R.J. Crystal structure of the Hhal DNA methyltransferase // Cold Spring Harbor Symp. Quant. Biol. 1993. V. 58. P. 331-338.
37. Cheng X., Balendiran K., Schildkraut I., Anderson J.E. Crystal structure of the PvuII restriction endonuclease // Gene. 1995. V. 157. P. 139-140.
38. Cheng X., Kumar S., Posfai J., Pflugrath J.W., Roberts R.J. Crystal structure of the Hhal DNA methyltransferase complexed with S-adenosyl-L-methionine // Cell. 1993. V. 74. No. 2. P. 299
39. Newman M., Strzelecka T., Dorner L.F., Schildkraut I., Aggarwal A.K. Structure of BamHI endonucltase bound to DNA: Partial folding and unfolding on DNA binding // Science. 1995. V. 269. P. 656-663.
40. Bickle T.A., Kruger D.H. Biology of DNA restriction // Microbiol. Rev. 1993. V. 57. No. 2. P. 434-450.
41. Roberts R.J., Macelis D. REBASE restriction enzymes and methylases // Nucl. Acids Res. 1998. V. 26. P. 338-350.
42. Szybalski W., Kim S.C., Hasan N., Podhajska A.J. Class-IIS restriction enzymes a review // Gene. 1991. V. 100. P. 13-26.
43. Sugisaki H., Kita K., Takanami M. The Fokl restriction modification system II. Presence of two domains in Fokl methylase responsible for modification of different DNA strands // J. Biol. Chem. 1989. V. 264. No. 10. P. 5757-5761.
44. Kita K., Suisha M., Kotani H., Yanase H., Kato N. Cloning and sequence analysis of the Stsl restriction-modification gene: presence of homology to Fokl restriction-modification enzymes // Nucl. Acids Res. 1992. V. 20. P. 4167-4172.
45. Kong H., Smith C.L. Substrate DNA and cofactor regulate the activities of a multi- functional restriction-modification enzyme, Bcgl II Nucl. Acids Res. 1997. V. 25. No. 18. P. 3687-3692.
46. Janulaitis A., Vaisvila R., Timinskas A., Klimasauskas S., Butkus V. Cloning and sequence analysis of the genes coding for Eco51l type IVrestriction-modification enzymes //Nucl. Acids Res. 1992. V. 20. P. 60516056.
47. Piekarowicz A., Golaszewska M., Sunday A.O., Siwinska M., Stein D.C. The HaeIV restriction modification system of Haemophilus aegyptius is encoded by a single polypeptide // J. Mol. Biol. 1999. V. 293. No. 5. P. 1055-1065.
48. Skrzypek E., Piekarowicz A. The EcoDXXl restriction and modification system: cloning the genes and homology to type I restriction and modification systems // Plasmid. 1989. V. 21. No. 3. P. 195-204.
49. Trautner T.A., Pawiek B., Behrens B., Willert J. Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases //EMBO J. 1996. V. 15. No. 6. P. 14341442.
50. Lee K.F., Kam K.M., Shaw P.C. A bacterial methyltransferase M.2scoHK31I requires two proteins for in vitro methylation I I Nucl. Acids Res. 1995. V. 23. P. 103-108.
51. Lee K.F., Liaw Y., Shaw P.C. Overproduction, purification, and characterization of M.iscoHK31I, a bacterial methyltransferase with two polypeptides // Biochem. J. 1996. V. 314. No. 1. P. 321-326.
52. Powell L.M., Murray N.E. S-adenosyl methionine alters the DNA contacts of the EcoKI methyltransferase I I Nucl. Acids Res. 1995. V. 23. P. 967974.
53. Powell L.M., Dryden D.T., Willcock D.F., Pain R.H., Murray N.E. DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine // J. Mol. Biol. 1993. V. 234. No. l.P. 60-71.
54. Dryden D.T. Bacterial DNA Methyltransferases // S-adenosylmethionine-dependent methyltransferases: structures and functions. Eds. Cheng X., Blumenthal R.M. Singapore: World Scientific, 1999. P. 283-340.
55. Cheng X. Structure and function of DNA methyltransferases // Annu. Rev. Biophys. Biomol. Struct. 1995. V. 24. P. 293-318.
56. Hattman S. DNA modification: Methylation // Bacteriophage T4. / Eds. Mathews C.K., Kutter E.M., Mosig G., Berget P.B. Washington D.C. American Society for Microbiology, 1983. P. 152-155.
