Бесплатный автореферат и диссертация по биологии на тему
Структура CRO- репрессора бактериофага лямбда в растворе
ВАК РФ 03.00.03, Молекулярная биология

Содержание диссертации, кандидата химических наук, Курочкин, Александр Владимирович

СОКРАЩЕНИЯ.

ВВЩЕНИЕ.

ОБЗОР ЛИТЕРАТУРЫ

ГЛАВА I. РЕПРЕССОРЫ cl и GRO-КОШОНЕНТЫ РЕШЯТОРНОЙ СИСТЕМЫ БАКТЕРИОФАГА X

1.1. Молекулярный триггер в бактериофаге А

1.2. Кристаллическая структура cro-репрессора.

1.3. Структура и-концевого домена cl-penpeccopa.

Взаимодействие с ДНК.

ГЛАВА 2. ГОМОЛОГИИ. В' СТРУКТУРАХ. РЕШИТОРНЫХ. БЕЛКОВ. ТРАНСКРИПЦИИ.

2.1. сАМР-зависишй активатор катаболитных. . генов.

2.2. Общие черты кристаллических структур.

2.3. Аминокислотные последовательности и. вторичные структуры.

ЭКСПЕРШДЕНТАЛШАЯ ЧАСТЬ

ГЛАВА 3. МАТЕРИАЛЫ И МЕТОД! ИССЛЗДОВАНШ.

3.1. Материалы и реактивы.

3.2. Выделение сго-репрессора.

3.3. Определение характеристик бежа.

3.4. КД- и УФ-спектроскопия.

3.5. Спектроскопия ЯМР.

3.5.1. Приготовление образцов. . 3.5.2. Запись спектров. Методики.

3.6. Анализ кривых титрования.

3.7. Измерение рН.

ГЛАВА 4. ВТОРИЧНАЯ СТРУКТУРА CRO-РЕПРЕССОРА.

4.1. Анализ аминокислотной последовательности.

4.2. Анализ данных КД.

ГЛАВА 5. ИЗУЧЕНИЕ МИКРООКРУЖЕНЖ АМИНОКИСЛОТНЫХ

ОСТАТКОВ И ВНУТРИМОЛЕКУЛЯРНЫХ ВЗАИМОДЕЙСТВИЙ В cro -РЕПРЕС С ОРЕ.

5.1. Исследование состояний остатков тирозина с помощью абсорбционной спектроскопии.

5.2. Изучение структуры oro-репрессора методом ЯМР.

5.2.1. Отнесение сигналов в спектрах ЯМР.

5.2.2. Изучение влияния ионизуемых.групп. . Анализ кривых титрования.

5.2.3. Доступность растворителю . гистидина-35.

5.2.4. Идентификация внутримолекулярных взаимодействий с помощью, ядерного. эффекта Оверхаузера.

ГЛАВА 6. СТРУКТУРА CRO-PEtlPBCCOPA В РАСТВОРЕ.

ВЫВОДЫ.

Введение Диссертация по биологии, на тему "Структура CRO- репрессора бактериофага лямбда в растворе"

В последние годы внимание все большего числа исследователей обращается к одной из центральных проблем современной молекулярной биологии - нуклеин-белковому узнаванию. Одна из причин,обусловивших повышенный интерес к этой фундаментальной проблеме, заключается в том, что структура регулирующих транскрипцию сегментов генома и регуляторов генной активности неразрывно связана со спецификой ДНК-белковых взаимодействий.

Для исследований в этом направлении в настоящее время открылись принципиально новые возможности. С одной стороны, интенсивное развитие таких.физико-химических методов, как рентгенострук-турный анализ, ЯМР, различного рода химические модификации и ко-валентные сшивки, позволило проводить изучение сложных биологических систем на атомном уровне. С другой - применение методов . генетической инженерии наряду с химическим синтезом дало возможность получать рекомбинантные молекулы ДНК, способные продуцировать в трансформированной ими клетке необходимые белки в количествах, на несколько порядков превышающих уровень конститутивного синтеза этих белков in vivo.

Эти подходы открыли доступ к таким уникальным объектам,как система регуляции транскрипции на iac-опероне или системы, альтернативного выбора пути развития у ряда фагов E.coii. Одна из них в фаге Л включает в себя оператор и два белка-регулятора противоположного действия. Эти белки - репрессоры cl и его - несмотря на существенные различия в аминокислотных последовательностях и пространственных структурах, обладают высоким сродством к одним и тем же.нуклеотидным последовательностям - сайтам -внутри оператора. Конкурентное связывание репрессоров с этими сайтами определяет направление транскрипции генома фага и, в конечном счете, путь развития фага - литический или лизогенный.

Cro-репрессор, наименьший из известных регуляторных бежов, представляет особый интерес по нескольким причинам. Во-первых,он, благодаря своим размерам, является удобной моделью для изучения специфических нуклеин-белковых взаимодействий, во-вторых, представляет собой часть тонкой регуляторной системы фага, и в-третьих, интересен как белок с точки зрения пространственной структуры и ее динамики. Любой из этих аспектов требует глубокого понимания свойств белка и его пространственной организации.

