Бесплатный автореферат и диссертация по биологии на тему
Исследование гомологичной и негомологичной интеграции экзогенной ДНК в геном соматических клеток млекопитающих
ВАК РФ 03.00.25, Гистология, цитология, клеточная биология
Содержание диссертации, кандидата биологических наук, Щербакова, Ольга Глебовна
Введение.стр.
Глава 1.Обзор литературы.
1.1 События, сопряжённые с трансфекцией экзогенной ДНК в клетки млекопитающих.стр.
1.2. Поли(АДФ-рибозилирование).стр.
1.3. Роль ДНК топоизомераз в рекомбинации.стр.
1.4. Манипуляции с геномом мышей in vivo: техника "нокаута"генов, введение направленных мутаций путём гомологичной рекомбинации.стр.
1.5.1. Центральная роль белка RecA в гомологичной рекомбинации у Escherichia coli.стр.
1.5.2. RecA-подобные белки.стр.
1.6. Белок Rad51 у млекопитающих: гомолог белка RecA с множественными функциями.стр.
1.7. Репарация двунитевых разрывов в клетках млекопитающих.стр.
Глава 2. Материалы и методы.
2.1. Культура клеток.стр.
2.2. Плазмиды, использованные в работе.стр.
2.3. Получение нокаутирующих векторов различной структуры.
2.3.1. Получение однонитевой ДНК вектора pRV9.1.стр.
2.3.2. Получение фрагмента нокаутирующего вектора методом полимеразной цепной peaK4nn(PCR).стр.
2.4. Получение hprt-нокаутных клонов F9.стр.
2.5. Обработки клеток ингибиторами.стр.
2.6. Анализ частоты случайной интеграции плазмиды в клетках китайского хомячка V79.стр.
2.7. Саузерн-блот-гибридизация.стр.
2.8. Получение клонов F9, экспрессирующих белок RecA.стр.
Глава 3. Результаты и обсуждение.
3.1. Исследование рекомбинации в клетках Р9 эмбриональной тератокарциномы мыши с помощью модельной системы направленной инактивации гена .стр.
3.1.1. Анализ структуры локуса /7р^в рекомбинантных клонах.стр.
3.2. Исследование влияния ингибиторов топоизомераз и поли(АДФ-рибозилирования) на частоту гомологичной и негомологичной интеграции экзогенной ДНК в клетках Р9.стр.
3.3. Автономная репликация плазмид, содержащих фрагменты ДНК из а-полимеразного комплекса печени крысы.стр.
3.4. Использование нокаутирующих векторов различной структуры.стр.
3.5. Исследование влияния экспрессии белка КесА на частоту гомологичной рекомбинации.стр.
3.5.1. Получение трансгенных линий Р9, экспрессирующих белок 1ЧесА.стр.
3.5.2.Сравнение частоты направленной инактивации гена /7рг/ в клетках Р9 и Р9-305.стр.
Выводы.стр.
Введение Диссертация по биологии, на тему "Исследование гомологичной и негомологичной интеграции экзогенной ДНК в геном соматических клеток млекопитающих"
Адресная передача генетического материала в клетки высших эукариот путём гомологичной рекомбинации между вводимой в клетки ДНК и ДНК хромосом, или так называя техника gene targeting, продолжает оставаться предметом активного исследования, направленного как на понимание механизма гомологичной рекомбинации у высших, так и на решение ряда практических задач.
Возможность модифицировать геном эукариотической клетки путём гомологичного замещения интересующих исследователей участков ДНК предполагает такие перспективы, как анализ экспрессии генов с помощью мутирования их регуляторных элементов(Огк1п S., 1998), структурно-функциональный анализ белков путём сайт-направленного мутагенеза in vivo, изучение заболеваний человека путём создания моделей этих заболеваний на трансгенных мышах (Braun К. and Sandgren Е., 1998) и, наконец, идеальную генотерапию путём высокоточной замены повреждённых участков генома (Ланцов В.А., 1994).
Одна из основных трудностей на пути развития таких подходов - низкая частота гомологичной рекомбинации в соматических клетках млекопитающих. В сравнении с негомологичной эффективность гомологичной интеграции экзогенной ДНК в хромосомы соматических клеток млекопитающих на 2-3 порядка ниже (Doetschman T.et al., 1987; Hasty P. et al., 1991). О механизмах гомологичной и негомологичной рекомбинации и факторах, лимитирующих эти процессы в клетках высших эукариот, известно не много. За последние годы было выявлено несколько факторов, увеличивающих вклад гомологической составляющей в процесс интеграции трансфецированной ДНК в геном клетки-хозяина. К ним относятся такие, как изогенность вводимой в клетку ДНК и ДНК клетки-реципиента (Deng et al., 1992), большая протяжённость передаваемого фрагмента ДНК (Deng et al., 1992 ) и присутствие двунитевого разрыва в гене-"мишени" (Donoho et al., 1998).
Целью данного исследования является поиск и изучение факторов, влияющих на гомологичную и негомологичную рекомбинацию в соматических клетках млекопитающих , а также поиск способов повышения частоты гомологичной интеграции трансфицированной ДНК в геном клетки-хозяина.
