Бесплатный автореферат и диссертация по биологии на тему
Определение множественной лекарственной устойчивости Mycobacterium tuberculosis молекулярно-генетическими методами
ВАК РФ 03.00.07, Микробиология
Содержание диссертации, кандидата биологических наук, Галкина, Ксения Юрьевна
Список сокращений.
Введение.
Глава 1. Обзор литературы.
1.1.Современные бактериологические методы определения чувствительности Mycobacterium tuberculosis к противотуберкулезным препаратам. ^
1.1.1.Определение чувствительности Mycobacterium tuberculosis к противотуберкулезным препаратам на ^ плотных средах.
1.1.2.Определение чувствительности Mycobacterium tuberculosis к противотуберкулезным препаратам на ^ жидких средах.
1.2. Молекулярные механизмы множественной лекар- ^ ственной устойчивости Mycobacterium tuberculosis
1.2.1. Устойчивость к рифампицину.
1.2.2. Устойчивость к изониазду.
1.3. Молекулярно-биологические методы определения мутаций, ведущих к становлению резистентности Mycobacterium tuberculosis к противотуберкулезным препаратам.
1.3.1 Секвенирование ДНК.
1.3.2. Метод денатурирующего градиентного гель электрофореза - DGGE (Denaturation Gradient Gel Electrophoresis).
1.3.3. Метод несовершенного дуплекса (CMC
Chemical Mismatch Cleavage).
1.3.4. Метод гетеродуплексного анализа (ПЦР - ГДА)
1.3.5. Метод выявления мутаций, приводящих к полиморфизму длин рестрикционных фрагментов ДНК (ПДРФ) (restriction fragments length polymorphism -RFLP).
1.3.6. Обнаружение мутаций путем оценки конфор-мационного полиморфизма одноцепочечных фрагментов ДНК (single-stranded conformation polymorphism - SSCP). 3i
1.3.7. Определение ЛУ МБТ методом гибридизации на олигонуклеотидном микрочипе.
Глава 2. Материал и методы исследования.
2.1. Пациенты и клинические образцы.
2.2. Сбор материала.
2.3. Определение лекарственной чувствительности Mycobacterium tuberculosis.
2.3.1. Подготовка проб для «ТБ-БИОЧИП».
2.3.2. Условия проведения полимеразной цепной реакции.
2.3.3. Проведение гибридизации.
2.3.4. Регистрация результатов гибридизации.
2.4. Определение устойчивости к изониазиду путем выявления мутаций в гене kasA методом конформа-ционного полиморфизма одноцепочечных фрагментов (SSCP).
2.4.1. Подготовка проб.
2.4.2. Условия проведения полимеразной цепной ре- ^g акции
2.4.3. Выявление мутаций в гене kasA.
2.5. Статистическая обработка данных.
Глава 3. Собственные исследования.
Сравнение эффективности выявления Mycobacterium tuberculosis, чувствительных и резистентных к ри-фампицину и изониазиду, методом «ТБ-БИОЧИП» и бактериологическими методами в культурах и респи- ^ раторных образцах.
3.1. Определение лекарственной чувствительности Mycobacterium tuberculosis бактериологическими ме- ^ тодами.
3.2. Оценка эффективности выявления ДНК Mycobacterium tuberculosis и определения ее чувствительности к рифампицину и изониазиду в респираторных образцах с помощью тест-системы «ТЪ-БИОЧИП».
3.3. Оценка эффективности выявления ДНК Mycobacterium tuberculosis и определения ее чувствительности к рифампицину и изониазиду, с помощью «ТБ-БИОЧИП» в культурах
3.4. Анализ сочетания мутаций в ДНК Mycobacterium tuberculosis,выделенных от больных, исследованных с помощью «ТБ-БИОЧИП».
3.4.1. Анализ сочетания мутаций в ДНК Mycobacterium tuberculosis, выделенных от больных с впервые ^ выявленным туберкулезом.
3.4.2. Анализ сочетания мутаций в ДНК Mycobacterium tuberculosis, выделенных от больных с хрониче- ,, 00 ским течением туберкулеза.
Глава 4. Анализ мутаций в гене kasA Mycobacterium tuberculosis с помощью метода конформационного полимор- ^ физма одноцепочечных фрагментов (SSCP).
4.1.Выявление мутаций в гене has A Mycobacterium tuberculosis, выделенных от больных с впервые выяв- ^ ленным туберкулезом легких, методом SSCP.
4.2. Выявление мутаций в гене kasA Mycobacterium tuberculosis, выделенных от больных с хроническим ^ течением туберкулеза, методом SSCP.
Введение Диссертация по биологии, на тему "Определение множественной лекарственной устойчивости Mycobacterium tuberculosis молекулярно-генетическими методами"
Актуальность проблемы
Одной из основных причин увеличения числа больных туберкулезом в России в настоящее время является широкое распространение Mycobacterium tuberculosis, устойчивых к противотуберкулезным препаратам. Наиболее опасными в клиническом и эпидемиологическом плане являются штаммы с множественной лекарственной устойчивостью, характеризуемые наличием одновременной лекарственной устойчивости к рифампицину и изониазиду [31, 33, 80, 151].
Согласно статистическим данным в Москве в 2003 году Mycobacterium tuberculosis с множественной лекарственной устойчивостью обнаружены у 7,6% больных с впервые выявленным туберкулезом легких и у 19,2% пациентов с хроническим течением заболевания [17].
Микробиологические методы диагностики и определения лекарственной чувствительности Mycobacterium tuberculosis являются достаточно точными и надежными, однако, получить видимый рост возбудителя на плотной питательной среде возможно только через 6-8 недель, что существенно замедляет процесс верификации диагноза. Для определения лекарственной чувствительности на плотной среде Левенштейна-Йенсена требуется еще 3-4 недели, в связи с чем, выбор обоснованного режима химиотерапии откладывается на 2-3 месяца, а назначение про-тиивотуберкулезных препаратов чаще всего носит эмпирический характер.
Для сокращения времени культуральной диагностики туберкулеза были разработаны автоматизированные бактериологические системы ВАСТЕС MGIT960 (Becton Dickinson) и МВ/ВасТ (BioMerieux), в которых рост микобактерий происходит на жидкой питательной среде. Однако и в этом случае выявление возбудителя в диагностическом материале и определение его лекарственной чувствительности занимает около 3-4 недель [9,10].
Внедрение во фтизиатрию молекулярно-биологических методов дало возможность существенно сократить сроки определения лекарственной чувствительности микобактерий. В настоящее время известны гены Mycobacterium tuberculosis, кодирующие ферменты, которые взаимодействуют с лекарственными препаратами, и появление мутаций в этих генах приводит к становлению резистентности к противотуберкулезным препаратам [1,35,39,40].
Молекулярно-биологические методы обладают высокой точностью и надежностью и многие из них позволяют не только выявить, но и охарактеризовать мутации, возникшие в геноме микобактерий.
Методы определения мутаций различны. Как правило, они совмещают в себе клонирование исследуемого участка гена путем полимераз-ной цепной реакции и детекции полученных ампликонов путем прямого секвенирования ПЦР-продукта, определения полиморфизма длин рест-рикционных фрагментов (restriction fragments length polymorphism -RFLP), электрофореза продуктов ПЦР в денатурирующем градиентном геле (denaturing gradient gel electrophoresis DGGE)* гетеродуплексного анализа, исследования конформационного полиморфизма одноцепочеч-ных фрагментов (single-stranded conformation polymorphism - SSCP). Большинство из указанных выше методов применяются, главным образом, в научных целях, хотя их адаптация, в частности метода SSCP, возможна для специализированных лабораторий, занимающихся ПЦР-диагностикой.
Принципиально новая, не имеющая аналогов тест-система «ТБ-БИОЧИП», разработанная в Институте молекулярной биологии им. В. А. Энгельгардта РАН, и апробированная в Московском научно-практическом центре борьбы с туберкулезом в условиях клинико-диагностической лаборатории, включает в себя метод мультиплексной асимметричной ПЦР и гибридизацию на микрочипе. На второй стадии амплификации используется праймер, меченый флуоресцентной меткой CY-5. Полученный меченый ПЦР-продукт подвергается гибридизации.