В 1981-82 гг. были опубликованы результаты рентгеноструктур-ного анализа трех регуляторных белков транскрипции - репрессоров его, cl и активатора катаболитных генов (САР). Общие черты, наб-ладаемые в кристаллических структурах этих белков, послужили основой для построения обобщенной модели их взаимодействия с ДНК. Однако данные о.микроструктуре таких специфических комплексов как в кристалле, так и в растворе на сегодняшний день отсутствуют. Кроме того, кристаллическая структура отражает лишь одно вполне определенное состояние белка, а в разных функциональных состояниях конформации полипептидной цепи могут существенно отличаться. Наконец, кристаллическая структура дает весьма слабое представление о динамике бежа и вообще за пределами досягаемости остаются сведения о возможных конформационных переходах, связанных с внешними воздействиями.

Поэтому мы провели систематические исследования поведения cro-репрессора в растворе. Целью этих исследований было определение пространственной структуры белка и изучение влияния на нее различных внешних факторов, а также выявление общих моментов и отличительных особенностей нативной структуры бежа по сравнению с кристаллической.

Структура белка исследовалась методами ЯМР, КД и абсорбционной УФ-спектроскопии в широком интервале температур, значений рН раствора и в присутствии денатурирующего агента. Полученные результаты позволили сделать выводы относительно вторичной и третичной структур белка и выявить удобные репортерные группы для дальнейших исследований динамики и специфических взаимодействий репрессора.

Диссертация состоит из двух частей. Первая - обзор литературы - посвящена особенностям пространственных структур регулятор-ных белков транскрипции. Вторая часть - экспериментальная - содержит описание материалов и методов исследования, результаты с их обсуждением, а также специальную главу, посвященную сравнительному анализу структуры cro-репрессора в растворе и в кристалле. Завершается диссертация краткими выводами и списком цитированной литературы.

Автор выражает.благодарность своим научным руководителям.-, академику А.А. Баеву и кандидату физико-математических наук.М.П. Кирпичникову - за постоянное внимание, поддержку и ценные советы, а также за большую работу по редактированию рукописи диссертации и автореферата. . . .

Автор признателен профессору О.Б. Птицыну и кандидату физико-математических наук А.В. Финкелыдтейну (Институт белка АН СССР) за проявленный интерес к работе, совместные.обсуждения и ценные замечания. Автор благодарит сотрудников Онкологического научного центра АМН СССР В.Н. Гаглоева и Н.Е. Аверочкина за предоставленную возможность пользования ЯМР-спектрометром,.а также за техническое содействие, внимание и теплое отношение.

ОБЗОР ЛИТЕРАТУРЫ

Заключение Диссертация по теме "Молекулярная биология", Курочкин, Александр Владимирович

ВЫВОДЫ

1. Отработана методика и оптимизированы условия препаративного выделения cro-репрессора из штаммов-еверхпродуцентов E.coli.

2. Показано, что вторичная структура его -репрессора в растворе совпадает с кристаллической,

3. Установлены границы стабильности нативной пространственной структуры белка по отношению к различным денатурирующим факторам. Показано, что характер термической денатурации репрессора. согласуется с изменениями его функциональной активности in vitro.

4. В спектрах % ЯМР сделано отнесение всех разрешенных сигналов ароматических и метильных протонов к соответствующим аминокислотным остаткам в последовательности. Получены удобные репор-терные группы для исследований динамики и взаимодействий сго-реп-рессора.

5. Идентифицированы внутримолекулярные взаимодействия, стабилизирующие гидрофобную глобулу белка и его третичную структуру.

6. В пространственной структуре гидрофобного кластера бежа наблюдаются незначительные отклонения от данных рентгеносгруктур-ного анализа: N-конец спирали tfj смещен по направлению к цепи Рз тройной J3-складки.

7. Взаимное расположение функционально важных я-спиральных участков ffg и <Хд сходно с наблюдаемым в кристалле.

8. Установлена высокая подвижность в растворе С-концевых аминокислотных остатков Thr-64, Thr-65 И А1а-66.

Библиография Диссертация по биологии, кандидата химических наук, Курочкин, Александр Владимирович, Москва

1. Echols He> Murialdo Н. Genetic map of bacteriophage lambda» -Microbiol. Rev., 1978, v. 42, 3, p. 577-591.

2. Sanger P., Coulson A.R., Ilong G.P., Hill D.F., Peterson G.B. Nucleotide sequence of bacteriophage A DM. J. Mol. Biol., 1982, v. 162, 4, p. 729-773.

3. Herskovitz I., Hagen D.A. The lysis lysogeny decision of phage A : explicit programming and responsiveness. - Annu. Rev. Genet., 1980, v. 14, p. 399-445.

4. Herskovitz I. Control of gene expression in bacteriophage lambda. Annu. Rev. Genet., 1974, v. 8, p. 289-324,

5. Echols H. Development pathways for the temperate phages : lysis vs lysogeny. Annu. Rev. Genet., 1972, v. 6, p. 157190.

6. Эхолс X. Регуляция литического развития фага лямбда. В кн. Фаг лямбда. М.: Мир, 1975, с. 319-348.

7. Weisberg R.A. Gottesman S., Gottsman M.E. Bacteriophage A : the lysogenic pathway. In Comprehensive virology. N.Y.: Plenum Press, 1977, v. 8, p. 197-258.

8. Kaiser A.D. Mutations in a temperate bacteriophage affecting its ability to lysogenize E. coli. Virology, 1957, v. 3, 1, p. 42-61.

9. Kaiser A.D., Jacob P. Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology, 1957, v. 4, 2, p. 509-521.

10. Gingery R., Echols H. Mutants of bacteriophage A unable to integrate into the host chromosome. Proc. llatl. Acad. Sci. USA, 1967, v. 58, 4, p. 1507-1514.

11. Херш А., Доув У. Введение в биологию фага лямбда. В кн. Фаг лямбда. М.: Мир, 1975, с. 7-20.