57. Schlagman S.L., Miner Z., Feher Z., Hattman S. The DNA adenine-N6. methyltransferase (Dam) of bacteriophage T4 // Gene. 1988. V. 73. No. 2. P. 517-530.
58. Miner Z., Hattman S. Molecular cloning, sequencing, and mapping of the bacteriophage T2 dam gene // J. Bacteriol. 1988. Y. 170. No. 11. P. 51775184.
59. Schlagman S.L., Hattman S. The bacteriophage T2 and T4 DNA N6-adeninej-methyltransferase (Dam) sequence specificities are not identical // Nucl. Acids Res. 1989. V. 17. P. 9101-9112.
60. Meisel A., Mackeldanz P., Bickle T.A., Kruger D.H., Schroeder C. Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis // EMBO J. 1995. V. 14. No. 12. P. 2958-2966.
61. Meisel A., Bickle T.A., Kruger D.H., Schroeder C. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage // Nature. 1992. V. 355. No. 6359. P. 467-469.
62. Ahmad I., Rao D.N. Functional analysis of conserved motifs in £c<9P15I DNA methyltransferase // J. Mol. Biol. 1996. V. 259. No. 2. P. 229-240.
63. Ahmad I., Krishnamurthy V., Rao D.N. DNA recognition by the Eco?\5l and Eco?l modification methyltransferases 11 Gene. 1995. V. 157. No. 1-2. P. 143-147.
64. Ahmad I., Rao D.N. Interaction of Eco?\5l DNA methyltransferase with oligonucleotides containing the asymmetric sequence 5'-CAGCAG-3' I I J. Mol. Biol. 1994. V. 242. No. 4. P. 378-388.
65. Reddy Y.V., Rao D.N. Binding of Eco?\5l DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence // J. Mol. Biol. 2000. V. 298. No. 4. P. 597-610.
66. Malone T., Blumenthal R.M., Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes // J. Mol. Biol. 1995. V. 253. P. 618-632.
67. Anderson J.E. Restriction endonucleases and modification methylases // Curr. Opin. Struct. Biol. 1993. V. 3. P. 24-30.
68. Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R.J., Wilson G.G. The DNA (cytosine-5) methyltransferases // Nucl. Acids Res.1994. V. 22. No. l.P. 1-10.
69. Schluckebier G., O'Gara M., Saenger W., Cheng X. Universal catalytic domain structure of AdoMet-dependent methyltransferases // J. Mol. Biol.1995. V. 247. No. l.P. 16-20.
70. Jeltsch A., Pingoud A. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems // J. Mol. Evol. 1996. V. 42. P. 91-96.
71. Jeltsch A., Christ F., Fatemi M., Roth M. On the substrate specificity of DNA methyltransferases // J. Biol. Chem. 1999. V. 274. P. 19538-19544.
72. Reinisch K.M., Chen L., Verdine G.L., Lipscomb W.N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing 11 Cell. 1995. V. 82. No. l.P. 143-153.
73. Gong W., O'Gara M., Blumenthal R.M., Cheng X. Structure of Pvull DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment 11 Nucl. Acids Res. 1997. V. 25. No. 14. P. 2702-2715.
74. Schluckebier G., Kozak M., Bleimling N., Weinhold E., Saenger W. Differential binding of S-adenosylmethionine, S-adenosylhomocysteine and sinefungin to the adenine-specific DNA methyltransferase M.Taql 11 J. Mol. Biol. 1997. V. 265. No. 1. P. 56-67.
75. Santi D.V., Garrett C.E., Barr P.J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs // Cell. 1983. V. 33. No. 1. P. 9-10.
76. Santi D.V., Norment A., Garrett C.E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine // Proc. Natl. Acad. Sci. 1984. V. 81. No. 22. P. 6993-6997.
77. Wu J.C., Santi D.V. Kinetic and catalytic mechanism of Hhal methyltransferase 11 J. Biol. Chem. 1987. V. 262. No. 10. P. 4778-4786.
78. Verdine G. The flip side of DNA methylation // Cell. 1994. V. 76. P. 197200.
79. Friedman S., Ansari N. Binding of the £coRII methyltransferase to 5-fluorocytosine containing DNA. Isolation of a bound peptide // Nucl. Acids Res. 1992. V. 20. No. 12. P. 3241-3248.
80. Osterman D.G., DePillis G.D., Wu J.C., Matsuda A., Santi D.V. 5-Fluoro-cytosine in DNA is a mechanism based inhibitor of Hhal methylase // Biochemistry. 1988. V. 27. No. 14. P. 5204-5210.