Микрочип представляет собой небольшое стекло, на которое иммобилизуют в виде правильно расположенных микроячеек небольшие фрагменты ДНК с известной последовательностью нуклеотидов. Данные ячейки объединены в 23 группы таким образом, что сравнение интенсивности флуоресцентных сигналов ячеек каждой группы позволяет сделать заключение о наличии/отсутствии мутации (минорного полиморфизма), приводящей к замене одного аминокислотного остатка. Интерпретация результатов гибридизации осуществляется при сравнении интенсивности флуоресцентных сигналов в ячейках, принадлежащих к одной группе. Максимальный флуоресцентный сигнал свидетельствует о наличии совершенного гибридизационного дуплекса [8].
Данная тест-система позволяет детектировать 29 типов мутаций по гену гроВ и 19 типов мутаций по генам katG, oxyR-ahpC и inhA. С помощью этого чипа удается выявить 80-85% всех случаев наличия микобак-терий с множественной лекарственной устойчивостью у обследуемых больных туберкулезом. Каждый этап адаптирован для условий молеку-лярно-диагностических лабораторий, метод не трудоемок и занимает 48 часов [19].
Известно, что 5-16,8% штаммов возбудителя, резистентных к изо-ниазиду, имеют мутации в гене has А [24, 29, 51]. Поскольку использование мультиплексной полимеразной цепной реакции ограничивает количество анализируемых генов на микрочипе, для выявления мутаций в гене has А, можно использовать метод SSCP. Сочетание метода биологических микрочипов («ТБ-БИОЧИП») и SSCP позволяет охарактеризовать Mycobacterium tuberculosis по пяти наиболее изученным генам, определяющим наличие множественной лекарственной устойчивости.
Цель исследования
Определение множественной лекарственной устойчивости и анализ спектра мутаций в генах rpoB, katG, inhA, oxyR-ahpC и kasA Mycobacterium tuberculosis, полученных от больных туберкулезом легких, с помощью молекулярно-биологических методов (биологических микрочипов и конформационного полиморфизма одноцепочечных фрагментов), адаптированных для условий клинико-диагностической ПЦР-лаборатории.
Задачи исследования
1. Проведение сравнительного анализа частоты выявления множественной лекарственной устойчивости Mycobacterium tuberculosis бактериологическими методами и с помощью тест-системы «ТБ-БИОЧИП».
2. Определение доли резистентных к изониазиду Mycobacterium tuberculosis, имеющих мутации в гене kasA, с помощью метода конформационного полиморфизма одноцепочечных фрагментов.
3. Анализ спектра мутаций в Mycobacterium tuberculosis резистентных к рифампицину и изониазиду у больных с впервые выявленным туберкулезом легких с помощью тест-системы «ТБ-БИОЧИП».
4. Анализ спектра мутаций в Mycobacterium tuberculosis резистентных к рифампицину и изониазиду, у больных с хроническим течением процесса с помощью тест-системы «ТБ-БИОЧИП».
Научная новизна работы
1. Проведен сравнительный анализ частоты и сроков обнаружения множественной лекарственной устойчивости Mycobacterium tuberculosis с помощью сочетания методов биологических микрочипов и конформационного полиморфизма одноцепочечных фрагментов, по сравнению с классическими бактериологическими методами.
2. Определен вклад мутаций в гене kasA в общее число Mycobacterium tuberculosis, резистентных к изониазиду.
3. С помощью молекулярно-биологических методов впервые проведены одновременные исследования Mycobacterium tuberculosis, выделенных от больных туберкулезом легких, по пяти генам, ответственным за множественную лекарственную устойчивость: rpoB, katG, inhA, oxyR-ahpC и has A.
Практическая значимость исследования
Сочетание методов биологических микрочипов и конформационно-го полиморфизма одноцепочечных фрагментов позволяет в короткие сроки с высокой степенью точности и надежности в полной мере охарактеризовать диагностический материал, получаемый от больных туберкулезом, на наличие Mycobacterium tuberculosis, обладающих множественной лекарственной устойчивостью.
Быстрое определение чувствительности Mycobacterium tuberculosis к рифампицину и изониазиду позволяет назначить пациентам адекватный режим химиотерапии непосредственно после поступления в специализированную клинику или внести коррективы в схему лечения в течение 2-3 суток.
Своевременное определение Mycobacterium tuberculosis с множественной лекарственной устойчивостью способствует совершенствованию лечения больных и, в свою очередь, сокращает сроки их пребывания в стационаре, что, соответственно, приводит к уменьшению затрат и расхода лекарственных средств. Материалы диссертации были использованы при составлении методических рекомендаций «Определение множественной лекарственной устойчивости Mycobacterium tuberculosis молекулярно-биологическими методами», Москва, 2006.
Положения, выносимые на защиту:
1. Сочетание методов биологических микрочипов и конформаци-онного полиморфизма одноцепочечных фрагментов позволяет одновременно идентифицировать Mycobacterium tuberculosis и определить чувствительность возбудителя к рифампицину и изониазиду в более короткие сроки (48 часов), по сравнению с классическими бактериологическими методами и охарактеризовать наличие мутаций одновременно в пяти генах, ассоциированных с резистентностью к данным противотуберкулезным препаратам.
2. Среди Mycobacterium tuberculosis, выделенных от больных с впервые выявленным туберкулезом легких, преобладали чувствительные к рифампицину и изониазиду. В штаммах с множественной лекарственной устойчивостью выявлялись наиболее распространенные типы мутаций, главным образом, в генах гроВ (531 кодон) и katG (315 кодон).
3. Среди Mycobacterium tuberculosis, полученных от больных с хроническим течением туберкулезного процесса преобладали штаммы с множественной лекарственной устойчивостью и высокой вариабельностью сочетания мутаций в исследуемых генах.
Апробация работы
Материалы диссертации были доложены на Европейских респираторных конгрессах, Vienna, Austria, 2003; Glasgow, UK, 2004; Российском съезде фтизиатров, Москва, 2003.
Публикации
По теме диссертации опубликовано 5 работ.
Структура и объем диссертации
Диссертация изложена на 110 страницах машинописного текста и состоит из введения, обзора литературы, собственных исследований, заключения и выводов. В тексте содержится 10 рисунков и 15 таблиц. Библиография включает 155 источников литературы, из них на 33 русском и 122 на иностранном языках.
Заключение Диссертация по теме "Микробиология", Галкина, Ксения Юрьевна
Выводы
1. С помощью сочетания методов биологических микрочипов и конформационного полиморфизма одноцепочечных фрагментов, определяется лекарственная чувствительность Mycobacterium tuberculosis одновременно к рифампицину и изониазиду, посредством выявления мутаций, ассоциированных с резистентностью к данным препаратам, в генах гроВ, katG, inhA, oxyR -ahpC и kasA, в течение 48 часов.
2. В Mycobacterium tuberculosis, полученных от больных с впервые выявленным туберкулезом легких, определили множественную лекарственную устойчивость в 10,4% случаев. В 11,8% случаев обнаружили штаммы резистентные к изониазиду. Резистентных к рифампицину штаммов выявлено не было.
3. Установлено шесть типов сочетания мутаций в Mycobacterium tuberculosis, полученных от больных с впервые выявленным туберкулезом легких, (три характерные для штаммов с множественной лекарственной устойчивостью, главным образом, с мутациями в 531 кодоне гена гроВ и 315 кодоне гена katG). Кроме того, определены три мутации, ассоциированные с резистентностью к изониазиду.
4. Mycobacterium tuberculosis с множественной лекарственной устойчивостью, в группе больных с хроническим течением туберкулезного процесса, определили в 72,0% случаев. В 14,3% выявили штаммы резистентные к изониазиду и в 4,6% - резистентные к рифампицину
5. В Mycobacterium tuberculosis, выделенных от больных с хроническим течением процесса, определено 34 типа сочетания мутаций (22 характерных для Mycobacterium tuberculosis с множественной лекарственной устойчивостью, 11 - для резистентных к изониазиду и 1 - резистентный к рифампицину).
6. Мутации в гене kasA, связанные с устойчивостью к изониазиду, были выявлены в пяти штаммах Mycobacterium tuberculosis (три из которых были с признаками множественной лекарственной устойчивости и два - резистентных к изониазиду).
Заключение
Максимально быстрое и специфическое выявление Mycobacterium tuberculosis с множественной лекарственной устойчивостью у больных туберкулезом является одной из самых актуальных задач современной фтизиатрии [33, 53, 54, 80, 83, 93, 114, 125].
Широко применяемые в настоящее время в лабораторной практике микробиологические методы определения лекарственной чувствительности микобактерий на плотных средах занимают 6-8 недель, поэтому лечение, как правило, начинают без учета данных о чувствительности возбудителя к изониазиду и рифампицину, что часто имеет отрицательные клинико-эпидемиологические последствия [13, 14].