Среди факторов, которые могут влиять на эффективность рекомбинации , мы рассматриваем: 1) препятствия взаимодействию экзогенной ДНК с хроматином, возникающие благодаря поли(АДФ-рибозилированию); 2) участие ферментов, регулирующих топологию молекул ДНК-топоизомеразы I и топоизомеразы II; 3) экспрессию в клетках млекопитающих ключевого белка гомологичной рекомбинации у бактерий - белка RecA, модифицированного сигналом ядерной локализации вируса SV40.
Центральный белок гомологичной рекомбинации - белок RecA, наиболее подробно изученный у Escherichia coli, осуществляет 2 фундаментальные функции: (1)поиск и гомологичное спаривание рекомбинирующих молекул ДНК и (2) обмен нитями ДНК. Белок RecA образует спиральный филамент на однонитевой или частично однонитевой ДНК, втягивает в этот филамент гомологичную двунитевую ДНК партнёра по рекомбинации и производит переключение комплементарного спаривания нитей ДНК в образовавшемся комплексе, результатом чего является инициация процесса гомологичной рекомбинации (Kowalczykowski S., 1991). Белок RecA универсален : его гомологи, показывающие структурное и функциональное подобие, обнаружены во всех трёх царствах живой природы - Prokarya, Archae и Eukarya (Brendel V. et al., 1997). Это и легло в основу предположения о том, что прокариотический белок RecA, экспрессированный в клетках млекопитающих, сможет наряду с RecA-подобным белком данного организма катализировать рекомбинационный процесс, стимулируя гомологичную интеграцию экзогенной ДНК в геном.
Заключение Диссертация по теме "Гистология, цитология, клеточная биология", Щербакова, Ольга Глебовна
Выводы:
1. На клеточной линии Р9 эмбриональной тератокарциномы мыши реализована модельная система направленной инактивации гена /7р/? путём гомологичной рекомбинации с "нокаутирующим" вектором рК\/9.1.
2. В результате исследования, проведённого с помощью этой модельной системы, показано, что экспрессия бактериального белка РесА в соматических клетках млекопитающих значительно повышает частоту гомологичной интеграции трансфицированной ДНК в геном.
3. Бактериальный белок КесА, модифицированный сигналом ядерной локализации большого Т-антигена вируса Б\/40, способен функционировать в клетках высших эукариот.
4. Ингибирование поли(АДФ-рибозилирования) незначительно повышает частоту встраивания вводимой в клетки ДНК по гомологии в нашей модельной системе.
5. Ингибитор топоизомеразы I камптотецин и ингибиторы топоизомеразы II повышают частоту негомологичной интеграции трансфицированной ДНК в геном.
Библиография Диссертация по биологии, кандидата биологических наук, Щербакова, Ольга Глебовна, Санкт-Петербург
1. Ланцов В. А. Идеальная генотерапия: подходы и перспективы. Молекулярная биология , Т. 28(3), стр: 485-495.
2. Тимченко Н.А., Щербакова О.Г., Филатов М.В., Крутиков В.М. Автономная репликация плазмид, содержащих фрагменты ДНК из а-полимеразного комплекса печени крысы. Мол.Биология, 1990, Т.24:814-823.
3. Filatov. М. У., Varfolomeeva Е. У. Active dissociation of Hoechst 33342 from DNA in living mammalian cells . Mut.Res., 1995, V.327, pp:209-215.
4. Alani E., Padmore R., KlecknerN. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell, 1990,V.61, pp:419-436.
5. Anderson R., Berger N. International Commission for Protection Against Environmental Mutagens and Carcinogens.Mutagenicity and carcinogenicity of topoisomerase-interactive agents. Mutat .Res., 1994, V.309(1), pp:109-42.
6. Aoufouchi S., Shall S. Inhibition of Xenopus laevis poly (ADP-ribose) polymerase in oocytes. Biochem Soc Trans 1995 May;23(2):181S
7. Barnes D., Stamp. G., Rosewell I., Denzel A., Lindahl T. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr.Biol. , 1998, V.8, pp: 1395-8.
8. Baszczynski Ch., Zhu Т., Peterson D., Tagliani L, Clair G., Bowen B. Targeted manipulation of maize genes using chimeric RNA/DNA oligonucleotides, in Molecular Mechanisms in DNA replication and recombination, Keystone symposia, 1999 , p.81, #303.
9. Barlow A., Benson F., West S., Hulten M. Distribution of the Rad51 recombinase in human and muose spermatocytes. EMBO J., 1997, V.16, pp:5207-5215.
10. Baumann P., Benson F., West S. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell, 1996, V.87, pp :757-66.
11. Baumann P. and West S. The human Rad51 protein: polarity of strand transfer and stimulation by hRP-A. EMBO J., 1997, V.16, pp:5198-206.
12. Baumann P. and West S. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair.Trends Biochem. Sci., 1998 V.23, pp:247-51.
13. Benson F, Baumann P., West S. Synergatic action of Rad51 and Rad52 in recombination and DNA repair. Nature, 1998, V.391, pp:401-406.
14. Benson P., StasiakA., West S. Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J., 1994, V. 13(23), pp:5764-71.
15. Bergerat A., de Massy В., Gadelle D., Varoutas P., Nicolas A., Forterre P. An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature, 1998, V.386, pp:414-417.
16. Bertrand P., Rouillard D., BouletA., Levalois C., Soussi Т., Lopez B. Increase of spontaneos intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protin. Oncogene, 1991, V.124, pp:1117-1122.