81. Chen L., MacMillan A.M., Chang W., Ezaz-Nikpay K., Lane W.S., Verdine G.L. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase // Biochemistry. 1991. V. 30. No. 46. P. 11018-11025.
82. Klimasauskas S., Kumar S., Roberts R.J., Cheng X. Hhal methyltransferase flips its target base out of the DNA helix I I Cell. 1994. V. 76. No. 2. P. 357369.
83. O'Gara M., Klimasauskas S., Roberts R.J., Cheng X. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for Hhal methyltransferase-DNA-AdoHcy complexes // J. Mol. Biol. 1996. V. 261. P. 634
84. Reinisch K.M., Chen L., Verdine G.L., Lipscomb W.N. Crystallization and preliminary crystallographic analysis of a DNA (cytosine-5)-methyltransferase from Haemophilus aegyptius bound covalently to DNA // J. Mol. Biol. 1994. V. 238. No. 4. P. 626-629.
85. Roberts R.J., Cheng X. Base flipping // Annu. Rev. Biochem. 1998. V. 67. P. 181-198.
86. Lindstrom W.M., Flynn J., Reich N.O. Reconciling structure and function in Hhal DNA cytosine-C-5 methyltransferase // J. Biol. Chem. 2000. V. 275. No. 7. P. 4912-4919.
87. Pogolotti A.L., Ono A., Subramaniam R., Santi D.V. On the mechanism of DNA adenine methylase // J. Biol. Chem. 1988. V. 263. No. 16. P. 7461-7464.
88. Schluckebier G., Labahn J., Granzin J., Saenger W. M.Taql: possible catalysis via cation-interactions in N-specific DNA methyltransferases // Biol. Chem. 1998. V. 379. No. 4-5. P. 389-400.
89. Goedecke K., Pignot M., Goody R.S., Scheidig A.J., Weinhold E. Structure of the N6-adenine DNA methyltransferase MTaql in complex with DNA and a cofactor analog // Nat. Struct. Biol. 2001. V. 8. No. 2. P. 121-125.
90. Blumenthal R.M., Cheng X. A Taq attack displaces bases I I Nat. Struct. Biol. 2001. V. 8. No. 2. P. 101-103.
91. Allan B.W., Reich N.O. Targeted base stacking disruption by the EcoKl DNA methyltransferase // Biochemistry. 1996. V. 35. No. 47. P. 1475714762.
92. Allan B.W., Beechem J.M., Lindstrom W.M., Reich N.O. Direct real time observation of base flipping by the EccRA DNA methyltransferase 11 J. Biol. Chem. 1998. V. 273. No. 4. P. 2368-2373.
93. Allan B.W., Garcia R.A., Maegley K., Mort J., Wong D., Lindstrom W.M., Beechem J.M., Reich N.O. DNA bending by £coRI DNA methyltransferase accelerates base flipping but compromises specificity // J. Biol. Chem. 1999. V. 274. No. 27. P. 19269-19275.
94. Holz B., Klimasauskas S., Serva S., Weinhold E. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases // Nucl. Acids Res. 1998. V. 26. P. 1076-1083.
95. Schluckebier G., Labahn J., Granzin J., Schildkraut I., Saenger W. A model for DNA binding and enzyme action derived from crystallographic studies of the Taql N6-adenine-methyltransferase // Gene. 1995. V. 157. No. 1-2. P. 131-134.
96. Jeltsch A., Roth M., Friedrich T. Mutational analysis of target base flipping by the EcoRV adenine-N6 DNA methyltransferase 11 J. Mol. Biol. 1999. V. 285. P. 1121-1130.
97. Hosfield D.J., Guan Y., Haas B.J., Cunningham R.P., Tainer J.A. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis // Cell. 1999. V. 98. No. 3. P. 397-408.
98. Slupphaug G., Mol C.D., Kavli B., Arvai A.S., Krokan H.E., Tainer J.A. A nucleotide-flipping mechanism from the structure of human uracil
99. DNA glycosylase bound to DNA // Nature. 1996. V. 384. No. 6604. P. 87-92.
100. Serva S., Weinhold E., Roberts R.J., Klimasauskas S. Chemical display of thymine residues flipped out by DNA methyltransferases // Nucl. Acids Res. 1998. V. 26. P. 3473-3479.
101. Vilkaitis G., Merkiene E., Serva S., Weinhold E., Klimasauskas S. The mechanism of DNA cytosine-5 methylation: kinetic and mutational dissection of Hhal methyltransferase. No // J. Biol. Chem. 2001.