Применение полуавтоматических систем с использованием жидких сред [МВ/ВасТ, Bact/Alert 3D (Bio Merieux), Bactec MGIT 960 (Вес-ton Dickinson)] сокращает время выявления Mycobacterium tuberculosis и определения их чувствительности к противотуберкулезным препаратам до 3-4 недель, что так же довольно длительно и часто заставляет начать лечение до получения лабораторных результатов.
Использование молекулярно-биологических методов для определения лекарственной чувствительности возбудителя к рифампицину и изониазиду, позволяет сократить временные сроки выполнения анализа до 2-3 суток.
К настоящему времени расшифрован геном Mycobacterium tuberculosis H37Rv [54], и достаточно хорошо изучены молекулярные механизмы резистентности к противотуберкулезным препаратам, обусловленные мутациями в определенных генах возбудителя [24, 25, 34, 42, 78, 79, 113, 118, 120, 129, 130, 138, 140, 144]. Так, резистентность к рифампицину возникает благодаря мутациям в гене гроВ, а устойчивость к изониазиду ассоциирована с мутациями в нескольких генах, основными из которых являются: katG, inhA, oxyR-ahpC и has А.
Молекулярно-биологические методы, применяемые для определения лекарственной чувствительности возбудителя, включают в себя клонирование последовательности-мишени посредством полимеразной цепной реакции и детекции полученных ампликонов.
В Институте молекулярной биологии им. В. А. Энгельгардта РАН разработана тест-система «ТБ-БИОЧИП» (предприятие-производитель ООО «БИОЧИП-ИМБ», Москва), которая затем была апробирована в Московском городском научно-практическом центре борьбы с туберкулезом в условиях клинико-диагностической лаборатории. Это экспресс-тест in vitro для одновременной идентификации возбудителя путем выявления наличия последовательности IS6110, уникальной для Mycobacterium tuberculosis complex, и определения лекарственной чувствительности микобактерий к рифампицину и изониазиду путем выявления мутаций в генах rpoB, katG, inhA, и oxyR-ahpC. Для выявления мутаций в гене kasA, приводящих к становлению резистентности Mycobacterium tuberculosis к изониазиду в 5 - 16,8% случаев [24, 51], определение которых нельзя выполнить на биочипе, было решено применить модификацию метода конформационного полиморфизма одноцепочечных фрагментов (SSCP), разработанную в МНПЦБТ (приоритетная справка №2003111987, 2003, ФИПС). Собственные наработки заключались в том, что нами были подобраны праймеры, программа амплификации и условия проведения высокоразрешающего электрофореза.
Целью данных исследований было определение множественной лекарственной устойчивости и анализ спектра мутаций в генах гроВ, katG, inhA, oxyR-ahpC и kasA Mycobacterium tuberculosis, полученных от больных туберкулезом легких с помощью молекулярно-биологических методов (биологических микрочипов и конформационного полиморфизма одноцепочечных фрагментов), адаптированных для условий клинико-диагностической ПЦР-лаборатории.
Задачи исследований были следующие:
- оценить возможности использования нового метода выявления штаммов Mycobacterium tuberculosis с множественной лекарственной устойчивостью, с помощью тест-системы «ТБ-БИОЧИП», по сравнению с бактериологическими методами.
- определить долю резистентных к изониазиду микобактерий, имеющих мутации в гене kasA, методом конформационного полиморфизма одноцепочечных фрагментов.
- с помощью сочетания применяемых методов проанализировать спектр мутаций одновременно в пяти генах Mycobacterium tuberculosis у больных с впервые выявленным туберкулезом легких и хроническим течением процесса.
С помощью тест-системы «ТБ-БИОЧИП» нами был исследован диагностический материал с ДНК Mycobacterium tuberculosis, полученных из 82 респираторных образцов и 161 культуры, параллельно с бактериологическими методами.
Клетки Mycobacterium tuberculosis, выделенные из респираторных образцов, а затем посеянные на плотные и жидкие среды, в 12 случаях не дали роста. Для остальных респираторных образцов (п=70) сравнивали результаты определения лекарственной чувствительности, полученные на средах Левенштейна-Йенсена и Middlebrook 7Н9. Сюда входили Mycobacterium tuberculosis, чувствительные к рифампицину и изониазиду (35,7%), резистентные к одному из препаратов (14,3%) и штаммы с множественной лекарственной устойчивостью (50,0%). Из литературы известно, что на среде Левенштейна-Иенсена при посеве микобактерий, выделенных из диагностического материала, удается получить результат в 65-70% случаев из-за индивидуальных особенностей роста штаммов. На жидких средах процент их выявляемое™, как правило, выше [69].
Высокий процент выживших культур, полученный в наших экспериментах, вероятно, связан с тем, что на посев брали только свежий материал, а, следовательно, Mycobacterium tuberculosis в нем отличались повышенным уровнем выживания. Этим же можно объяснить более высокий процент роста микобактерий, выделенных из респираторных образцов (85,3%), по сравнению с данными других исследователей [14, 15, 69]. Поскольку результаты определения лекарственной чувствительности Mycobacterium tuberculosis, выделенных из респираторных образцов и культур, выращенных на средах Левенштейна-Йенсена и Middlebrook 7Н9, были аналогичны, в дальнейшем данные, полученные молекуляр-но-биологическими методами, сравнивали с результатами роста на среде Левенштейна-Йенсена.
При исследовании ДНК Mycobacterium tuberculosis, выделенных из культур, удалось получить результаты лекарственной чувствительности микобактерий для всех штаммов: чувствительных - 24,8%, резистентных к одному из препаратов - 16,8% и Mycobacterium tuberculosis с множественной лекарственной устойчивостью - 58,4%.
При сопоставлении результатов исследований лекарственной чувствительности Mycobacterium tuberculosis, выполненных на ДНК возбудителя, выделенной из респираторных образцов, полученных с помощью «ТБ-БИОЧИП» и метода абсолютных концентраций, проценты совпадения составили 92,0% и 95,7% по определению чувствительности и резистентности соответственно. С помощью «ТБ-БИОЧИП» было выявлено 35,7% чувствительных образцов 14,3% резистентных к одному из препаратов и 50,0% с множественной лекарственной устойчивостью, в то время как с помощью культуральных исследований выявлено 32,8% чувствительных образцов, 18,6% - резистентных к одному из препаратов и 48,6% с множественной лекарственной устойчивостью.
Исследование ДНК Mycobacterium tuberculosis из 12 респираторных образцов (14,6% от общего количества исследуемых образцов), не давших роста ни на жидких, ни на плотных средах показало, что пять из них являются чувствительными, один устойчивый к рифампицину, один
- к изониазиду, и пять - с множественной лекарственной устойчивостью. Таким образом, тест-система «ТБ-БИОЧИП» позволяет не только определить лекарственную чувствительность микобактерий в более короткие сроки, но и в большем числе случаев, т.к. является более чувствительной.
При исследовании респираторных образцов в двух случаях наблюдались расхождения в определении множественной лекарственной устойчивости двумя методами.
Сопоставление результатов определения лекарственной чувствительности культур Mycobacterium tuberculosis, выращенных на среде Ле-венштейна-Иенсена, показало высокий процент совпадения результатов, полученных с помощью «ТБ-БИОЧИП» и метода абсолютных концентраций (90,5% для чувствительных и 90,9% для резистентных штаммов). При исследовании с помощью метода абсолютных концентраций 42 (26,1%) штамма были определены как чувствительные к рифампицину и изониазиду, 29 (18,0%) — как резистентные к одному из препаратов и 90 (55,9%) как множественно лекарственно устойчивые, в то время как при исследовании на «ТБ-БИОЧИП» только 40 (24,8%) были определены как чувствительные, 27 (16,8%) - как резистентные к одному из препаратов и 94 (58,4 %) обладали множественной лекарственной устойчивостью. В 7,4% случаях были несовпадения результатов при определении лекарственной чувствительности двумя методами.
В основе расхождения полученных результатов могут быть следующие причины:
- с помощью биологических микрочипов можно выявить наиболее часто встречающиеся мутации. Новые мутации, которые могут появиться в изучаемых и не изучаемых кодонах исследованных генов на чипах выявить нельзя. В частности, как показало исследование методом SSCP (см. ниже) мутация в одном из образцов ДНК микобактерий, который был определен бактериологическими методами как резистентный к изониазиду, а с помощью «ТБ-БИОЧИП» как чувствительный, была локализована в гене kasA, поэтому ее не удалось выявить;
- из литературы известно, что в популяции Mycobacterium tuberculosis больного могут присутствовать микобактерии с различной чувствительностью к противотуберкулезным препаратам [53];
- рост некоторых микобактерий, выше в присутствии противотуберкулезных препаратов [54];
- кроме того, согласно некоторым литературным данным, Mycobacterium tuberculosis с большим количеством мутаций могут обладать меньшей жизнеспособностью [54].