17. Bezzybova 0., Shinohara A., Mueller R., Ogawa H., Buerstedde JM. a chicken Rad51 homologue is expressed at high levels in lymphoid and reproductive organs. Nucl. Acids Res. 1993, V.21, pp: 1577-1580.
18. Bezzybova 0., Silbergleit A., Yamaguchi-lwai Y., Takeda S., Buerstedde JM. Reduced X-rays resistance and homologous recombination frequencies in a RAD54 '"mutant of the chicken DT40 cell line. Cell., 1997, V.89, pp:185-193.
19. Bianchi M. and Radding C. Insertions, deletions and mismftches in heteroduplex DNA made by RecA protein. Cell, 1983, V 35, pp:511-520.
20. Bianchi M., DasGupta C. and Radding C.M. Sinapsis and the formation of paranemic joints by E.coli recA protein. Cell, 1983, V.34, pp:931-939.
21. Bishop D.K., Park D., Xu L, KlecknerN., DMC1: a meosis-specific yeast homolog of E.coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell, 1992, v.69, p.439-456.
22. BortnerC. and Griffith J. Tree-stranded paranemic joints: arhitecture, topological constraints and movement. J.Mol.Biol. ,1990, V.215, pp:623-634.
23. Bradley A., Evans M., Kayfman M., Robertson E. Formation of germ line chimeras from embryo-derived teratocarcinoma cell lines.Nature, 1984, V.309, pp: 255-256.
24. Braun K. And Sandgren E. Liver disease and compensatory growth: unexpected lessons from genetically altered mice.Int.J.Dev.Biol.,1998, V.42, pp: 935-942.
25. Brendel V, Brocchieri L, Sandler SJ, Clark AJ, Karlin S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol., 1997, V. 44(5), pp:528-541.
26. BrinsterR . the effect of cells trahsfered into the mouse blastocyst on subsequent development.J.Exp.Med.1974, V.140, pp:1049-1056.
27. Brugarolas J., Jacks T. Double indemnity: p53, BRCA and cancer.p53 mutation partially rescues developmental arrest in BRCA 1 and BRCA2 null mice, suggesting a role for familiar breast cancer genes in DNA damaga repair. Nat Med., 1997, V.3, pp:721-722.
28. Bodley A., Huang H., Chiang Yu., Liu L. Integration of sSimian Virus 40 into cellular DNA occurs at or near topoisomerase II cleavage hot spots induced by VM-26(teniposide). Mol.Cell.Biol., 1993, V.13, pp:6190-6200.
29. Bortner C. and Griffith J. Tree-stranded paranemic joints: arhitecture, topological constraints and movement. J.Mol.Biol., 1990, V.215, pp:623-634.
30. Brozmanova J., Cernakova L., Vlckova V., Duraj J., Fridchova I. The Escherichia coli recA gene increases resistance of the yeast Saccharomycescerevisiae to ionizing and ultraviolet radiation. Mol.Gen Genet, 1991, V.227, P.473-480.
31. Buchop S., Gibson M., Wang X., Wagner P., Sturzbecher H., Harris C. Interaction of p53 with the human rad51 protein. Nulc.Acids Res., 1997, V.25, 3868-3874.
32. Bulat S.A., Lubeck M., Mironenko N., Jensen D.F., LubeckP.S. UP-PCR analysis and ITS 1 ribotyping of Trihoderma and Gliocladium fungi . Mycological Research, 1998, V.102., pp:933-943.
33. Bullock P., Champoux J., Botchan M. Association of crossover points with topoisomerase I cleavage sites: a model for nonhomologous recombination. Science ,1985, V.230(4728), pp:954-8. C
34. Caldecott K, Banks G, Jeggo P. DNA double-strand break repair pathways and cellular tolerance to inhibitors of topoisomerase II. Cancer Res., 1990,V.50, pp: 5778-83.
35. Caron P., Wang J., Alignment of primary sequences of DNA topoisomerases. In Advances in Pharmakology(ed.Liu L.F.) 1994, pp:271-297, (Biology academic, New-York).
36. Cassuto E., West S.C. and Howard-Flanders P. Can recA protein promote homologous pairing between duplex regions of DNA ? EMBO J., 1982, V.1, pp:821 -825.
37. Chen F., Nastasi A., Shen Z, Brenneman M., Crissman H., Chen D. Cell cucle-dependent protein expression of mammalian homologs of yeast DNA double-strand break repair genes Rad51 and Rad52.Mutat.Res., 1998, V.384, pp:205-211.
38. Choulika A., Perrin B., Dujon B., Nicolas J. Induction of homologous recombination in mammalian chromosomes by using the l-Scel system of Saccharomyces cerevisiae. Mol.cell.Biol. 1995, V.15, pp:1968-1973.
39. Chow S.A., Rao B.J. Radding CM. Reversibility of strand invasion promoted by RecA protein and its inhibition by Escherichia coli single-stranded DNA-binding protein orphage T4 gene 32 protein. J.Biol.Chem., 1988, V.263, pp:200-209.
40. Christman M., Dietrich F., Fink G. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell, 1988 , V.55 , pp:413-25.
41. Chu G. Double strand break repair. J. Biol. Chem., 1997, V.272, pp.:24097100.
42. Clark A. and Margulies A. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc.Natl.Acad.Sci.USA., 1965, Vol.53, pp:451- 459.