102. Vilkaitis G., Dong A., Weinhold E., Cheng X., Klimasauskas S. Functional roles of the conserved threonine 250 in the target recognition domain of Hhal DNA methyltransferase // J. Biol. Chem. 2000. V. 275. No. 49. P. 38722-38730.
103. Szegedi S.S., Reich N.O., Gumport R.I. Substrate binding in vitro and kinetics of Rsrl N6-adenine. DNA methyltransferase // Nucl. Acids Res.2000. V. 28. No. 20. P. 3962-3971.
104. Евдокимов A.A., Зиновьев B.B., Малыгин Э.Г. Влияние S-аденозилметионина и его аналогов на сайт специфическое связывание ДНК (аденин-Ж)-метилтрансферазы фага Т4 с олигонуклеотидным субстратом // Биоорганическая химия. 2000. Том 26. №10. С. 797-800.
105. Allan B.W., Reich N.O., Beechem J.M. Measurement of the absolute temporal coupling between DNA binding and base flipping // Biochemistry. 1999. V. 38. No. 17. P. 5308-5314.
106. Kelly T.J.J., Smith H.O. A restriction enzyme from Hemophilus influenzae. II. Base sequence of the recognition site I I J. Mol. Biol. 1970. V. 51. P. 393-409.
107. Rosenberg J.M. Structure and function of restriction endonucleases // Curr. Opin. Struct. Biol. 1991. V. 1. P. 104-112.
108. Modrich P., Zabel D. EcoRI endonuclease. Physical and catalytic properties of the homogeneous enzyme // J. Biol. Chem. 1976. V. 251. P. 5866-5874.
109. Fu Z., Hu Y., Konishi K., Takata Y., Ogawa H., Gomi T., Fujioka M., Takusagawa F. Crystal structure of glycine N-methyltransferase from rat liver//Biochemistry. 1996. V. 35. P. 11985.
110. Modrich P. and Roberts R.J. Type II restriction and modification enzymes // Nucleases (Linn S. and Roberts R.J., eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 1993. P. 109-154.
111. Kaczorowski T., Skowron P. Purification and characterization of the Foci restriction endonuclease // Gene. 1989. V. 80. P. 209-216.
112. Sektas M., Kaczorowski T. Purification and properties restriction endonuclease of the MboII, a class-IIS restriction endonuclease // Nucl. Acids Res. 1992. V. 20. P. 433-438.
113. Tucholski J., Skowron P., Podhajska A.J. Mmel, a class-IIS restriction endonuclease: purification and characterization // Gene. 1995. V. 57. P. 87-92.
114. Bitinaite J., Wah D.A., Aggarwal A.K., Schildkraut I. Fokl dimerization is required for DNA cleavage // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 10570-10575.
115. Reuter M., Rupper D., Meisel A., Schroeder C., Kruger D.H. Cooperative binding properties of restriction endonuclease EcoRII with DNA recognition sites // J. Biol. Chem. 1998. V. 273. P. 8294-8300.
116. Baxter B.K., Topai M.D. Formation of cleavasome: enhancer DNA-2 stabilizes an active conformation of Nael dimer // Biochemistry. 1993. V. 32. P. 8291-8298.
117. Conrad M., Topal M.D. Modified DNA fragments activate Nael cleavage of refractory DNA sites // Nucl. Acids Res. 1992. V. 20. P. 5127-5130.
118. Wentzell L.M., Nobbs T.J., Halford S.E. The Sfil restriction endonuclease makes a four-strand DNA break at two copies of its recognition sequence // J. Mol. Biol. 1995. V. 248. P. 581-595.
119. Qiang B.Q., Schildkraut I. NotI and Sfil: restriction endonucleases with octanucleotide recognition sequence // Meth. Enzymol. 1987. V. 155. P. 15-21.
120. Wentzell L.M., Halford S.E. DNA looping by Sfi I restriction endonuclease // J. Mol. Biol. 1998. V. 281. P. 433-444.
121. Nobbs T.J., Szczelkun M.D., Wentzell L.M., Halford S.E. DNA excision by the Sfil restriction endonuclease // J. Mol. Biol. 1998. V. 281. P. 419432.
122. Janulaitis A.A., Stakenas P.S., Lebedenko E.N., Berlin Y.A. A new restriction endonuclease from Citrobacter freundii II Nucl. Acids Res. 1982. V. 10. P. 6521-6530.