В данной ситуации, скорее всего, Mycobacterium tuberculosis, устойчивых к рифампицину и изониазиду, оказалось в процентном соотношении меньше, чем резистентных к одному из данных препаратов и при росте с противотуберкулезными препаратами количество последних превалировало над количеством микобактерий с множественной лекарственной устойчивостью, поэтому «ТБ-БИОЧИП» их и выявляет.
Особый интерес представляют данные, когда в респираторном образце (один случай) или культуре (два случая) с помощью чипа выявляли Mycobacterium tuberculosis с множественной лекарственной устойчивостью, а бактериологическими методами обнаруживали микобактерии, устойчивые только к одному из препаратов. По всей вероятности, микобактерии с множественной лекарственной устойчивостью частично погибли и поэтому при исследовании культуры, выросшей на среде Ле-венштейна-Иенсена, с помощью биочипов их не выявили.
Таким образом, применение биологических микрочипов помогает значительно сократить время анализа, определить лекарственную чувствительность Mycobacterium tuberculosis в мокроте и определить лекарственную чувствительность в штаммах, которые могут не вырасти на среде Левенштейна-Йенсена.
Согласно литературным данным, в 2003 году, в Москве у больных с впервые выявленным туберкулезом количество штаммов, обладающих множественной лекарственной устойчивостью, составило 7,6%. Среди контингента больных с хроническим течением туберкулеза ее уровень достигал 20% [17]. Таким образом, проблема максимально быстрого и специфического выявления штаммов микобактерий с множественной лекарственной устойчивостью у больных туберкулезом является весьма важной.
Нами было проанализировано 68 респираторных образцов и культур микобактерий, полученных от 55 больных с впервые выявленным туберкулезом легких.
Изучение множественной лекарственной устойчивости Mycobacterium tuberculosis, выделенных от больных с впервые выявленным туберкулезом легких показало, что среди штаммов преобладали чувствительные — 77,9%. Mycobacterium tuberculosis, устойчивые к изониазиду выявили в 11,8% случаев. В тоже время, микобактерии с множественной лекарственной устойчивостью были обнаружены в 10,3%. Резистентных к рифампицину штаммов выявлено не было.
Известно, что устойчивость к рифампицину в 95% случаев связана с мутациями в гене гроВ, кодирующем В-субъединицу РНК-полимеразы Mycobacterium tuberculosis [40, 42, 105]. В настоящее время известно более 40 мутаций в этом гене, обусловливающих резистентность к рифампицину. В основном они сосредоточены в коротком сегменте гена гроВ, состоящем из 81 основания и кодирующем аминокислоты 507-533 [113]. Примерно 4% штаммов не имеют мутаций в этом сегменте [1]
Резистентность к изониазиду обусловливается мутациями в четырех, основных генах: katG, inhA, oxyR-ahpC и kasA. Мутации в гене katG встречаются в 50-79% устойчивых к изониазиду штаммов возбудителя, по данным М. Stoecle и соавт. (1993) [131] и более чем в 90%, по данным X. Chen и соавт. (2005) [51]. Устойчивость к изониазиду благодаря мутациям в гене inhA, возникает в 10-20% случаев. Мутации в межгенной области генов ahpC и oxyR встречаются, приблизительно в 10% резистентных к изониазиду штаммах [25], и являются компенсаторной реакцией на снижение каталазно-пероксидазной активности, контролируемой генами katG и inhA. [124]. Мутации в гене kasA характерны для 4-16,8% штаммов, имеющих резистентность к изониазиду.
По литературным данным, определение лекарственной чувствительности Mycobacterium tuberculosis одновременно к рифампицину и изониазиду проводили, как правило, по генам гроВ и katG, причем изучали кодоны 531 и 315, в которых мутации встречаются наиболее часто, хотя имеются исследования по выявлению мутаций, ответственных за резистентность к данным противотуберкулезным препаратам и в других кодонах [51, 92, 113]. Что касается географического анализа устойчивости к рифампицину, то на Филиппинах она определяется в 531 и 510 кодонах гена гроВ, в Кении в 526 и 531 кодонах [62, 63, 75], в Индии в 531, 530, 511 и 514 кодонах [132]. Таким образом, изучение мутаций в 531 кодоне гена гроВ и 315 кодоне гена katG оправданы, так как они чаще всего встречаются в штаммах микобактерий, полученных от больных туберкулезом в разных странах.
Исследования, проведенные нами в Московском научно-практическом центре борьбы с туберкулезом по анализу мутаций в ДНК Mycobacterium tuberculosis у больных с впервые выявленным туберкулезом легких в изучаемых генах, показали следующее. Микобактерии с мутациями во всех четырех изучаемых генах не обнаружено. В трех генах мутации отмечены только в двух штаммах (причем оба обладали множественной лекарственной устойчивостью), в двух генах - в шести штаммах, причем пять из них обладали множественной лекарственной устойчивостью и один являлся резистентным к изониазиду. В семи случаях были выявлены штаммы Mycobacterium tuberculosis резистентные к изониазиду, с мутацией только в одном гене.
Было определено 15 штаммов с разным генотипом по исследованным генам. Как правило, встречались мутации в 531 кодоне гена гроВ и в 315 кодоне гена katG. Таким образом, сочетание мутаций в двух генах соответствует профилю мутаций, как правило, выявляемых в штаммах микобактерий исследователями из различных стран. Имеются штаммы резистентные к изониазиду по гену inhA (2 из 15) , которые очень редко определялись исследователями ранее. И, как мы отмечали ранее, у больных с впервые выявленным туберкулезом легких нами не было обнаружено резистентных к рифампицину Mycobacterium tuberculosis.
У больных с хроническим течением заболевания всего выявлено 16 чувствительных к изониазиду и рифампицину штаммов возбудителя, что составляет 9,1% от общего количества исследованных штаммов, и 159 резистентных штаммов (90,9%). Выявили 33 (18,9%) штамма, резистентных к одному из препаратов. Восемь из них (4,6%) обладали устойчивостью к рифампицину и 25 (14,3%) были резистентны к изониазиду. Чаще всего встречались штаммы с множественной лекарственной устойчивостью - их 126 (72,0%). Мутации во всех четырех генах не были обнаружены ни в одном случае. Мутации в трех генах обнаружены в 25 (14,3%) исследованных штаммах. В двух генах - в 112 штаммах (64,0%), причем 101 из них были с множественной лекарственной устойчивостью и 11 являлись устойчивыми к изониазиду. Мутацию в одном гене имели 14 резистентных к изониазиду штаммов и 8 - резистентных к рифампицину.
У микобактерий, резистентных к одному из препаратов, выявлено 12 вариантов мутаций. Все штаммы устойчивые к рифампицину имели замену Ser на Leu в 531 кодоне гена гроВ. Поскольку резистентность к изониазиду определяли по четырем генам, вариабельность мутаций была выше. В 5 случаях (3,1%) встречалась мутация только в гене katG (315 кодон, замена Ser на Thr), в 6 (4%) случаях данная замена сочеталась с мутацией в гене inhA (Т15), и в одном (0,6%) - с мутацией в гене inhA
А8). Также наблюдалась замена в гене katG (Ser315>Asn). В одном случае (0,6%) выявлена только она и в двух (1,3%) - в сочетании с мутацией в гене inhA (Т15). В одном (0,6%) штамме также обнаружена замена в гене katG (Trp328>Cys). Обнаружена мутация в гене inhA (G16) в одном штамме (0,6%). Также в одном случае встретилось сочетание мутаций в гене inhA (Т15+Т8) с мутацией в генах oxyR-ahpC (Т10). Мутации только в генах oxyR-ahpC были расположены в 6 (0,6%) и 12 (0,6%) положениях.
Таким образом, для штаммов, полученных от больных с впервые выявленным туберкулезом легких, характерной особенностью являлось относительно малое содержание микобактерий с множественной лекарственной устойчивостью (10,4% случаев), небольшое разнообразие сочетания мутаций по исследованным нами генам - 6 вариантов. Выявлены штаммы, которые резистентны к изониазиду только по inhA гену.