43. Conley E. and West S., Homologous pairing and the formation of nascent synaptic intermediates between regions of duplex DNA by RecA protein. Cell. 1989, V.56, pp:987-995.
44. Cox M.M., Soltis D.A., Livneh Z. and Lehman I.R. On role single-stranded DNA binding protein in RecA proteinpromoted DNA strand exchange. J. Biol. Chem. 1983, V.258, pp:2577-2585.
45. Cox M.M. and Lehman I.R. Enzymes of general recombina tion Annu.Rev.Biochem., 1987, V.56, pp:229-262.
46. D'Arpa P. and Lui L. Topoisomerase-targeting antitumor drugs. Biochimica et Biophysica Acta, 1989, V.989, pp:163-167.
47. Deng Ch. and Capecchi M. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol.Cell.Biol. 1992, V.12, pp:3365-3371.
48. Deng Ch., Thomas K., Capecchi M. Location of crossovers during gene targeting with insertion and replacement vectors. Mol.Cell.Biol., 1993, V.13, pp:2134-2140.
49. Dernburg A., McDonald K., Moulder G., Barstead R., Dresser M., Villeneuve A.
50. Meiotic recombination in C.elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis.Cell, 1998, V.94:387-98.
51. DiCapua E. and MullerB. The accessibility of DNA to dimethylsulfate in complexes with RecA protein. EMBO J., 1987, V.6, pp:2493-2498.
52. Doetschman T., Gregg R., Maeda N., Hooper M., Melton D., Thompson S., Smithies O. Targeted correection of a mutant HPRT gene in mouse embryonic stem cells.Nature, 1987, V.330, pp.576-578.
53. Donoho G., Jasin M., Berg P. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic doublestrand breaks in mouse embryonic stem cells. Mol.Cell.Biol. 1998, V. 18, pp: 4070-4078.
54. Dressier D. and Potter H. Molecular mechanism in genetic recombination. Ann. Rev. Biochem., 1982, V.51, pp:727- 761.
55. Egner C., Azhderian E., Tsang S.S., Radding C.M. and Chase J.W. Effects of various single-stranded DNA-binding proteins on reaction promoted by RecA protein. J. Bacterid., 1987, V. 169, pp:3422-3428.
56. Evans M., Kaufman M. Establishment in culture of pluripotential cells from mouse embryos.Nature, 1981, V.292, pp: 154-156.
57. Essers J., Hendriks R., Swagemakers S., Troelstra C., de Wit J., Bootsma D., Hoeijmakers J., Kanaar R. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell, 1997, V.89, pp:195-204.
58. Funteun J., Lenoir G. BRCA1, a gene involved in inherited predisposition to breast and ovarian cancer. Biochim. Biophys.acta, 1996, V.1242, pp: 177-180.
59. Fishel R., Kolodner R., Escherichia coli strains containing mutations in thestructural gene for topoisomerase I are recombination deficient. J.Bacteriology., 1984, V.160, pp:1168-1170.
60. Fraser C., Gocayne J., White M., adams M., Clayton R., Fleischmann R., Bult C., Kerlavage A., Sutton G., Kelley J. The minimal gene complement of Mycoplasma genitalium. Science, 1995,V.270, pp:397-403.
61. FygarJ., Benson F., Hellgren D. Expression of the human RAD51 gene during the cell cycle un primary human peripheral blood lymphocytes. Biochim. Biophys. Acta., 1996, V.1312, pp:231-236.
62. Fujimaki K., Aratani Y., Fujisawa S., Motomura S., Okubo T., Koyama H., DNA topoisomerase II inhibitors enhance random integration of transfected vectors into human chromosomes. Somat .Cell Mol. Genet. 1996,V.22, pp:279-90.
63. Gantchev T.G., Hunting D.J. Inhibition of the topoisomerase ll-DNA cleavable complex by the ortho-quinone derivative of the antitumor drug etoposide (VP-16) . Biochem. Biophys .Res. Commun. 1997, V. 237, pp:24-7.
64. Gayther S., Mangion JRussell P., seal S., Barfoot R., Ponder B., Stratton M., Easton D. Variation of risks of breast and ovarian cancer associated with different grmlin mutations of the BRCA2 gene. Nat Genet., 1997, V. 15, pp: 1030105.
65. Golub E., Kovalenko O., Gupta R., Ward D., Radding C. Interaction of human recombination proteins Rad51 and Rad54. Nucleic Acids Res., 1997,V.25,pp: 4106-4110.
66. Golub E., Gupta R., Haaf T., Wold M., Radding C. Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA.Nucleic Acids Res.,1998,V.26,pp: 5388-5393.
67. Gonda D.K., Shibata T. and Radding C.M. Kinetics of homologous pairing promoted by RecA protein: effects of end and internal sites in DNA. Biochemistry, 1985,V24, pp:413-420.
68. Gonda D.K. and Radding C.M. By seaching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell, 1983, V.34. pp:647-654.
69. Graham F and van der Eb A., A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 1973, V.52(2) pp:456-67.
70. Griesenbeck J., ZieglerM., Tomilin N., Schweiger M., Oei S. Stimulation of the catalytic activity of poly(ADP-ribosyl) transferase by transcription factor Yin Yang 1.FEBS Lett., 1999, V.443, pp:20-4.