123. Bozic D., Grazulis S., Siksnys V., Huber R. Crystal structure of Citrobacter freundii restriction endonuclease CfrlOI at 2.15 A resolution //J. Mol. Biol. 1996. V. 255. P. 176-186.
124. Siksnys V., Skirgaila R., Sasnauskas G., Urbanke C., Cherny D., Grazulis S., Huber R. The CfrlOI restriction enzyme is functional as a tetramer // J. Mol. Biol. 1999. V. 291. P. 1105-1118.
125. Jen-Jacobson L., Kurpiewski M., Lesser D., Grable J., Boyer H.W., Rosenberg J.M., Green P.J. Coordinate ion pair formation between EcoRI endonuclease and DNA // J. Biol. Chem. 1983. V. 258. P. 14638-14646.
126. Berge T., Ellis D.J., Dryden D.T., Edwardson J.M, Henderson R.M. Translocation-independent dimerization of the EcoKl endonuclease visualized by atomic force microscopy // Biophys. J. 2000. V. 79. No. 1. p. 479-484.
127. Studier F.W., Bandyophadhyay P.K. Model for how type I resriction enzymes select cleavage sites in DNA // Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 4677-4681.
128. Ellis D.J., Dryden D.T.F., Berge T., Edwardson J.M., Henderson R.M. Direct observation of DNA translocation and cleavage by atomic force microscopy // Nature Struct. Biol. 1999. V. 6. P. 15-17.
129. Bergerat A., Guschlbauer W. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli II Nucl. Acids Res. 1990. V. 18. No. 15. P. 4369-4375.
130. Szczelkun M.D., Connolly B.A. Sequence-specific binding of DNA by the EcoRV restriction and modification enzymes with nucleic acid and cofactor analogues // Biochemistry. 1995. V. 34. No. 34. P. 10724-10733.
131. Dubey A.K., Roberts R.J. Sequence specific DNA binding by the Mspl DNA methyltransferase // Nucl. Acids Res. 1992. V. 20. No. 12. P. 31673173.
132. Rubin R.A., Modrich Р. ЕсоШ methylase. Physical and catalytic properties of the homogeneous enzyme // J. Biol. Chem. 1977. V. 252. No. 20. P. 7265-7272.
133. Green P.J., Poonian M.S., Nussbaum A.L. Restriction and modufication of a self-complementari octanucleotide cotaining the EcoR I substrate // J. Mol. Biol. 1975. V. 99. P. 237-261.
134. Reich N.O., Mashhoon N. Kinetic mechanism of the ЕсоШ DNA methyltranserase // Biochemistry. 1991. V. 30. No. 11. P. 2933-2939.
135. Garnett J., Haiford S.E. Properties and subunit structure of EcoRV methyltransferase // Gene. 1988. V. 74. No. 1. P. 73-76.
136. Kaszubska W., Webb H.K., Gumport R.I. Purification and characterization of the M. Rsrl DNA methyltransferase from Escherichia coli II Gene. 1992. V. 118. No. l.P. 5-11.
137. Malygin E.G., Zinoviev V.V. Studies on the role of symmetry in the specific recognition of natural and synthetic DNA by type II restriction and modification enzymes // Sov. Sei. Rev. D. Physiochem. Biol. 1989. V. 9. P. 87-142.
138. Nardone G., George J., Chirikjian J.G. Sequence-specific BamHI methylase. Purification and characterization // J. Biol. Chem. 1984. V. 259. No. 16. P. 10357-10362.
139. Nardone G., George J., Chirikjian J.G. Differences in the kinetic properties of ВатШ endonuclease and methylase with linear DNA substrates II J. Biol. Chem. 1986. V. 261. P. 12128-12133.
140. McClelland M., Nelson M. The 5'-GGATCC-3' cleavage specificity of BamHI is increased to 5'-CCGGATCCGG-3' by sequential double methylation with M. Hpall and M. BamHI // Gene. 1988. V. 74. No. 1. P. 169-176.
141. Bergerat A., Kriebardis A., Guschlbauer W. Preferential site-specific hemimethylation of GATC sites in pBR322 DNA by Dam methyltransferase from Escherichia coli I I J. Biol. Chem. 1989. V. 264. No. 7. P. 4064-4070.
142. Mazurec M., Sowers L.C. The paradoxical influence of thymine analogues anrestriction endonuclease cleavage of oligonucleotides // Biochemistry. 1996. V. 35. P. 11522-11528.