У пациентов, с хроническим течением процесса, наблюдалось большое разнообразие мутаций в ДНК микобактерий с множественной лекарственной устойчивостью (всего 22 типа). Чаще всего встречалось сочетание мутаций в гене гроВ (531 кодон, замена Ser на Leu) и гене katG (315 кодон, замена Ser на Thr), что вполне соответствует литературным данным [51, 114]. Оно выявлено в 69 (54,8%) исследованных штаммах. На втором месте сочетание мутаций в генах гроВ (Ser531>Leu), katG (Ser315>Thr) и гене inhA (Т15). Оно встречалось в 10 (7,9%) случаях. В одном случае (0,8%) выявлена двойная мутация в гене гроВ в 531 (Ser53 l>Leu) и 533 кодонах (Leu533> Pro) и получилось сочетание гроВ (Ser531>Leu), (Leu533>Pro), katG (Ser315>Thr) и inhA (T15) и в одном - встречается сочетание гроВ (Ser531>Leu), katG (Ser315>Thr) и inhA (Т8).
Также в семи (5,5%) случаях наблюдалось сочетание замены в гене гроВ (Ser531>Leu) и мутации в гене inhA (Т15), в одном случае (0,8%) данная замена сочетается с мутацией в гене inhA (G16) и в одном (0,8%) - с мутацией в генах oxyR-ahpC (Т10).
В шести (4,8%) случаях наблюдается сочетание мутаций в генах rpoB (Hys526>Asp) и katG (Ser315>Thr). В двух случаях (1,6%) к данному сочетанию мутаций добавилась еще одна - в гене inhA (Т15). Также в двух случаях (1,6%) наблюдалось сочетание мутаций в генах гроВ (Hys526>Leu), katG (Ser315>Thr) и inhA (Т15), в трех (2,3%) - в гроВ (Hys526>Tyr), katG (Ser315>Thr) и в двух (1,6%) - в гроВ (Hys526>Tyr), katG (Ser315>Thr) и inhA (Т15). В одном случае (0,8%) наблюдалось редкое сочетание мутаций в генах гроВ (Hys526>Tyr) и inhA (Т9). Также в одном штамме (0,8%) выявлены две мутации в гене гроВ (Hys526>Asn и Leu533>Pro) и одна мутация в гене inhA (Т10).
В шести случаях (4,8%) обнаружено сочетание мутаций в генах гроВ (Leu533>Pro) и katG (Ser315>Thr) и в четырех случаях (3,2%) к данному сочетанию добавляется мутация в гене inhA (Т15).
Встречались и другие редкие сочетания мутаций. Так, обнаружены замены в генах гроВ (Asp516>Tyr) и katG (Ser315>Thr) в двух случаях (1,6%), а в одном (0,8%) - в генах гроВ (Asp516>Tyr), katG (Ser315>Thr) и inhA (A8). В двух штаммах наблюдалось сочетание мутаций в генах гроВ (Asp516>Val) и katG (Ser315>Thr) и в одном штамме эти замены сочетались с мутацией в гене inhA (С 15). В двух случаях (1,6%) встречалось сочетание мутаций в генах гроВ (Leu511>Рго), katG (Ser315>Thr) и inhA (Т15) и в одном наблюдались две замены в гене гроВ (Leu51 l>Arg и Asp516>Val), гене katG (Ser315>Thr) и в гене inhA (Т15). Наиболее характерными являлись мутации в 531, 526, 516, 533 кодонах гроВ гена. Для штаммов, устойчивых к изониазиду - в 315 кодоне гена katG, Т15 в гене inhA, а также А6 и А8 в генах oxyR-ahpC.
В 315 кодоне гена katG выявлена замена не только Ser на Thr, но и на другие аминокислоты.
Способность «ТБ-БИОЧИП» детектировать большое количество мутаций, в том числе и редких, является одним из ценных качеств данной тест-системы, так как позволяет выявлять резистентные микобакте-рии с большей точностью и надежностью по сравнению с другими методами. Таким образом, у больных с хроническим течением процесса выявлено 22 варианта сочетания мутаций в генах микобактерий с множественной лекарственной устойчивостью. Кроме того, с помощью тест-системы «ТБ-БИОЧИП» можно выявить мутации и в штаммах, устойчивых только к рифампицину или изониазиду.
Основной профиль мутаций для генов гроВ и katG следующий: 531 и 315 кодоны - 64,3%, 526 и 315 кодоны - 11,9% и 516 и 315 кодоны -3,2%. Особый интерес представляют сочетания мутаций в генах гроВ и inhA - 6,3%, а также гроВ и oxyR-ahpC - 0,8%. Эти сочетания описаны нами впервые.
Ген kasA, кодирует редуктазу 6-кетоацил-ацилпереносящего белка, которая в комплексе с ферментом AspM, являющимся белком-переносчиком ацильных радикалов, участвует в синтезе миколовых кислот, входящих в состав клеточной стенки Mycobacterium tuberculosis [89, 113]. Литературные данные говорят о том, что роль данного гена в резистентности к изониазиду спорна, т.к. мутации в данном гене встречались как в чувствительных так и резистентных к изониазиду штаммах. Однако ряд проведенных исследований [113, 129] показал, что некоторые мутации, в частности замены в 269 кодоне приводят к высокому уровню резистентности к препарату. Частота встречаемости мутаций в данном гене колеблется от 1-2% до 10-16,8% [24, 51].
С помощью метода SSCP нами было исследовано 119 проб ДНК микобактерий, ранее проанализированных с помощью тест-системы «ТБ-БИОЧИП», полученных от 116 больных с различными формами туберкулеза.
От 55 больных с впервые выявленным туберкулезом было получено 63 штамма, и, согласно результатам исследования, мутация в гене kasA была обнаружена в трех из них (4,8%). Во всех случаях была выявлена замена в 269 кодоне гена kasA. В одном - Gln269>Arg и в двух -Gln269>Ser. Сопоставление полученных результатов с данными культу-рального исследования тех же штаммов методами абсолютных концентраций и биологических микрочипов выявило, что в одном из штаммов резистентность к изониазиду обусловливалась мутацией только в данном гене, а именно заменой Gln269>Arg.
Что касается двух других штаммов, то оба они при исследовании бактериологическими методами и на тест-системе «ТБ-БИОЧИП» были определены как множественно лекарственно устойчивые, причем в одном штамме, при исследовании обоими методами, была определена резистентность по четырем генам: гроВ (Ser531>Leu), katG (Ser315>Thr), inhA (T15) и kasA (Gln269>Ser), что является большой редкостью, а в другом - по трем: гроВ (Ser531>Leu), katG (Ser315>Thr), kasA (Gln269>Ser).
Также исследовали 56 проб ДНК микобактерий, полученных от больных с хроническим течением туберкулеза. Здесь уровень резистентности по данному гену составил 3,7%. Во всех случаях это была замена Gin на Arg в 269 кодоне гена kasA.
Мутаций только в гене kasA у больных с хроническим течением процесса не выявлено. Интересно, что в одном из устойчивых к изониазиду штаммов удалось выявить мутации в трех генах: katG -Ser315>Thr, inhA - А8 и kasA - Gln269>Arg. Данное сочетание мутаций является редким.
Таким образом, изучение мутаций в гене kasA не внесло особенного разнообразия в типы сочетания мутаций. Однако факт наличия мутации только в этом гене Mycobacterium tuberculosis, выделенных от одного больного, и то, что есть штаммы, у которых мутация в этом гене является четвертой, возможно, могут иметь значение для определения чувствительности больного к противотуберкулезным препаратам, и назначения наиболее эффективного лечения.
Библиография Диссертация по биологии, кандидата биологических наук, Галкина, Ксения Юрьевна, Москва
1. Бастиан И., Портлас Ф. Туберкулез с множественной лекарственной устойчивостью.// М.: Медицина и жизнь 2003. - 368с.
2. Богадельникова И.В., Перельман М.И. Туберкулез на пороге третьего тысячелетия.// Врач 1997. - № 7 - с. 2-6.
3. Вишневский Б.И., Вишневская Е.Б. Лекарственная устойчивость микобактерий туберкулеза на северо-западе России.// Пробл. туб. 2003. - №5. - с.42-44.
4. Генерозов Э.В., Альтшулер М.Л., Говорун В.М., и др. Детекция и характеристика мутаций в гро В гене резистентных к рифампицину клинических штаммов Mycobacterium tuberculosis.ll Пробл. туб. 1999. -№2. - с.39-42.
5. Генерозов Э.В., Акопиан Т.А., Владимирский М.А. Прямой генетический анализ резистентных к рифампицину изолятов М. tuberculosis в образцах мокроты.// Пробл. туб. 2003. - №4. - с.49-52.