12. Ptashne М., Backman К,, Humayun M.Z., Jeffrey A., Ivlaurer R., Meyer B.J., Sauer R.T. Autoregulation and function of a repressor in bacteriophage lambda. Science, 1976, v. 194» 4261, p. 156-161.

13. Ptashne M., Jeffrey A., Johnson A.D., Maurer R«, Meyer B.J., Pabo G.O., Roberts T.M., Sauer R.T, How the A repressor and cro work? Cell, 1980, v. 19, 1, p. 1—11 *

14. Johnson A.D., Poteete A.R., Lauer G., Sauer R.T., Ackers G.K., Ptashne M. A repressor and cro components of an efficient molecular switch. - Nature, 1981, v. 294, 5838, p. 217-223.

15. Ptashne M., Johnson A.D., Pabo C.O. A genetic switch in a bacterial virus. Scientific American, 1982, v. 247, 5» p. 106-120.

16. Maniatis Т., Ptaslme M., Backman K., Kleid D., Flashman S., Jeffrey A., Maurer R. Recognition sequences of repressor and polymerase in operators of lambda. Crll, 1975, v. 5, 2,p. 109-113.

17. Reichardt L.P., Kaiser A.D. Control of X repressor synthesis. Proc. Itfatl. Acad. Sci. USA, 1971, v. 68, 9, p. 21852189.

18. Yen K.-M., Gussin G.H. Genetic characterization of a prm"~ mutant of bacteriophage X . Virology, 1973, v. 56, 1, p. 300-312.

19. Meyer B.J., Kleid D.J., Ptashne M. X Repressor turns off transcription of its own gene. Proc. Natl. Acad. Sci. USA, 1975, v. 72, 12, p. 4785-4789.

20. Kleid D.J., Humayun M.Z., Jeffrey A., Ptashne M. Hovel properties of a transcription endonuclease isolated from Haemophilus parahaemolyticus. Proc. Natl. Acad. Sci. USA, 1976, v. 73, 2, p. 293-297.

21. Sauer R.T., Anderegg R. Primary structure of the X repressor. Biochemistry, 1978, v. 17, 6, p. 1092-1100.

22. Pabo C.O., Sauer R.T., Sturtevant J.M., Ptashne M. The repressor contains two domains. Proc. Natl. Acad. Sci. USA, 1979, v. 76, 4, p. 1608-1612.

23. Sauer R.T., Pabo C.O., Meyer B.J., Ptashne M., Backman K.C, Regulatory functions of the Л repressor reside in the amino-terminal domain. Nature, 1979, v. 279, 5712, p. 396400.

24. Brack C., Pirrotta У. Electron microscopic study of the repressor of bacteriophage Л and its interaction with operator DNA. J. Mol. Biol., 1975, v. 96, 1, p. 139-152.

25. Meyer B.J., Maurer R,, Ptashne M. Gene regulation at the right operator (0R) of bacteriophage X . II. 0R1, 0R2 and 0R3: their roles in mediating the effects of repressor and cro. J. Mol. Biol., 1980, v. 139, 2, p. 163-194.

26. Johnson A.D., Meyer B.J., Ptashne M. Interaction between

27. DNA-bound repressors govern regulation by Л phage repressor. Proc. Natl. Acad. Sci. USA, 1979, v. 76, 10, p. 50615065.

28. Maurer R., Meyer B.J,, Ptashne M. Gene regulation at the right operator (0R) of bacteriophage Л • I. 0R3 and auto-geneous negativ control by repressor. J. Mol. Biol., 1980, v. 139, 2, p. 147-161.

29. Meyer B.J., Ptashne M. Gene regulation at the right operator (0R) of bacteriophage Л . Ill, A repressor directly activates gene transcription. J. Mol. Biol., 1980, v. 139, 2, p. 195-205.

30. Pirrotta V., Chadwick P., Ptashne M. Activeform of two coli-phage repressors. Nature, 1970, v. 227, 5253, p. 41-44,

31. Chadwick P., Pirrotta V., Streinberg P., Hopkins N., Ptashne M. The X and 434 phage repressors, Cold Spring Harbor Symp. Quant. Biol., 1970, v. 35, p.283-294,

32. Johnson A.D., Pabo C.O., Sauer R.T, Bacteriophage X repressor and cro protein: interaction with operator DNA. Meth, Enzymol., 1980, v. 65, p. 839-856.

33. Ptashne M. Repressors. Trends Biochem. Sci., 1984, v. 9, 4, p. 142-145.

34. Guarente L., Nye J.S., Hochschild A., Ptashne M. A mutant

35. Л repressor with a specific defect in ots positive control function. Proc. Natl. Acad. Sci. USA, 1982, v. 79, 7, p. 2236-2239.

36. Gottesman S. Genetic control of the SOS system in E, coli. -Cell, 1981, v. 23, 1, p. 1-2.

37. Little J.W#, Edmiston S.H., Pacelli L.Z. Mount D.W, Cleavage of the Escherichia coli lexA protein by the recA protease. -Proc. Natl. Acad. Sci, USA, 1980, v. 77, 6, p. 3225-3229.

38. Markhom B.E., Little J.W., Mount D.W. Nucleotide sequence of the lexA gene of Escherichia coli K-12. Nucl. Acids Res., 1981, v. 9, 16, p. 4149-4161.

39. Little J.W. The SOS regulatory system: control of its state by the level of recA protease. J, Mol. Biol., 1983, v. 167, 4, p. 791-808.