143. Van Cleve M.D., Gurnport R.I. Influence of enzyme-substrate contacts located outside the EcoRI recognition site on cleavage of duplex oligodeoxyribonucleotide substrates by EcoRI endonuclease // Biochemistry. 1992. V. 31. P. 334-339.
144. Jeltsch A., Friedrich T., Roth M. Kinetics of methylation and binding of DNA by the EcoRV adenine-N6 methyltransferase // J. Mol. Biol. 1998. V. 275. P. 747-758.
145. Zhang W.R.T., Bond J.P., Anderson C.F., Lohman T.M., Record M.T. Large electrostatic differences in the binding thermodynamics of a cationic peptide to oligomeric and polymeric DNA // Proc. Natl. Sci. USA. 1996. V. 93. P. 2511-2516.
146. Gowher H., Jeltsch A. Molecular Enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA // J. Mol. Biol. 2000. V. 303. No. 1. P. 93-110.
147. Surby M.A., Reich N.O. Facilitated diffusion of the £a?RI DNA methyltransferase is described by a novel mechanism // Biochemistry. 1996. V. 35. No. 7. P. 2209-2217.
148. Surby M.A., Reich N.O. Contribution of facilitated diffusion and processive catalysis to enzyme efficiency: implications for the EcoRI restriction-modification system // Biochemistry. 1996. V. 35. No. 7. P. 2201-2208.
149. Jack W.E., Terry B.J., Modrich P. Involvement of outside DNA sequences in the major kinetic by which EcoRI endonuclease locates and leaves its recognition sequence // Proc. Natl. Sci. USA. 1982. V. 79. P. 4010-4014.
150. Terry D.J., Jack W.E., Modrich P. Facilitated diffusion during catalysis by EcoRI endonuclease: nonspecific interactions in EcoRI catalysis // J. Biol. Chem. 1985. V. 260. P. 13130-13137.
151. Ehbrecht H.J., Pingoud A., Urbanke C., Maass G., Gualerzi C. Linear diffusion of resrtriction endonucleases on DNA // J. Biol. Chem. 1985. V. 260. P. 10215-10218.
152. Jeltsch A., Alves J., Wolfes H., Maass G., Pingoud A. Pausing of the restriction endonuclease EcoRI during linear diffusion on DNA // Biochemistry. 1994. V. 33. P. 10215-10219.
153. Buryanov Y.I., Zinoviev V.V., Gorbunov Y.A., Tuzikov F.V., Rechkunova N.I., Malygin E.G., Bayev A.A. Interaction of the EcoDammethyltransferase with synthetic oligodeoxyribonucleotides // Gene. 1988. V. 74. No. l.P. 67-69.
154. Gromova E.S., Oretzkaya T.S., Eritja R., Guschlbauer W. Kinetic studies oiMval DNA methyltransferase interaction with modified oligonucleotide duplexes // Biochem. Mol. Biol. Intl. 1994. V. 36. P. 247-255.
155. Kumar S., Horton J.R., Jones G.D., Walker R.T., Roberts R.J., Cheng X. DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by Hhal methyltransferase //Nucl. Acids Res. 1997. V. 25. No. 14. P. 2773-2783.
156. O'Gara M., Horton J.R., Roberts R.J., Cheng X. Structures of Hhal methyltransferase complexed with substrates containing mismatches at the target base //Nat. Struct. Biol. 1998. V. 5. P. 872
157. Yang A.S., Shen J.C., Zingg J.M., Mi S., Jones P.A. Hhal and Hpall DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair // Nucl. Acids Res. 1995. V. 23. No. 8. P. 1380-1387.
158. Kang Y.K., Lee H.B., Noh M.J., Cho N.Y., Yoo O.J. Different effects of base analog substitutions in BamYLl restriction site on recognition by BamHl endonuclease and BamRl methylase // Biochem. Biophys. Res. Commun. 1995. V. 206. No. 3. P. 997-1002.
159. Marzabal S., Dubois S., Thielking V., Cano A., Eritja R., Guschlbauer W. Dam methylase from Escherichia colt kinetic studies using modified oligomers: hemimethylated substrates // Nucl. Acids Res. 1995. V. 23. No. 18. P. 3648-3655.
160. Kossykh V.G., Schlagman S.L., Hattman S. Comparative studies of the phage T2 and T4 DNA (N6-adenine)-methyltransferases: amino acidchanges that affect catalytic activity // J. Bacteriol. 1997. V. 179. No. 10. P. 3239-3243.