6. Горбунова В.Н., Баранов B.C. Введение в молекулярную диагностику и генотерапию наследственных заболеваний.// Санкт-Петербург. -Спец. литература 1997. - 286с.
7. Дорожкова И.Р., Попов С.А., Медведева И.М. Мониторинг лекарственной устойчивости возбудителя туберкулеза в России за 1979-1998 гг.// Пробл. туб. 2000.-№5.-с.15-18.
8. Дорожкова И.Р., Бадлеева М.В., Скотникова О.И., и др. Состав и лекарственная чувствительность микобактериальной популяции у больных с подозрением на туберкулез.// Пробл. туб. 2005. - №8. - с.36-38.
9. Иртуганова О.А., Смирнова Н.С. Культуральное определение чувствительности микобактерий туберкулеза к противотуберкулезным препаратам.// В сб.: Лабораторная диагностика туберкулеза. 2001. -с.39-50.
10. Иртуганова О.А., Смирнова Н.С., Слогоцкая Л.В., и др. Автоматизированные методы культурального определения Mycobacterium tuberculosis на жидких средах.// Пробл. туб. 2001. - № 3. - с. 53-55.
11. Липин М.Ю. Генетические механизмы устойчивости М. tuberculosis.! I автореф. дисс. канд. биол. наук. Оболенск. 2004. - 16с.
12. Литвинов В.И., Сельцовский П.П„ Сон И.М., и др. Туберкулез в Москве.// Москва. 2004. - 78 с.
13. Майерс Р., Шеффилд В., Кокс Д. Обнаружение единичных нук-леотидных замен в ДНК: расщепление РНКазой и денатурирующий градиентный гель-электрофорез.// В кн.: Анализ генома. Методы. - М.: Мир. - 1990.-с. 123-175.
14. Михайлович В.М., Лапа С.А., Грядунов Д.А., и др. Использование методов гибридизации и ПЦР на специализированном ТБ-микрочипе для обнаружения рифампицин-резистентных штаммов М. tuberculosis.//Бюлл. экспер. биол. и мед. -2001. т. 131. - с. 112-127.
15. Патрушев Л.И. Экспрессия генов.// М.: Наука. 2000. - 527с.
16. Перельман М.И., Хомяков Ю.Н., Киселев В.Н., и др. Молекулярная медицина и лечение туберкулеза.// Пробл. туб. 2001.- №5 - с.5-7.
17. Скотникова О.И., Заседателев А.С., Михайлович В.М., и др. Методы выявления мутаций и результаты их использования.// В сб.: Лабораторная диагностика туберкулеза. М.: 2001. с.91-112.
18. Скотникова О.И., Михайлович В.М., Носова Е. Ю., и др. Новые технологии определения лекарственной чувствительности Mycobacterium tuberculosis.// Пробл. туб. 2004. - №6. - с.40-42.
19. Скотникова О.И., Соболев А.Ю., Исаева E.JI. Определение чувствительности М. tuberculosis к лекарственным препаратам с помощью молекулярно-генетических методов.// В сб.: Лабораторная диагностика туберкулеза. М.: 2001. - с.87-90.
20. Скрягина Е.М., Залуцкая О.М., Рот А., и др. Тестирование лекарственной чувствительности микобактерий туберкулеза с использованием различных методов.// Пробл. туб. 2001. - №5. - с.43-45.
21. Хоменко А.Г., Голышевская В.И., Корнеев М.В., и др. Распространенность и микробиологическая характеристика штаммов Mycobacterium tuberculosis с множественной лекарственной устойчивостью.// В сб.: Туберкулез. 1999. - № 1.-е. 1-6.
22. Чернушенко Е.Ф., Клименко М.Т. Микробиологическая диагностика туберкулеза.// В сб.: Туберкулез. 1999. - № 3. - с. 1-5.
23. Шилова М.В. Туберкулез в России в конце XX века.// Пробл. туб. 2001. - №5. - с.8-13.
24. Ahmad S., Mokaddas Е. Contribution of AGC to ACC and other mutations at codon 315 of the kat G gene in isoniazid-resistant Mycobacterium tuberculosis isolates from the Middle East.// Int. J. Antimicrob. Agents and Chemother. 2004. - v.23. - p.473-479.
25. Albert H., Stupple M., Wilson S. et al. Rifampicin susceptibility results of Mycobacterium tuberculosis cultures in 48 hours using FAST plaque TB-Rif.// Int. J. Tuberc. Lung Dis. 1999. - v.3. - Suppl.l. - p.130-135.
26. Bakayev V., Bahrmand A., Samar G. CCM analysis of heterodu-plexes of rifampin-resistant Mycobacterium tuberculosis./I Int. J. Tuberc. Lung Dis. 1999. - v.3. - Suppl. 1. - p.123-124.
27. Banerjee A., Sugantino M., Sacchettini J., Jacobs WR. The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance.// Microbiol. -1998. v.144. - p.2697-2707.
28. Bertand Т., Eady N., Jones J., et al. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase.// J. Biol. Chem. 2004. - v.37. -p.38991-38999.
29. Blanchard J.S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis.!7 Annu. Rev. Biochem. 1996. - v.65. - p.215-239.
30. Bloch A., Cauthen G., Onorato I. Nationwide survey of drug-resistant tuberculosis in the United States.// JAMA. 1994. - v.271. - p.665-671.
31. Brunello F., Favari F., Fontana R. Comparison of the MB/BacT and BACTEC 460 ТВ systems for recovery of mycobacteria from various clinical specimens.//J. Clin. Microbiol. 1999. - v.37. - p.1206-1209.
32. Brunello F., Fontana R. Reliability of the MB/BacT system for testing susceptibility of Mycobacterium tuberculosis complex isolates to antituberculosis drugs.//J. Clin. Microbiol. 2000. - v.38. - p.872-873.
33. Canetti G., Froman S., Grossery J., et al. Mycobacteria: laboratory methods for testing drug sensitivity and resistance.// Bull. World Health Org. 1963.- v.29. - p.565-578.
34. Canetti G. Present aspects of bacterial resistance in tuberculosis// Am. Rev. Respir. Dis. 1965. - v.92. - p.687-703.
35. Canetti G, Fox W, Khomenko A., et al. Advances in techniques of testing mycobacterial drug sensitivity and the use of sensitivity tests in tuberculosis control programs.// Bull. World Health Org. 1969 - v.41 - p.21-43.
36. Cangelosi G., Brabant W., Britschgi Т., Wallis C. Detection of rifampin and ciprofloxacin-resistant Mycobacterium tuberculosis by using species-specific assays for precursor rRNA.// Antimicrob. Agents Chemother. -1996.-v.40.-p.l790-1795.
37. Chakrabarti P. Drug targets and drug resistance in mycobacteria.// Proc. Nat. Acad. Sci. (India, B). 1997. - v.61. - p.169-179.
38. Chaulet P., Bonlahbal F., Crosset J. Surveillance of drug resistance for tuberculosis control: why and how?// Int. J. Tuberc. Lung Dis. 1995. -v.76. - p.487-492.
39. Cockerill F., Uhl J., Temesgen Z., et al. Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance.// J. Infect. Dis. 1995. - v. 171 -p.240-245.
40. Cohn D., Bustreo F., Raviglione M. Drug-resistant tuberculosis: review of the wordwide situation and the WHO/IUATLD global surveillance project.//J. Clin. Infect. Dis. 1997. - v.24. - p. 121-130.
41. Cole Т., Eisenach K.D., McMurray D., et al. Tuberculosis and tubercle bacillus.//ASM Press. Washington, DS. 2005. - 585p.
42. Cooksey R., Crawford J., Jacobs W., Shinnick T. A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase.// Antimicrob.Agents Chemother. -1993.-v.37.-p.l348-1352.
43. Davies J. Antibiotic resistance in mycobacteria.// Novartis Found. Symp. 1998. - v.79. - p.2-29.
44. Diaz-Infantes M., Ruiz-Serrano M., Martinez-Sanchez L. Ortega A. Evaluation of the MB/BacT Mycobacterium detection system for susceptibility testing of Mycobacterium tuberculosis J I J. Clin. Microbiol. 2000. - v.38.- p.1988-1989.
45. Essential components of a tuberculosis program: recommendations of the Advisory Council for the Elimination of Tuberculosis. MMWR. 1995.- v.44., №RR -11. - 13p.
46. Foddle R., Losekoot M. Mutation detection by denaturating gradient gel electrophoresis (DGGE).// Hum. Mutat. 1994. - v.3. - p.83-94.