71. Gupta R., Bazemore L., Golub E., Radding C. Activities of human recombination protein Rad51 Proc.Natl.Acad.Sci.USA.1997.,Vol.94.P.463-468.
72. Haaf T., Golub E., Reddy G., Radding C., Ward D. Nuclear foci of mammalian Rad51 recombination protain in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc.Natl.Acad.sci.USA., 1995, V.92, pp.2298-2302.
73. HaberJ. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays. 1995, V.17, pp: 609-620.
74. Hakem R., de la Pompa J., Elia A., Potter J., Mak T. Partial rescue of BRCA1 (56) early embryonic lethalithy by p53 or p21 null mutation. Nat Genet., 1997, V.16, pp:298-302.
75. Hasty P., Rivera-Perez J., Chang C., Bradley A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol.Cell.Biol., 1991, V.11, pp:4509-4517.
76. Hays S., Firmenich A., Berg P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52 and ad55, and rad57 proteins. Proc.Natl.Acad.Sci. USA, 1995, V.92, pp:6925-6929.
77. Henderson G., Simons P., Processing of DNA prior to illegetimate recombination in mouse cells. Mol.Cell.Biol., 1997, V.17, pp:3779-3785.
78. Hendrickson E. Cell-cycle regulation of mammalian DNA double-strand-break repair. Am. J. Hum. Genet., 1997, V.61, pp:795-800.
79. Holliday R., A mechanism for gene conversion in fungi. Genet.Res., 1964,V5, pp:282-304.
80. Honigberg S.M., Rao B.J. and Radding C.M. Ability ofRecA protein to promote a seach for rare sequences in duplex DNA. Proc.Natl.Acad.Sci. USA., 1986, V.83, pp:9586- 9590.
81. Howard-Flanders P., West S.C. and StasiakA. Role of RecA protein spiral filaments in genetic recombination. Nature, 1984, V.309, pp:215-220.
82. Hsiang Y-H., Lihou M.G., Liu L.F. Mechanism of cell killing by camptothecin: arrest of replication fork by grug-stabilized topoisomerasel-DNA clevable complex Cancer Res., 1989, V.49, pp: 5077-5082.
83. Jasin M.1996. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet., 1996, V.12, pp:224-228.
84. Jeggo P., Taccioli G., Jackson S. Menage a trois: double-strand breaks repair, V(D)J recombination and DNA-PK. Bioessays, 1995, V.17, pp:949-957.
85. J axel C., Capranico G., Kerrigan D., Kohn K.W., Pommier Y. Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin .J Biol Chem.,1991 ,V.266(30),pp: 20418-23.
86. Johnson R. and Symington L. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol.Cell.Biol., 1995, V.15, pp:4843-4850.
87. JoynerA. Gene targeting and gene trap screens using embryonic stem cells: new approaches to mammalian development.BioEssays, 1991, V.13, pp:649-656.
88. Kadyk L. and Hartwell L Sister chromatids are prefrred over homologs as substrates for recombination repair in Saccharomyces cerevisiae. 192, Genetics, V.132, pp:387-402.
89. Kahn R. and Radding C.M. Separation of the presynaptic and phases of homologous pairing promoted by RecA protein. J.Biol.Chem.-1984,-Vol.259,-p. 7495-7503.
90. Kalderon D., Roberts B., Richardson W., Smith A. A short amino acid sequence able to specify nuclear location. Cell., 1984, V.39, pp:499-509.
91. Keeney S., Gitropux C., KlecknerN. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family.
92. Cell, 1997, V.88, pp:375-84.
93. Kido M., Yoneda Y., Nakanishi M., Tsuyoshi U., Okada Y. Escherichia coli RecA protein modifid with a nuclear location signal binds to chromosomes in livibg mammalian cells. Exp. Cell Res., 1992. Vol.198. P.107-114.
94. Kim R., Wang J. A subthreshold level of DNA topoisomerases leads to the excision of yeast rDNA as extrachromosomal rings. Cell, 1989, V.57, pp: 975-85 .
95. Konopka A., Compilation of DNA strand exchange sites for non-homologous recombination in somatic cells. Nucl.Acids Res., 1988, V.16, pp.1739-1757.
96. Kotani H and Kmiech E. A role for RNA synthesis in homologous pairing events. Mol.Cell.Biol., 1994, V.14, pp:6097-6106.
97. Kowalczykowsky S. Boichemistry of genetic recombination : energetics and mechanism of DNA strand exchange. Annu.Rev.Biophys.Chem., 1991, V.20, pp: 539-575.
98. Kowalczykowski S., Clow C., Somani R. and Varghese A. Effects of Escherichia coli SSB protein on the binding of Escherichia coli recA protein to single-stranded DNA. J. Mol. Biol.,1987,V.193, pp:81-95.
99. Krauss R., Weinstein I. A novel, plasmid-based system for studying gene rearrangements in mammalian cells. Mol. Cell. Biol., 1991, V.11(8), pp.3915-24.
100. Maniatis,T., Fritsch,E.F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
101. Mansour S ., Thomas K., Capecchi M. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes.Nature, 1988, V.336, pp:348-352.
102. MathisG. and AlthausF. Release of core DNA from nucleosomal core particles following (ADP-ribose)n-modification in vitro.Biochem. Biophys. Res. Commun. 1987.V.143, pp: 1049-54.