40. Roberts J.V/«, Roberts G.W., Craig N.L. Escherichia coli recA gene product inactivates phage Л repressor. Proc. Natl. Acad. Sci. USA, 1978, v. 75, 10, p. 4714-4718.

41. Roberts T.M., Shimatake H., Brady C., Rosenberg M, Sequence of cro gene of bacteriophage lambda. Nature, 1977, v. 270, 5635, p. 274-275.

42. Hsiang M.W., Cole R.D., Takeda Y., Echols H. Amino acid sequence of cro regulatory protein of bacteriophage lambda.- Nature, 1977, v. 270, 5635, p. 275-277.

43. Polkmanis A., Takeda Y., Smuth J., Gussin G., Echols H. Purification and properties of a DNA-binding protein with characteristics expected for the cro protein of bacteriophage

44. A, a repressor essential for lythic growth. Proc. Natl. Acad. Sci. USA, 1976, v. 73, 7, p. 2249-2253.

45. Takeda Y., Polmanis A., Echols H. Cro regulatory protein specified by bacteriophage A . J, Biol. Chem., 1977, v. 252, 17, p. 6177-6183.

46. Eisen H., Georgion G., Georgopoulos C.P., Selzer G., Gussin G., Herskovitz I. The role of gene cro in phage development,- Virology, 1975, v. 68, 1, p. 266-269.

47. Ackers G.K., Johnson A.D., Shea M.A. Quantative model for gene regulation by the lambda phage repressor. Proc. Natl. Acad. Sci. USA, 1982, v. 79, 4, p. 1129-1133.

48. Roberts T.M., Kacich R., Ptashne M. A general method for maximizing the expression of a cloned gene. Proc. Natl. Acad. Sci, USA, 1979, v. 76, 2, p. 760-764.

49. Anderson W.F., Ohlendorf D.H., Takeda Y., Matthews B.W. Structure of the cro repressor from bacteriophage Л and its interaction with ША. Nature, 1981, v. 290, 5809, p. 754-758.

50. Ohlendorf D.H,, Anderson W.F., Fisher R.G., Takeda Y., Matthews B.W. The molecular basis of DNA-protein recognition inferred from the ctructure of the cro repressor. Nature,1982, v. 298, 5876, p. 718-723.

51. Matthews B.W., Ohlendorf D.H., Anderson W.F., Fisher R.G., Takeda Y. Cro repressor protein and its interaction with DNA.- Cold Spring Harbor Symp. Quant. Biol., 1983, v. 47, 1, p. 427-433.

52. Ohlendorf D.H., Anderson W.F., Takeda Y., Matthews B.W, High resolution structural studies of the cro repressor protein and implications for DNA recognition. J. Biomol. Str. Dyn., 1983, v. 1, 2, p. 553-563.

53. Ohlendorf D.H., Matthews B.W. Structural studiea of protein- nucleic acid interactions. Annu. Rev, Biophys, Bioeng.,1983, v. 12, p. 259-284.

54. Anderson W.F., Takeda Y., Ohlendorf D.H., Matthews B.W. Proposed л-helical super-secondary structure associated with protein DNA recognition. - J. Mol. Biol., 1982, v. 159, 4, p. 745-751.

55. Matthews B.W., Ohlendorf D.H., Anderson W.F., Fisher R.G., Takeda Y# How does cro repressor recognize its DNA target sites? Trends Biochem. Sci., 1983, v. 8, 1, p. 25-29.

56. Pabo C.O., Lewis M. The operator-binding domain of X repressor: structure and DNA recognition. Nature, 1982,v. 298, 5873, p. 443-447.

57. Nelson H.C.M., Hecht M.H., Sauer R.T. Mutations defining the operator-binding sites of bacteriophage Л repressor. -Cold Spring Harbor Symp. Quant. Biol., 1983, v. 47, 1, p. 441-449.

58. Hecht M.H., Nelson H.C.M., Sauer R.T. Mutations in X repressor's amino-terminal domain: implications for protein stability and DNA binding. Proc. Natl. Acad. Sci. USA, 1983, v. 80, 9, p. 2676-2680.

59. Ohlendorf D.H., Anderson W.F., Lewis M., Pabo C.O., Matthews B.W. Comparison of the structures of cro and X repressor proteins from bacteriophage Л . J. Mol. Biol., 1983, v. 169, 3, P. 757-769.

60. Pabo C.O., Krovatin W., Jeffrey A., Sauer R.T. The N-terminal arms of Л repressor wrap around the operator DNA. -Nature, 1982, v. 298, 5873, p. 441-443.

61. Hochschild A., Irwin N., Ptashne M. Repressor structure and the mechanism of positive control. Cell, 1983, v. 32, 2, p. 319-325.

62. Sauer R.T., Nelson H.C.M., Hehir K., Hecht M.H., Gimble P.S., DeAnda J., Poteete A.R. The lambda and P22 phage repressors. J. Biomol. Str. Dyn., 1983, v. 1, 4, p. 1011-1022.

63. Epstein W., Rothman-Denes L.B., Hesse J. Adenosine 3f:5'-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc. Natl. Acad, Sci. USA, 1975, v. 72,6, p. 2300-2304.

64. Zubay G., Schwartz D., Backwith J, Mechanism of activation of catabolite-sensitive gene: a positive control system, -Proc, Natl. Acad. Sci. USA, 1970, v. 66, 1, p. 104-110.

65. Be Crombrugghe В., Pastan I. Dual control of the gal operon. In the Operon. N. Y.: Cold Spring Harbor Lab., 1978, p. 303-324.