47. Gingeras Т., Ghandour G., Wang E., et al. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays.// Genome Research. 1998. - v.8. -p.435-448.
48. Githui W., Meme H., Juma E., et al. Isolation of multidrug-resistant tuberculosis strains in patients from private and public health care facilities in Nairobi, Kenya.// Int. J. Tuberc. Lung Dis. 2004. - v.8. - p.837-841.
49. Githui W., Jordaan A., Juma E., et al. Identification of MDR-TB Bei-jing/W and other Mycobacterium tuberculosis genotypes in Nairobi, Kenya.// Int. J. Tuberc. Lung Dis. 2004. - v.8. - p.352-360.
50. Glavac D., Dean M. Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations.// Hum. Mutat. 1993. - v.2. - p.404-414.
51. Go M., Kapur V., Graham D., Musser J. Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure.// J. Bacteriol. 1996. -v.178. - p.3934-3938.
52. Grompe M. The rapid detection of unknown mutations in nucleic acids.//Nature Genet. 1993. - v.5. - p.l 11-116.
53. Guerrero C., Stockmann L., Marchesi F., et al. Evaluation of the rpoB gene in rifampicin-susceptible and -resistant Mycobacterium avium and Mycobacterium intracellulare.il J. Antimicrob. Chemother. 1994. - v.33. -p.661-663.
54. Hauer В., Serke M., Loddenkemper R. Various polyresistant strains of Mycobacterium tuberculosis in one patient (case report).// Int. J. Tuberc. Lung Dis. 1999. - v.3. - p. 122-123.
55. Heifets L. Rapid automated methods (BACTEC system) in clinical mycobacteriology.// Sem. Respir. Infections. 1986. - v.l. - p.242-249
56. Heifets L. Antituberculosis drugs: antimicrobial activity in vitro. In L.B. Heifets (ed.), Drug susceptibility in the chemotherapy of mycobacterial infections, 1st ed. CRC Press, Boca Raton, Fla. 1991. - p. 14-57.
57. Heifets L. Drug susceptibility in the chemotherapy of mycobacterial infections. CRC Press, Boca Raton 1991. Chapter 3, p.89-121
58. Heifets L. Drug susceptibility testing in mycobacteriology.// Clin. Lab. Med. 1996. - v.16. - p.641-656.
59. Heifets L, Cangelosi G. Drug susceptibility testing of Mycobacterium tuberculosis a neglected problem at the turn of the century.// Int. J. Tuberc. Lung Dis. - 1999. - v.3. - p.564-581.
60. Heifets L., Linder Т., Sanchez Т., et al. Two liquid medium systems, Mycobacteria Growth Indicator Tube and MB Redox Tube, for Mycobacterium tuberculosis isolation from sputum specimens.// J. Clin. Microbiol. -2000.-v.38.- p.1227-1230.
61. Herrera L., Valverde A., Saiz P., et al. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical strains isolated in the Philippines.// Int. J. Antimicrob. Agents Chemother. 2004. - v.23. - p.572-576.
62. Heym В., Honore N., Truffot-Pernot C. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study.// Lancet. 1994. - v.344. - p.293-298.
63. Heym В., Alzari P., Honore N., Cole S. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis.I I Mol. Microbiol. 1995. - v.15. - p.235-245.
64. Hofling C., Pavan E., Giampaglia C., et al. Prevalence of katG Ser315 substitution and rpoB mutations in isoniazid-resistant Mycobacterium tuberculosis isolates from Brazil. // Int. J. Tuberc. Lung Dis. 2005. - v.9 -p.87-93.
65. Hunt J., Roberts G., Stockman L., et al. Detection of a genetic locus encoding resistance to rifampin in mycobacterial cultures and in clinical specimens.//Diagn. Microbiol. Infect. Dis. 1994. - v. 18. - p.219-227.
66. Iseman M., Madsen D. Drug-resistant tuberculosis.// Clin. Chest Med. 1989.- v.10. - p.341-353.
67. Iseman M.D. Evolution of drug-resistant tuberculosis: a tale of two species.// Proc. Natl. Acad. Sci. (USA). 1994. - v.91. - p.2428-2429.
68. Jacobs W., Barleta R., Udani R., et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reported phages.// Science 1993. - v.260. - p.819-821.
69. Jacobs R.F. Multiple drug-resistant tuberculosis.// Clin. Infect. Dis. -1994.-v.19.-p.l-8.
70. Jin D., Gross C. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance.// J. Mol. Biol. -1988. v.202. - p.45-58.
71. Kelley C. L., Rouse D. A., Morris S. L. Analysis of ahpC gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis J I Antimicrob. Agents Chemother. 1997. - v.41. - p.2057- 2058.
72. Kochi A., Vareldris В., Styblo K. Multidrug-resistant tuberculosis and its control.// Res. Microbiol. 1993. - v. 144. - p. 104-110.
73. Kremer L., Dover L., Morbidoni H., et al. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in Mycobacteria.// J. Biol. Chem. 2003. - v.278. - p.20547-20554.
74. Lambregts-van Weezenbeek C.S.B. Drug-resistant tuberculosis.// Eur. Respir. Mon. 1997. - v.4. -p.298-326.
75. Lee S., Tan K., Chew S., Snodgrass I. Multidrug-resistant tuberculosis.// Ann. Acad. Med. Singapore. 1995. - v.24. - p.442-446.
76. Lucat-Rodgers G.S., Wengenack N.L., Rusnack F., Rodgers K.R., Carbon monoxide adducts of KatG and KatG (Ser315Thr) as probes of the heme site and isoniazid binding.// Biochemistry. 1999. - v.40. - p.149-157.
77. Maiden M. Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria.// J. Clin. Infect. Dis. 1998. - v.27. - p. 12-20.
78. Marrakchi H., Laneelle G., Quemard A. InhA, a target of the antituberculosis drug of isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II.// Microbiol. 2000. - v. 146. - p.289-296.
79. McClatchy J. Susceptibility testing of mycobacteria.// Clin. Lab. Med. 1978.- v.13.-p.908-912.
80. McClure W.R., Cech C.L. On the mechanism of rifampicin inhibition of RNA synthesis.// J. Biol. Chem. 1978. - v.253. - p.8949-8956.
81. McDermott P., Walker R., White D. Antimicrobials: modes of action and mechanisms of resistance.// Int. J. Toxicol. 2003. - v.22 - p. 13 5-143.
82. Mduli K., Sherman D., Hickey M.J., et al. Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis .//J. Infec. Dis. 1994. - v.174. - p.1085-1090.
83. Mduli K., Slayden R., Zhu Y., et al. Inhibition of a Mycobacterium tuberculosis beta ketoacyl ACP sinthase by isoniazid.// Science 1998. -v.280. - p. 1607-1610.
84. Mildvan D. Predictors and outcome of multidrug-resistant tuberculosis.// Clin. Infect. Dis. 1995. - v. 21. - p. 1245-1252.
85. Miller L.P., Crawford J.T., Shinnick T.M. The rpoB gene of Mycobacterium tuberculosis.// Antimicrob. Agents. Chemother. 1994. - v.39. -p.2484-2489.
86. Mitchison D.A., Selcon J.B. The bactericidal activities of antituberculosis drugs.// Am. Rev. Tuberc. 1956. - v.74. - p. 116-123.
87. Moore M., Onorato I., McGray E., Castro A. Trends in drug-resistant tuberculosis in the United States, 1993-1996.// JAMA. 1997. -v.278. - p.833-837.
88. Musser J. Antimicrobial agent resistance in Mycobacteria: molecular genetic insights.// Clin. Microb. Rev. 1995. - v.8. - p.496-514.
89. Nachamkin I., Kang C., Weinstein M. Detection of resistance to isoniazid, rifampin and streptomycin in clinical isolates of Mycobacterium tuberculosis by molecular methods.// Clin. Infect. Dis. 1997. - v.24. - p.894-900.
90. National of Clinical Laboratory Standards: Antimycobacterial Susceptibility Testing for Mycobacterium tuberculosis.// Tentative standard. NCCLS Document M 24T. - 1995. - 44p.
91. Neu H. The crisis in antibiotic resistance.// Science 1992. - v.21. -p.1064-1073.
92. Ohno H, Koga H., Kohno S. et al. Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan.// Antimicrob. Agents Chemother. 1996. - v.40. - p. 1053-1056.
93. Orita M., Iwahana H., Kanazawa H., Sekya T. Detection of polymorphism of human DNA by gel electrophoresis as single cell conformation polymorphism.// Proc. Natl. Acad. Sci.(USA). 1989. - v.86. - p.2766-2770.