103. McEntee K. Spesialized transduction of recA by bacteriophage lambda. Viology. 1976, V.70, pp:221.
104. Minton K. and Daly M., A model for repair of radiation-induced DNA doublestrand breaks in the extreme radiophile Deinococcus radiodurans. Biossays, 1995, V.17, p.457.
105. Mekeel K., Tang 1/1/., Kachic L, Luo C., DeFrank J., Powell S. Inactivation of p53 results in high rates of homologous recombination . Oncogene, 1997, V.14, pp: 1847-1857.
106. Morita T., Yoshuimura Y., Tamamoto A., Murata K., Mori M., Yamamoto H., Matsushiro A. A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Proc.Natl.Acad.Sci.USA., 1993, V.90. pp:6577-6580.
107. Muris D.F.R., Vreecen K., CarrA.M., Broughton B.C., Lohman P.H.K., Cloning the Rad51 homologous of Shcizosaccharomyces pompe., Nuc. Ac. Res., 1993., V.21 ,p. 4586-4591.
108. Murnane J., Young B., Nucleotid sequence analysis of novel junctions near an unstable integrated plasmid in human cells. Gene, 1989, V.84, pp:201-205.
109. Murnane J., Influence of cellular sequences om instability of plasmid integration sites in human cells. Smat.Cell.Mol.Genet., 1990, V.16, pp.195-209.
110. Murnane J., Yu.L., acquision of telomere repeat sequences by transfect DNA integrated at the sote of a chromosome break. Mol.Cell.Biol., 1993, V.13, pp.97783.
111. Natarajan A., Csukas I., van Zeeland A. Contribution of incorporated 5-bromodeoxyuridine in DNA to the frequences of sister-chromatid exchanges induced by inhibitors of poly-(ADP-ribose)-polymerase.Mutat.Res. 1981, V.84, pp:123-125.
112. Nagao M., Nakayasu M., Aonuma S., Shima H., Sugimura T. Loss of amplified genes by poly(ADP-ribose) polymerase inhibitors. Environ. Health Perspect., 1991, V.93, pp: 169-74.
113. Nakayasu M., Shima H., Aonuma S., Nakagama H., Nagao M., Sugimura T. Deletion of transfected oncogenes from NIH 3T3 transformants by inhibitors of poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA, 1988.V.85, pp:9066-70.
114. Nitiss J, Wang J. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci U S A 1988,V.85,pp:7501-5
115. Oei S., Griesenbeck J., Schweiger M. The role of poly(ADP-ribosyl)ation. Rev. Physiol. Biochem. Pharmacol. 1997.V.131, pp:127-73.
116. Ogawa T., Wabiko H., Tsurimoto T., Horri T., Masukata H. and Ogawa H. Characteristics of purified RecA protein and the regulation of its synthesis in vitro. Cold Spring Harbor Symp. Quant. Biol., 1979, V43, pp:909-915.
117. Ogawa T., Shinohara A., Nabetani A., Ikeya T., Yu X., Egelman E.H., Ogawa H., RecA-like recombination protein in eukariotes: function and structures of rad51 genes, Cold Spring Harbor Symp. Quant. Biol., 1993, v.58, p.567-575.
118. Oikawa A., Tohda H., Kanai M., Miwa M., Sugimura T. Inhibitors of poly(adenosine diphosphate ribose) polymerase induced sister chromatid exchanges.Biochem.Biophys.Res.Com. 1980, V.97, pp: 1311-1316.
119. Orkin S. Embryonic stem cells and transgenic mice in the study of hematopoesis. Int.J.Dev.Biol., 1998, V. 42. pp.927-934.
120. Park M. Expression of human Rad52 confers resistance to ionizing radiation in mammalian cells. J Biol.Chem. 1995, V.270, pp: 15467-15470.
121. Petes T., Malone R., Symington L. 1991, in The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome dynamics, Protein synthesis and EnergeticsV.1., pp:407-521, cold Spring Harbor Laboratory Press.
122. Plug A., Xu J., Reddy G., Golub E. Ashley T. Presynaptic association of Rad51 protein with selected sites in meiotic chromatin. Proc.Natl.Acad.Sci., 1996, V.93, pp: 5920-5924.
123. Pommier Y. Eukariotic DNA topoisomerase I : genome gate keeper and its intruders, camptothecins. Semin.Oncology, 1996, V.23, pp:1-10.
124. Puchta H., Dujon B., Hohn. Two different but related mechanisms are used in plants for repair of genomic double-strand breaks by homologous recombination. Proc.Natl.Acad.Sci., 1996, V.93, pp:5055-5060.
125. Rajan J., Wang M., Marquis S., Chodosh L. BRCA 2 is coordinately regulated with BRCA1 during proliferation and differentiation in mammary epithelial cells. Proc.Natl.acad.Sci.USA., 1996, V.93, pp: 13078-13083.
126. Rajan J., Marquis S., Chodosh L . Developmental expression of BRCA2 colocalizes with BRCA1 and is associated with proliferation and differentiation in multiple tissues. Dev.Biol., 1997, V.184, pp:385-401.
127. Ramirez-Soiis R., Zheng H., Whiting J., krumaufR., Bradley A. Hox-b4(Hox02.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the cosure of sternal rudiments.Cell.1993, V.73, pp:279-294.