66. Musso R.E,, DiLauro R., Adhya S., de Crombrugghe B. Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. -Cell, 1977, v. 12, 3, P. 847-854.

67. Riggs A.D,, Reiness G,, Zubay G. Purification and DNA-bindingproperties of the catabolite gene activator protein. Proc. Natl. Acad. Sci. USA, 1971, v. 68, 6, p. 1222-1225,

68. Aiba H., Krakov J.S. Isolation and characterization of the amino and carboxyl proximal fragments of the adenosine cyclic 35'-phosphate receptor protein of Escherichia coli. -Biochemistry, 1981, v. 20, 16, p. 4774-478O,

69. Eilen E., Pampeno G., Krakow J.S, Production and properties of the ОС core derived from the cyclic adenosine monophosphate receptor protein of Escherichia coli. Biochemistry, 1978, v. 17, 13, p. 2469-2473.

70. Wu C.-W., Wu P.Y.-H. Conformational transitions of cyclic adenosine monophosphate receptor protein of Escherichia coli. a temperature-jump study. Biochemistry, 1974, v. 13, 12, p. 2573-2578.

71. Wu P.Y.-H., Bandyop a dhyay R., Wu C.-W. Conformational transitions of the lac repressor from Escherichia coli. J. Mol. Biol., 1976, v. 100, 4, p. 459-472.

72. Eilen E., Krakow J.S. Cyclic AMP-mediated intersubunit disulfide crosslinking of the cyclic AMP receptor protein of Escherichia coli. J. Mol. Biol., 1977, v. 114, 1, p. 4760.

73. Kumar S.A., Murthy N.S., Krakov J.S. Ligand-induced changeih the radius of gyration of cAMP receptor protein from Escherichia coli. PEBS Lett., 1980, v. 109, 1, p. 121-124.

74. McKay D.B., Steitz T.A, Structure of catabolite gene activaotor protein at 2,9 A resolution suggests binding to left-handed В-ША. Nature, 1981, v. 290, 5809, p. 744-749.

75. McKay D.B., Weber I.Т., Steitz T.A., Structure of cataboliteоgene activator protein at 2.9 A resolution. Incorporation of amino acid sequence and interactions with cyclic AMP. J. Biol. Chem., 1982, v. 257, 16, p. 9518-9524.

76. Steitz T.A., Weber I.Т., Ollis D., Brick P. Crustallographic studies of protein nucleic acid interaction: catabolite gene activator protein and the large fragment of DM polymerase I. - J. Biomol. Str. Dyn., 1983, v. 1, 4, p. 1023-1037.

77. Harrison S.C., Olson A.J., Schutt C.E., Winkler F.K.,о

78. Bricogne G. Tomato bushy stunt virus at 2.9 A resolution. -Nature, 1978, v. 276, 5686, p. 368-373.

79. Abad-Zapatero C., Abdel-Mequid S.S., Johnson J.E., Leslie A, G.W., Rayment I., Rossman M.G., Suck D,, Tsukihara T. Strucoture of southern bean mosaic virus at 2.8 A resolution. -Nature, 1980, v. 286, 5768, p. 33-39.

80. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the haemagoglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature, 1981, v. 289, 5796, p. 366-373.

81. Weber I.Т., Takio K., Titani K., Steitz T.A. The cAMP-binding domains of the regulatory subunit of cAMP-dependent protein kinase and of the catabolite gene activator protein are homologous. Proc. Natl. Acad. Sci. USA, 1982, v. 79, 24, p. 7679-7683.

82. Simpson R.B. Interaction of the cAMP receptor protein v/ith the lac promoter. Nucl. Acids Res., 1980, v. 8, 4, p. 759-766.

83. Kolb A., Buc H. Is DNA unwound by the cyclic AMP receptor protein? Nucl. Acids Res., 1982, v. 10, 2, p. 473-485.

84. Freid M.G., V/u H.-M., Crothers D.M. CAP binding to В and Z forms of DNA. Nucl. Acids Res., 1983, v. 11, 8, p. 24792494.

85. Steitz T.A., Ohlendorf D.H., McKay D.B., Anderson W.F., Matthews B.W. Structural similarity in the DNA binding domains of catabolite gene activator protein and cro repressor protein. Proc. Natl. Acad. Sci. USA, 1982, v. 79, 10, p.3097-ЗЮ0.

86. Steitz T.A., V/eber I.Т., Matthew J.B. Catabolite gene activator protein: structure, homology with other proteins, and cyclic AMP and DNA binding. Cold Spring Harbor Symp. Quant. Biol., 1983, v. 47, 1, p. 419-426.

87. Ptashne M. Repressors. Trends Biochem. Sci., 1984, v. 9, 4, p. 142-145.

88. Sauer R.T., Yocum R.R., Doolittle R.P., Lewis M., Pabo C.O. Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature, 1982, v. 298, 5873, P. 447-451.

89. Ptitsyn O.B., Finkelstein A.V., Kirpichnikov M.P., Skryabin

90. K.G. cl and lexA repressors consist of three cro-like domains.- PEBS Lett., 1982, v. 147, 1, p. 11-15.

91. Shaw D.J., Rice D.W., Guest J.R, Homology between CAP and Prn, a regulator of anaerobic respiration in Escherichia coli. J, Mol. Biol., 1983, v. 166, 2, p. 241-247.