94. Quemard A., Sacchettini J., Dessen A., et al. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis.// Biochemistry- 1995. v.4. - p.8235-8241.
95. Ramaswamy S., Musser J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update.// Tubercle Lung Dis. 1998. - v.79. - p.3-29.
96. Rattan A., Awdhesh K., Nishat A. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives.// Emerging Infect. Dis. 1998. -v.4.-p. 195-209.
97. Rawat R., Whitty A., Tonge P. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoil reductase: adduct affinity and drug resistanse.// Biochemistry 2003. - v. 100. - p.13881-13886.
98. Roberts G., Goodman N., Heifets L., et al. Evaluation of the ВАСТЕС radiometric method for recovery of mycobacteria and drug susceptibility testing of M. tuberculosis.!7 J. Clin. Microbiol. 1983. - v.8. - p.689-696.
99. Rohner P., Ninet В., Metral C., et al. Evaluation of the MB/BacT system and comparison to the ВАСТЕС 460 system and solid media for isolation of mycobacteria from clinical specimens.// J. Clin. Microbiol. 1997. -v.35. - p.3127-3131.
100. Rouse D.A., Morris S.L. Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bovis.ll Infect. Im-mun. 1995. - v.63. - p.1427-1433.
101. Rouse D., Li Z., Bai G., Morris S. Characterization of the katG and inhA genes of isoniazid resistant clinical isolates of Mycobacterium tuberculosis.// Antimicrob. Agents Chemother. 1998. - v.139. - p.2472-2477.
102. Rozwarski D., Grant G., Barton D., et al. Modification of the NAD-H of the isoniazid target (InhA) from Mycobacterium tuberculosis./7 Mol. Diagn. 1998. - v.279. - p.98-102.
103. Rusch-Gerdes S, Domehl C., Nardi G., et al. Multicenter evaluation of the Mycobacteria Growth Indicator Tube for testing susceptibility of Mycobacterium tuberculosis to first-line drugs.// J. Clin. Microbiol. 1999. -v.37. - p.45-48.
104. Saint-Joanis В., Souchon H., Wilming M., et al. Use of site-direct mutagenesis to probe the structure, function and isoniazid activation of thecatalase/peroxidase, KatG, from Mycobacterium tuberculosis.ll Biochemistry- 1999. v.38. - p.753-760.
105. Sharma S., Mohan A. Multidrug-resistant tuberculosis.// Indian J. Med. Res. 2004. - v. 120. - p.354-376.
106. Sherman D., Mduli K., Hickey M., et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis.il Science -1996. v.14. - p.1641-1643.
107. Shinder D., Cauthen G., Farer L., et al. Drug-resistant tuberculosis.//Amer. Rev. Resp. Dis. 1991. - v.141. - Pt. 1. - p.732-732.
108. Shinnik T. Molecular approach to the diagnosis of tuberculosis.// Tuberculosis: pathogenesis, protection and control. ASM press. Washington.- 1994. Chapter 30. - p.517-530.
109. Siddiqi S., Libonati J., Middlebrook G. Evaluation of rapid radiometric method for drug susceptibility testing of M. tuberculosis.il J. Clin. My-crobiol. 1981. - v.13. - p.908-912.
110. Singh R., Wiseman В., Deemagarn Т., et al. Catalase-peroxidases (KatG) exhibit NADH oxidase activity.// J. Biol. Chem. 2004. - v. 279. - p. 43098-43106.
111. Slayden R.A., Barry C.E. The role of KasA in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tubercuiosis.il Tuberculosis. 2002. - v.82. - p. 149-160.
112. Spratt B. Resistance to antibiotics mediated by target alterations.// Science -1994. v.264. - p.388-393.
113. Stoecle M., Guan L., Riegler N., et al. Catalase-peroxidase gene sequences in isoniazid-sensitive and -resistant strains of Mycobacterium tuberculosis from New York City.// J. Infect. Dis. 1993. - v.168. - p.1063-1065.
114. Subhash H., Ashwin I., Mukundan U., et al. Drug resistant tuberculosis in diabetes mellitus: a retrospective study from South India.// Trop. Doct. 2003. - v.33. - p.154-156.
115. Takayama К., Wang L., David H. Effect of isoniazid on the in vivo mycolic acids synthesis, cell growth, and viability of Mycobacterium tuberculosis.II Antimicrob. Agents Chemother. 1972. - v. 2. - p. 29-35.
116. Taniguchi H., Aramaki H., Nikaido Y. Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis.il FEMS Microbiol. Lett. 1996. - v. 144. - p.103-108.
117. Teleneti A. Genetics of drug resistance in tuberculosis.// Clin. Chest Med. 1997.- v.18. - p.55-64.
118. Teleneti A., Imborden P., Marchesi F., et al. Detection of rifam-picin-resistance mutations in Mycobacterium tuberculosis.// Lancet 1993. -v.341. - p.647- 650.
119. Vilcheze C., Weisbrod Т., Chen В., et al. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria.// Antimicrob. Agents Chemother. 2005. - v.52. - p.708-720.
120. Wang J., Burger R., Drlica K. Role of superoxide in catalase-peroxidase-mediated isoniazid action against mycobacteria.// Antimicrob Agents Chemother. 1998. - v.42 -p.709-711.
121. Watterson S., Wilson S., Yates M., Drobniewski F. Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis.l'/J. Clin. Microbiol. 1998. - v.36. - p.1969-1973.
122. Wei C., Lei В., Musser J., Tu S. Izoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in InhA inhibitor production.// Am. Soc. Microbiol. 2003. - v.47. -p.670-675.
123. Wengenack N.L., Uhl J.R., St Amand A.L., et al. Recombinant Mycobacterium tuberculosis KatG (S315T) is a competent catalase-peroxidase with reduse activity toward isoniazid.// J. Infec. Dis. 1997. - v. 176. - p.727-722.
124. Wengenack N.L., Todorovic S., Yu L., Rusnak F. Evidence of differential binding of isoniazid in Mycobacterium tuberculosis KatG and isoni-azid-resistant mutant KatG (S315T).// Biochemistry 1998. - v.37. -p.15825-15834.
125. Williams D., Waguesrpack C., Eisenach K., et al. Characterization of rifampin resistance in pathogenic mycobacteria.// Antimicrob. Agents Chemother. -1994. v.38. - p.2380-2386.
126. Williams D., Limbers C., Spring L. PCR-heteroduplex detection of rifampin-resistant Mycobacterium tuberculosis.l I In: PCR protocols for emerging infectious diseases. D.Persing (ed.). 1996. - p. 122-129.
127. Wilson Т., Collins D. ahpC, a gene involved in isoniazid resistance of Mycobacterium tuberculosis complex.// Mol. Microbiol. 1996. - v. 19. -p.1925-1934.
128. Winder F.G., Collins P.B. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis.l/ J. Gen. Microbiol. 1970. -v.63. - p.41-48.
129. The World Health Report, 1998.// Life in the 21-st century. A vision for all. Geneva. - 1998. - 54 p.
130. Wu X., Zhang J., Zhuang Y., et al. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis clinical isolates.// J. Chin. Med. -1999.-v.112,- p.524-528.
131. Yeh R., Hopewell P., Daley C. Simultaneous infection with two strains of Mycobacterium tuberculosis identified by restriction fragment length polymorphism analysis.// Int. J. Tuberc. Lung Dis. 1999. - v.3. -p.537-539.
132. Zhao X., Girotto S., Yu S., Magliozo R. Evidence for radical formation at Tyr353 in Mycobacterium tuberculosis catalase-peroxidase (KatG).// J. Biol. Chem. 2004. - v.279. - p.7606-7612.
133. Zwolska Z., Augustynowicz-Kopec E., Klatt M. New automated, non-radiometric system for the culture of mycobacteria MB/BacT.// Int. J. Tuberc. Lung Dis. 1999. - v.3. - Suppl.l. - 112 p.
- Галкина, Ксения Юрьевна
- кандидата биологических наук
- Москва, 2006
- ВАК 03.00.07
- Выявление генетического разнообразия Mycobacterium tuberculosis на территории стран СНГ
- Геномный полиморфизм Mycobacterium tuberculosis и его значение в эпидемическом процессе
- Молекулярно-генетическое изучение клинических штаммов Mycobacterium Tuberculosis
- Генетические механизмы лекарственной устойчивости Mycobacterium Tuberculosis
- Молекулярное типирование клинических штаммов Mycobacterium tuberculosis