128. Register .J.C. III. and Griffith J. Direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchadge. J. Biol. Chem., 1985, V.260, pp: 12308-12312.
129. Reiss B., Kosak H., Klemm M., Schell J. Targeting of a functional Escherichia coli RecA protein to the nucleus of plant cells. Mol. Gen.Genet., 1997, V.253, pp:695-702.
130. Reiss B., Klemm M., Kosak H., Shell J. RecA protein stimulates homologous recombination in plants. Proc. Natl.Acad.Sci. USA. ,1996, V.93, pp:3094-3098.
131. RocaA., Cox M. RecA protein: structure, function, and role in recombinational DNA repair. Prog Nucleic Acid Res Mol Biol 1997;56:129-223.
132. Roca A. and Cox M.M. The RecA protein structure and function. Critical Rewiews in Biochemistry and Molecular Biology. CRC Press., 1990, V.25, pp:415-456.
133. Roca J., Wang J. The capture of DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell, 1992. V.71, pp:833-840.
134. Roca J., Ishida R., BergerJ., Andoh T., Wang J. Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc.Natl.Acad.Sci.USA, 1994, V.91, pp:1781-1785.
135. Rocco V., Nicolas A. Sensing of DNA non-homology lowers the initiation of meiotic recombination in yeast. Genes Cells., 1996, V.1, pp:645-61.
136. Roth D., Wilson J., Relative rates of homologous and nonhomologous recombination in transfected DNA. Proc.Natl.Acad.Sci.USA., 1985, V.82, pp.33553359.
137. Rouet P., Smih, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol.cell.Biol. 1994, V.14, pp:8096-8106.
138. Rusche J.R., Königsberg W. and Howard-Flanders P. Isolation of altered recA polypeptides and interaction with ATP and DNA. J. Biol. Chem., 1985, Vol.260,-p.949-955.
139. Satoh M., Poirier G., Lindahl T. Dual function for poly(ADF-ribose) polymerase support a model of cyclic association and dissociation of enzyme from DNA ends during DNA repair. Biochemistry, 1994, V.33, pp:6186-6191.
140. Schutte B.C. and Cox M.M. Homology-dependent underwinding of duplex DNA in RecA protein generated paranemic complexes. Biochemistry, 1988.V.27, pp: 7886-7894.
141. Scully R, Chen J., Plug A., Xiao Y., Weaver D., Feunteun J., Ashley T., Livingston D. Association of BRCA1 with Rad51 in mitotic and Meiotic cells.Cell, 1997, V.88, pp:265-275.
142. Slebos R., Resnick M., Taylor J. Inactivation of the p53 tumor supressor gene via novel Alu rearrangement. Molecular Mecchanisms in DNA replicarion abd Recombinarion, Keystone symposia, 1999, p. 119. Abstract N.462.
143. Shall S. ADP-ribosilation reactions. Biochimie, 1995, V.77, pp:313-318.
144. Sharan S., Morimatsu M., Albrecht U., Lim DE., Regel E., Dinh C., Sands A., Eichele G., Hasty P., Bradley A. embryonic lethality abd radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature., 1997, V.386, pp:804-810.
145. Shen Z, Cloud K., chen D., Pars M. Specific interactions between the human Rad51 and Rad52 proteins.J.Biol.Chem. 1996, V.271, pp: 148-152.
146. Schutte B.C. and Cox M.M. Homology-dependent underwinding of duplex DNA in RecA protein generated paranemic complexes. Biochemistry, 1988, V.27, pp:7886-7894.
147. Shieh W., Ame J., Wilson M., Wang Z., Koh D., Jacobson M., Jacobson E. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem. 1998, V.273, pp:30069-72.
148. Shibata T., DasGupta C., Cunningham R and Radding C.M. Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc.Natl.Acad.Sci.USA. 1979,-V.76, pp:1638-1642.
149. Shinohara A., Ogawa H., Matsuda Y., Ushio N., Ikeo K., Ogawa T.CIoning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA gene. Nat Genet., 1993, V.4, pp:239-243.
150. Shiraishi Y., TanakaY., Kato M., Miwa M., Sugimura T. Effect of poly(ADF-ribose) polymerase inhibitors on the frequency of sister-chromatids exchanges in Bloom syndrome cells. Mut.Res., 1983, V.122, pp:223-228.
151. Shuman S. Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific. Proc. Natl. Acad. Sci. USA, 1991, V.88, pp: 10104-8.
152. Sonoda E., Sasaki M., Buerstedde J-M., Bezzubova 0., Shinohara A., Ogawa H.,
153. Takata M., Yamaguchi-lwai, Takeda S. Rad51-deficient vertebrate ceiis accumulate chromosomal breaks prior to cell death. EMBO J., 1998, V.17, pp:598-608.
154. Southern P. and Berg P., Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter.1982, J. Mol. Appl. Genet., V.1(4), pp:327-41.
155. Spivak I., Kostetsky I., Shpielevaya S., Kordyum V., Zhestyanikov V. Caffeine-induced reduction of the survival of gamma-irradiated HeLa cells and the reversal of the caffeine effect by Escherichia coli RecA protein. Mutat. Res., 1991, V.246, pp: 103-7.
156. Story R.M., Bishop D.K., KlecknerN., Steitz T.A., Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast, Science 1993, v.259, p. 1892-1895.