92. Zuiderweg E.R.P., Kaptein R., Wuthrich K, Secondary structure of the lac repressor DNA-binding domain by two-dimenisional H nuclear-magnetic resonance in solution. Proc. Natl. Acad. Sci. USA, 1983, v. 80, 19, p. 5837-5841.

93. Buck P., Hahn K.-D,, Zemann W., Ruterjans H., Sadler J.R,, Beyreuther K., Kaptein R., Scheek R., Hull W.E. NMR study of the interaction between the lac repressor and the lac operator. Eur. J. Biochem., 1983, v. 132, 2, p. 321-327.

94. Ribeiro A.A., Wemmer D., Bray R.P., Wade-Jardetzky N.G., Jardetzky 0. High-resolution nuclear magnetic resonance studies of the lac repressor, 1. Assignments of tyrosine resonances in the N-terminal headoiece. Biochemistry, 1981, v. 20, 4, p. 818-823.

95. Astell C.R., Ahlstrom-Jonasson L., Smith M., Tatchell K., Nasmyth K.A., Hall B.D. The sequence of the DNAs coding forthe mating-type loci of Saccharomyces cerevisiae. Cell, 1981, v. 27, 1, p. 15-23.

96. Miller J.H. The lacl gene. In The Operon. N. У.: Cold Spring Harbor Lab., 1978, p. 31-88.

97. Schulz G.E., Schirmer R.H. Principles of protein structure. N. Y.: Springer-Verlag, 1979, p. 108-130.

98. Joachimiak A., Schevitz R.W., Kelley R.L., Yanofsky C., Sigler P.B, Punctional inferences from crystals of Esherichia coli trp repressor, J. Biol Chem., 1983, v. 258, 20, p. 12641-12643.

99. Joachimiak A., Schevitz R.W., Otwinowsky Z., Lawson C., Sigler P.B, The crystal structure and binding properties of E. coli trp repressor, 14th Int. Symp, Chem. Natr. Prod. Abstracts II. Poznan, Poland, 1984, p. 651.

100. Panium S,, Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch. Biochem. Biophys., 1969, v. 130, 1-2, p. 337-346.

101. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, v. 227, 5259, p. 680-685.

102. Eveleight J.W., Winter G.D. Amino acid composition determination. In Molecular Biology, Biochemistry and Biophysics.

103. N. Y.: Springer-Verlag, 1970, v. 8, p. 92-95.

104. Boschelli P., Arndt K., Nick H., Zhang Q., Lu P., Takeda Y. Lambda phage cro repressor: DNA sequence-dependent interactions seen by tyrosine fluorescence. J. Mol. Biol., 1982, v. 162, 2, p. 251-266.

105. Saxena V.P., Wetlaufer D.B. A new basis for interpreting the circular dichroic spectra of proteins. Proc. Natl. Acad.

106. Sci. USA, 1971, v, 68, 2, p. 969-972.

107. Chen Y.H., Yang J.T., Martinez II.M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion, Biochemistry, 1972, v. 11, 22, p. 4120-4131.

108. Chen Y.H,, Yang J.T., Chau K.H. Determination of the helix and (Ь form of proteins in aqueous solution by circular dichroism. Biochemistry, 1974, v. 13, 16, p. 3350-3359.

109. Chang Ch.T., Wu C.-S., Yang J.T. Circular dichroic analysis of protein conformation: inclusion of the f3-turns. Anal. Biochemistry, 1978, v.91, 1, p. 13-31.

110. Болотина И.А., Чехов B.O., Лугаускас В.Ю., Финкелыптейн А.В., Птицын О.Б. Определение вторичной структуры белков из спектров кругового дихроизма. I. Белковые реперные спектры для а-, и нерегулярной структур. Молек. биол., 1980, т. 14, 4, с. 891-901.

111. Болотина И.А., Чехов В.О., Лугаускас В.Ю., Птицын О.Б. Определение вторичной структуры белков из спектров кругового дихроизма. П. Учет вклада р-изгибов.-Молек. биол., 1980, т. 14, 4, с. 902-909.

112. Richarz R., Wuthrich. K. 1T0E difference spectroscopy: a novel method for observing individual multiplets in proton UMR specyra of biological macromolecules. J. Magn. Reson,, 1978, v. 30, 1, p. 147-150.

113. DeMarco A., Tschesche H., Wagner G., Wuthrich К. 1H UMR studies at ЗбО MHz of the methyl groups in native and chemically modified basic pancreatic trypsin inhibitor (BPTI). Biophys. Str. Mech., 1977, v. 3, 3/4, p. 303-315.

114. Bloch F,, Siegert A. Magnetic resonance for nonrotating fields. Phys. Rev., 1940, v. 57, 6, p. 522-527.

115. Gunther H, Mffi-Spektroskopie. Stuttgart: G.T. Verlag, 1973, S, 298,1

116. Schiffer M,, Edmundson A.B. Use of helical wheels to represent the structure of protein and to identify segments with helical potential. Biophys. J., 1967, v, 7, 1, p. 121-135.

117. Ptitsyn O.B. Statistical analysis of the distribution of amino acid residues among helical and non-helical regions in globular proteins. J. Mol. Biol., 1969, v. 42, 3, p.501-510.

118. Prothero J.W. Correlation between distribution of amino acids in alpha helixes. Biophys. J., 1966, v. 6, 3, p. 367-370.

119. Lewis P.N., Bradbury E.M. Effect of electrostatic interactions on the prediction of helices in proteins: the histones. Biochem. Biophys. Acta, 1974, v. 336, 2, p. 153-164.