161. Kossykh V.G., Schlagman S.L., Hartman S.M. Phage T4 DNA N6-adenine.-methyltransferase. Overexpression, purification and characterization // J. Biol. Chem. 1995. V. 270. No. 24. P. 14389-14393.
162. Szilak L., Venetianer P., Kiss A. Purification and biochemical characterization of the Ecal DNA methyltransferase // Eur. J. Biochem. 1992. V. 209. No. l.P. 391-397.
163. Szilak L., Der A., Deak F., Venetianer P. Kinetic characterization of the Ecal methyltransferase // Eur. J. Biochem. 1993. V. 218. P. 727-733.
164. Reich N.O., Danzitz M.J. £coRI DNA methyltransferase-DNA interactions // Biochemistry. 1992. V. 31. No. 7. P. 1937-1945.
165. Reich N.O., Danzitz M.J. Non-additivity of sequence-specific enzymeDNA interactions in the EcoRl DNA methyltransferase // Nucl. Acids Res. 1991. V. 19. No. 23. P. 6587-6594.
166. Reich N.O., Olsen C., Osti F., Murphy J. In vitro specificity of EcoHl DNA methyltransferase I I J. Biol. Chem. 1992. V. 267. No. 22. P. 1580215807.
167. Kossykh V.G., Schlagman S.L., Hattman S. Function of Pro-185 in the ProCys of conserved motif IV in the ZscoRII cytosine-C5.-DNA methyltransferase // FEBS Lett. 1995. V. 370. No. 1-2. P. 75-77.
168. Gabbara S., Sheluho D., Bhagwat A.S. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active // Biochemistry. 1995. V. 34. No. 27. P. 8914-8923.
169. Reich N.O., Mashhoon N. Presteady state kinetics of an S-adenosylmethionine-dependent enzyme. Evidence for a unique binding orientation requirement for EcoRl DNA methyltransferase // J. Biol. Chem. 1993. V. 268. No. 13. P. 9191-9193.
170. Reich N.O., Mashhoon N. Inhibition of EcoRl DNA methylase with cofactor analogs // J. Biol. Chem. 1990. V. 265. No. 15. P. 8966-8970.
171. O'Gara M., Zhang X., Roberts R.J., Cheng X. Structure of a binary complex oîHhal methyltransferase with S-adenosyl-L-methionine formed in the presence of a short nonspecific DNA oligonucleotide // J. Mol. Biol. 1999. V. 287. P. 201
172. Klimasauskas S., Szyperski T., Serva S., Wuthrich K. Dynamic modes of the flipped-out cytosine during Hhal methyltransferase-DNA interactions in solution // EMBO J. 1998. V. 17. P. 317-324.
173. Bhattacharya S.K., Dubey A.K. Kinetic mechanism of cytosine DNA methyltransferase Mspl II J. Biol. Chem. 1999. V. 274. No. 21. P. 1474314749.
174. Bacolla A., Pradhan S., Roberts R.J., Wells R.D. Recombinant human DNA (cytosine-5) methyltransferase. II. Steady-state kinetics reveal allosteric activation by methylated DNA // J. Biol. Chem. 1999. V. 274. No. 46. P. 33011-33019.
175. Detailed kinetic analysis of the DNA methyltransferase from Thermus aquaticus: base flipping and DNA release are much faster than methyl group transfer. Proc. of the 4th New England Biolabs workshop on biological DNA modification. 1997. P. 158
176. Rao D.N., Page M.G., Bickle T.A. Cloning, overexpression and the catalytic properties of the £coP15I modification methylase from Escherichia coli II J. Mol. Biol. 1989. V. 209. P. 599-606.
177. Butkis V., Klimasauskas S., Kersulyte.D. Investigation of restriction-modification enzymes from M. variaus RFL19 with a new type of specificity toward modification of substrate // Nucl. Acids Res. 1985. V. 13. P. 5727-5746.
178. Янулайтис А.А. Вайткявичюс Д.П. Новый методический подход к разработке получения рестрикционных эндонуклеаз. Разработка схемы выделения гамогенного препарата рестриктазы Mval // Биотехнология. 1985. № 1. С. 39-51.
179. Hirose T., Créa R., Itakura К. Rapid synthesis of trideoxyribonucleotide blocks // Tetrahedron. Lett. 1978. V. 28. P. 2449-2452.
180. Lillehang J., Kleppe R., Kleppe K. Phosphorylation of double-stranded DNAs by T4 polynucleotide kinase // Biochemistry. 1976. V. 9. P. 18581865.
181. Laemmli U.K. Cleavage of structure proteins during the assembly of the head bacteriophage T4 // Nature. 1970. V. 227. No. 5259. P. 680-685.