157. Sturzbecher H., Donzelmann B., Henning W., Knippschild U., Buchop S. p53 is linked directly to homologous recombination processes via Rad51/RecA protein interaction. EMBO J., 1996, V.15, pp: 1992-2002.
158. Subramani S., Rubnitz J., Recombination events after transient infection and stable integration of DNA into mouse cells. Mol. Cell. Biol. 1985,V5, pp:659-66.
159. SzostakJ., Orr-Weaver. T., Pothstein R., Stahl F. The double-strand-break repair medel for recombination, cell., 1983, V.33, pp:25-35.
160. Tashiro S., Kotomura N., shinohara A., Tanaka K., Ueda K., Kamada N. S phase specific formation of the human Rad51 protein nuclear foci in lymphocytes. Oncogene , 1996, V.12, pp:2165-2170.
161. Thomas, K. and Capecchi, M. Site-directed mutageneses by gene targeting in mouse enbryo-derived stem celis.Cell,1987,V.51,pp: 503-512.
162. Thomas K., Deng Ch., Capecchi M. High-fidelity gene targeting in embryinic stem cells by using sequence replacement vectors. Mol.Cell.Biol., 1992, V.12. pp:2919-2923.
163. Tsang S.S., Chow A. and Radding C.M. Networks of DNA and RecA protein are intermediates in homologous pairing. Biochemistry, 1985,V.24, pp: 3226-3232.
164. Tsuzuki T., Fujii V., Sakumi K., Tominaga Y., Nakao K., Sekiguchi M., Matsushiro A., Yoshimura Y., Morita T. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc.Natl.Acad.Sci.USA. 1996, V.93, pp:6236-6240.
165. Upcroft P., Transformation of mammalian cells with recombinant DNA directly from Seaplaque agarose. Anal Biochem ., 1987,V.162,pp:1-4.
166. Valancius V. and Smithies O. Double-strand repair in a mammalian gene targeting reaction. Mol.Cell.Biol., 1991, V.11, pp:4389-4397.
167. Vispe S., Defais M. Mammalian Rad51 protein: a RecA homologue with pleiotropic functions. Biochimie. 1997. Vol. 79. P.587-592.
168. Vispe S., Cazaux C., Lesca C., Defais M. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res., 1998, V.26, pp:2859-64.
169. Voloshin O., Wang L, Camerini-Otero R. Homologous DNA pairing promoted by a 20-amino acid peptide derived from RecA. Science ,1996,V.272, pp:868-72.
170. Waldman B., Waidman A. Enrichment for gene targeting in mammalian cells by inhibition of poly(ADP-ribosylation). Biochimica et Biophysica Acta, 1996, V.1308, pp:241-250.
171. Waldman A., Waldman B. Stimulation of intrachromosomal homologous recombination in mammalian cells by an inhibitor of poly(ADP-ribosilation). Nucl.Acids Res., 1991, V.19, pp:5943-5947.
172. Wang J., DNA topoisomerases, Annu.Rev.Biochem., 1996, V.65, pp:635-692.
173. Watt P. And Hickson I. Structure and function of type II DNA topoisomerases. Biochem. J., 1994, V.303, pp:681-695.
174. Weinstock G.M.,McEntee K. and Lehman I.R. ATP-dependent renaturation of DNA catalyzed by the RecA protein of Escherichia coli. Proc.Natl. Acad. Sci. USA. 1979, V.76, pp: 126-130.
175. Wesierska-Gadeck., J., Schmid G., Cerni C. ADP-ribosylation of wild-type p53 in vitro: binding of p53 protein to specific p53 onsensus sequence prevents its modification. Biochem. Biophys. Res. Commun. 1996,V.224, pp:96-102.
176. Walker G. Mutagenesis and indusible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev., 1984, V.48, pp:60-93.
177. Wong T. and Neumann E., Electric field mediated gene transfer, Biochem.Biophys.Res.Commun., 1982, V.107, pp.584-587.
178. Yamamoto A., Taki T., Yagi H., Habu T., Yoshida K., Yoshimura Y., Yanamoto K., Matsushiro A., Nishimune Y., Morite T. cell cycle-dependent expression of the mouse Rad51 gene in proliferating cells. Mol.Gen. Genet., 1996, V.251, pp:1-12.
179. Yoon K., Cole-Strauss A., Kmiech E. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA-DNA oligonucleotide. Proc.Natl.Acad.Sci.USA, 1996, V 93, pp:2071-2076.
180. Zhang H., Hasty P., Bradley A.Targeting frequency for deletion vectors in embryonic stem cells. Moll.Cell.Biol.,1994, V.14, pp: 2404-2410.
- Щербакова, Ольга Глебовна
- кандидата биологических наук
- Санкт-Петербург, 1999
- ВАК 03.00.25
- Участие экзогенной ДНК в репарационных процессах при повреждениях, индуцированных циклофосфаном и гамма-радиацией
- Исследование судьбы экзогенной ДНК, интегрированной в геном соматических клеток млекопитающих
- Молекулярно-цитогенетический анализ чужеродной сателлитной ДНК in vivo и in vitro
- Интернализация экзогенной ДНК в клетках культуры аденокарциномы молочной железы человека MCF-7 и ее участие в процессе восстановления активности гена Каспазы-3
- Микроинъекции рекомбинантных плазид в ранние зародыши тутового шелкопряда Bomeux Nobi. L.