120. Финкельштейн А.В. Стереохимический анализ вторичной структуры полипептидной цепи при помощи пространственных моделей Курто. I. Разрешенные конформации дипептидов.-Молек. биол., 1976, т. 10, 3, с. 507-513.

121. Финкельштейн А.В. Стереохимический анализ вторичной структуры полипептидной цепи при помощи пространственных моделей Курто. П. Водородные и гидрофобные связи. Молек. биол., 1976, т. 10, 4, с. 879-886.

122. Chou P.Y., Fasman G.D. Empirical prediction of protein conformation. Annu. Rev. Biochem., 1978, v. 47, p. 251-276.

123. Sternberg M.J.E., Thornton J.M. Prediction of protein structure from amino acid sequence. Nature, 1978, v. 271, 5640, p. 15-20.

124. Nemethy G,, Scheraga H.A. Protein folding. Quart. Rev, Biophys., 1977, v. 10, 3, P. 239-352.

125. Птицын О.Б., Финкельштейн А.В. Проблема предсказания структуры белка. В кн.: Итоги науки и техники, сер. молек. биол. М.: ВИНИТИ, 1979, т. 15, с. 6-41.

126. Levitt М,, Greer J. Automatic identification of secondary structure in globular proteins, J. Mol. Biol., 1977, v. 114, 2, p. 181-239.

127. Siegel J.B., Steinmetz W.E., Long G.L. A computer-assisted model for estimating protein secondary structure from circular dichroic spectra: comparison of animal lactate dehydrogenases. Anal. Biochem., 1980, v. 104, 1, p. 160-167,

128. Hennessey J,P,,Jr, Johnson W.C.,Jr. Information content in the circular dichroism of proteins, Biochemistry, 1981,-1 321. V, 20, 5, p. 1085-1094.

129. Pinlelstein A.V., Ptitsyn O.B., Kozitsyn S.A. Theory of protein molecule self-organization, II. A comparison of calculated thermodynamic parameters of local secondary structures vd.th experiments. Biopolymers, 1977, v. 16, 3, p, 497-524.

130. Boschelli P. Lambda phage cro repressor. Non-specific DNA binding. J, Mol. Biol,, 1982, v. 162, 2, p. 267-282,

131. Iwahashi H., Akutsu H., Kobayashi Y,, Kyogoku Y,, Ono Т., Koga H,, Horiuchi T, Structure of the A tof repressor protein in solution. Heat stability and its relation to binding ability to DNA, J. Biochem., 1982, v. 91, 4, p. 1213-1221,

132. Neckers D,C, Photochemical reactions of natural macromolecu-les, Photoreactions of proteins. J. Chem, Educ,, 1973, v, 50, 3, p. 164-168,

133. Фрайфелдер Д. Физическая биохимия. М.: Мир, 1980, с.383-414.

134. Hermans J., Jr. Normal and abnormal tyrosine side-chain in various heme proteins. Biochemistry, 1962, v. 1, 2, p, 193-198,

135. Grammer J.L,, Neuberger A, The state of tyrosine in egg albumin and in insulin as determined by spectrophotometric titration, Biochem, J,, 1943, v. 37, 2, p, 302-309.

136. Tanford C., Kirkwood J,G. Theory of protein titration curves. General equations for impenetrable spheres. J. Amer. Chem. Soc., 1957, v, 79, 20, p. 5333-5339.

137. Tanford C., Hauenstein J.D., Rands D,G, Phenolic Hydroxyl ionization in proteins, II. Ribonuclease. J. Amer. Chem. Soc., 1955, v. 77, 24, p. 6409-6413.

138. Lubin M., Ennis H.L. On the role of intracellular potassium in protein synthesis. Biochem. Biophys. Acta, 1964, v. 80, 4, p. 614-631.

139. Tanford C,, Roxby R. Interpretation of protein titration curves. Application to lysozyme, Biochemistry, 1972, v. 11, 11, p. 2192-2198.

140. Tanokura M., Tasumi M., Miyazawa Т. H nuclear magnetic resonance studies of histidine-containing di- and tripeptides. Estimation of the effects of charged groups on the pK valueclof the imidazole ring. Biopolymers, 1976, v. 15, 2, p.393-401.

141. Shire S.J., Hanania G.I.H., Gurd P.R.N. Electrostatic effects in myoglobin. Hydrogen ion equilibria in sperm whale ferri-myoglobin. Biochemistry, 1974, v. 13, 14, p. 2967-2974.

142. Shire S.J., Hanania G.I.H., Gurd P.R.N. Electrostatic effects in myoglobin. pH and ionic strength variations of ionization equilibria for individual groups in sperm whale ferrimyoglo-bin,-Biochemistry, 1974, v. 13, 14, p. 2974-2979.

143. Matthew J.B., Richards P.M. Anion binding and pH-dependent electrostatic effects in ribonuclease. Biochemistry, 1982, v. 21, 20, p. 4989-4999.

144. Orttung W.H. Proton binding and dipole moment of hemoglobin. Refined calculations. Biochemistry, 1970, v, 9, 12, p. 2394-2402.

145. Roberts G.G.K., Jardetzky 0. Nuclear magnetic resonance spectroscopy of amino acids, peptides and proteins. Adv. Protein Chem., 1970, v. 24, p. 447-545.

146. Arndt K.T., Boschelli P., Cook J., Takeda Y., Tecza E., Lu P.

147. Л Phage cro repressor interaction with DNA. J. Biol. Chem., 1983, v. 258, 7, p. 4177-4183.