182. Siegel L.M., Monti K.G. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel-filtration and density gradient centrifugation // Biochim. Biophys. Acta. 1966. V. 12. P. 346-362.
183. Mertin R.G., Ames B.N. Method for determining the sedimentation behavior of enzymes: application to protein mixtures // Biochim. Biophys. Acta. 1961. V. 236. P. 1372-1379.
184. Дарбре А. В кн. Практическая химия белка. М.: Мир. 1989. С. 293294.
185. Bradford М.М. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248-254.
186. Остерман JI.A. Хроматография M.: Наука. 1985. С. 110-112.
187. Thielking V., Dubois S., Eritja R., Guschlbauer W. Dam methyltransferase from Escherichia coli: Kinetic studies using modified DNA oligomers: nonmethylated substrates // Biol. Chem. 1997. V. 378. P. 407-415.
188. Modrich P., Rubin R.A. Role of the 2-amino group of deoxyguanosine in sequence recognition by EcoRI restriction and modification enzymes // J. Biol. Chem. 1977. V. 252. No. 20. P. 7273-7278.
189. Alves J. Mechanistische Untersuchungen zur Spalting von Oligodesoxynucleotiden dirch die Restriktionsendonuklease EcoRI. Hannover: Universität Hannover, 1984. P. 16-24.
190. Rechkunova N.I., Lokhov S.G., Gorbunov Y.A., Zinoviev V.V., Buryanov Y.I., Malygin E.G. Stability of secondary structure of the oligonucleotide substrates. The effect of EcoDom DNA-methylase // Biopolymers and Cell. 1989. V. 5. P. 43-49.
191. Frankel A.D., Ackers G.K., Smith H.O. Measurement of DNA protein equilibria using gel chromatography: application to the Hinf I restriction endonuclease // Biochemistry. 1985. V. 24. No. 12. P. 3049-3054.
192. Бреслер C.E. Молекулярная биология. JI: Наука. 1973. С. 103-106.
193. Phillips С.A., Gordon J., Spicer Е.К. Bacteriophage Т4 regA protein binds RNA as a monomer, overcoming dimer interactions // Nucl. Acids Res. 1996. V. 24. No. 21. P. 4319-4326.
194. Petrov N.A., Gorbunov Y.A., Naumochkin A.N., Malygin E.G. Complexes of DNA-N6-adenine.-methyltransferases of T-even phages with their substrates which are determined by "blocking in gel" method // Mol. Biol. (Mosk). 1997. V. 31. P. 966-972.
195. Klimasauskas S., Roberts R.J. M.Hhal binds tightly to substrates containing mismatches at the target base // Nucl. Acids Res. 1995. V. 23. No. 8. P. 1388-1395.
196. Бревнов М.Г., Кубарева E.A., Романова E.A., Громова Е.С. и др. Влияние точечных модификаций углеводофосфатного остова на функционирование эндонуклеаз рестрикции EcoRII, Mval и BstNI // Мол. биология. 1995. Т.29. №6. С.1294-1130.
197. Adams G.M., Blumenthal R.M. The Pvull DNA (cytosine-N4)-methyltransferase comprises two trypsin-defmed domains, each of which binds a molecule of S- adenosyl-L-methionine // Biochemistry. 1997. V. 36. No. 27. P. 8284-8292.
198. Эмануэль H.M. Кнорре Д.Г. Курс химической кинетики. M.: 1962. С. 192-202.
199. Курганов Б.И. Аллостерические ферменты. М.: Наука, 1978. С. 117174.
200. Javor G.T. Depression of adenosylmethionine content of Escherichia coli by thioglycerol // Antimicrob. Agents Chemother. 1983. V. 24. No. 6. P. 860-867.114
201. Корниш-Боуден Э. Основы ферментативной кинетики. М.: Мир. 1979. С.217-221.
- Овечкина, Лидия Григорьевна
- кандидата биологических наук
- Кольцово, 2002
- ВАК 03.00.03
- Характеристика систем рестрикции-модификации II типа в коллекции природных штаммов семейства Enterobacteria-ceae и рода Pseudomonas
- Каталитические антитела - протеазы
- Антирестрикционная активность белков ArdA, ArsR, MerR
- Эндонуклеазы WEN1 и WEN2 и адениновая ДНК-метилтрансфераза WAD из проростков пшеницы
- Структурно-функциональная характеристика систем рестрикции-модификации ДНК штамма Shigella sonnei 47