148. McDonald C.C., Phillips W.D. Proton magnetic resonance spectra of proteins in random-coil configurations. J. Amer. Chem. Soc., 1969, v. 91, 6, p. 1513-1521.

149. Mayer R., Lancelot G., Helene C. Interaction of the 26-39 fragment of the cro protein from A bacteriophage with nucleic acids. PEBS Lett., 1983, v. 153, 2, p. 339-344.

150. Курочкин А.В., Чернов Б.К., Скрябин К.Г., Кирпичников М.П., Баев А.А. Связывание его-репрессора фага Л с фрагментом оператора. Докл. Акад. Наук СССР, 1984, т.275,5, с. I2I3-I2I6.

151. Kirpichnikov М.Р., Kurochkin A.V., Chernov В,К., Skryabin K.G. Interactions between cro repressor and the model specific binding site. PEBS Lett., 1984, v. 175, 2, p. 317-320.

152. Markley J.L. Nuclear magnetic resonance studies of trypsin inhibitors. Histidines of virgin and modified soybean trypsin inhibitor. Biochemistry, 1973, v. 12, 12, p. 2245-2250.

153. Markley J.L. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments. Biochemistry, 1975, v. 14, 16, p. 3546-3554.

154. Карпейский М.Я., Яковлев Г.И., Ежов В.А., Приходько А.Г. Исследование гуанилепецифичной рибонуклеазы из гриба Penicii-lium brevicompactum методом ЯМР. Биоорг. ХИМИЯ, 1981, т. 7, 9, с. I335-1347.

155. Kuramitsu S., Hamaguchi К. Analysis of the acid-base titration curve of hen lysozyme. J. Biochem., 1980, v. 87, 4, p. 1215-1219.

156. Vaughan J.D., Mughrabi Z., Wu E.C. The kinetics of deutera-tion of imidasole. J. Org. Chem., 1970, v. 35, 4, p. 11411145.

157. Bradbury J.H., Chapman B.E., Pellegrino P.A. Hydrogen-deuterium exchange kinetics of the C-2 protons of imidazole and histidine compounds. J, Amer. Chem. Soc., 1973, v. 95, 18, p. 6139-6140.

158. Bradbury J.H., Chapman B.E., Crompton M.W., Norton R.S., Teh J.S. Hydrogen-deuterium exchange of the C-2 protons of histidine and histidine peptides and proteins. J. Chem, Soc. bond. Perkin Trans. II, 1980, 4, p. 693-699.

159. Matthew J.B,, Richards P.M. The pH-dependence of hydrogen exchange in proteins. J, Biol. Chem., 1983, v. 258, 5, p. 3039-3044.

160. Dwek R.A, Nuclear magnetic resonance in biochemistry. Oxford: Clarendon Press, 1973, p. 48-54.

161. Noggle J.H., Schirmer R.E. The nuclear Overhauser effect. N. Y.: Academic Press, 1971.

162. Roques B.P., Rao R., Marion D. Use of nuclear Overhauser effect in the study of peptides and proteins. Biochimie, 1980, v. 62, 11-12, p. 753-773.

163. Bothner-By A.A. Biological applications of magnetic resonance. N. Y.: Academic Press, 1979, p. 177.

164. Solomon I, Relaxation processes in a system of two spins. -Phys Rev., 1955, v. 99, 2, p. 559-565.

165. Hull W,E,, Sykes B,D. Dipolar nuclear spin relaxation of19 19

166. F in multispin systems. Application to F labeled proteins. J. Chem, Phys., 1975, v, 63, 2, p. 867-880,

167. Kalk A., Berendsen H.J. Proton magnetic relaxation and spin diffusion in proteins, J. Magn. Reson., 1976, v. 24, 3, p. 343-366.

168. Wagner G., Wuthrich K. Truncated driven nuclear Overhauser1 1effect (TOE). A new technique for studies of selective H- H Overhauser effects in presence of spin diffusion. J, Magn, Reson,, 1979, v. 33, 3, p. 675-680,

169. Johnson P.D., Redfield A.G. Pulsed FT-NMR double resonance studies of the yeast tRNA^*16. specific nuclear Overhauser effects and reinterpretation of lo\v temperature relaxation data. Nucl. Acids Res., 1978, v. 5, 10, p. 3913-3927.

170. Niccolai N., De Leon De Miles M.P., Ilehir S.P., Gibbons W.A. Correlation time measurements of amino acid side chains from

171. H-selective spin-lattice relaxation rates. J. Amer, Chem. Soc., 1978, v, 100, 20, p.6528-6529.

172. Bax A., Freeman R. Investigation of complex networks of spin-spin coupling by two-dimensional NMR. J. Magn. Reson.,1981, v. 44, 3, p. 542-561.

173. Macura S., Ernst R.R. Elucidation of cross relaxation in liquids by two-dimensional MR spectroscopy. Mol. Phys., 1980, v. 41, 1, p. 95-117.

174. Gurevich A.Z., Barsukov I.L., Arseniev A.S., Bystrov V.P. Combined COSY HOESY experiment. - J. Magn. Reson., 19S4, v. 56, 3, p. 471-478.

175. Leach S.J., Hemethy G., Scheraga H.A. Use of proton nuclear Overhauser effects for the determination of the conformations of amino acid residues in oligopeptides. Biochem. Biophys. Res. Comm., 1977, v. 75, 1, p. 207-215.

176. Bell R.A., Saunders J.K. Correlation of the intramolecular nuclear Overhauser effect with internuclear distance. Can. J. Chem., 1970, v. 48, 7, p. 1114-1122.