Бесплатный автореферат и диссертация по биологии на тему
Экспрессия интегринов и пролиферативное поведение гладкомышечных клеток в онтогенезе аорты крысы
ВАК РФ 03.00.04, Биохимия
Автореферат диссертации по теме "Экспрессия интегринов и пролиферативное поведение гладкомышечных клеток в онтогенезе аорты крысы"
На правах рукописи 003454275
МАТВЕЕВА НАТАЛИЯ АЛЕКСЕЕВНА
ЭКСПРЕССИЯ ИНТЕГРИНОВ И ПРОЛИФЕРАТИВНОЕ ПОВЕДЕНИЕ ГЛАДКОМЫШЕЧНЫХ КЛЕТОК В ОНТОГЕНЕЗЕ АОРТЫ КРЫСЫ
03.00.04-биохимия 03.00.25 - гистология, цитология, клеточная биология
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук
О 5 ДЕН 2008
Москва - 2008
003454275
Работа выполнена в отделе биотехнологии Института экспериментальной кардиологии ФГУ «Российский Кардиологический Научно-Производственный Комплекс Росмедтехнологий»
Научный руководитель
кандидат биологических наук, доцент Рихард Вольдемарович Лацис
Официальные оппоненты
доктор биологических наук Татьяна Леонидовна Красникова
доктор медицинских наук, профессор, Татьяна Клеониковна Дубовая
Ведущая организация
Институт молекулярной биологии имени В.А.Энгельгардта РАН
Защита состоится 17 декабря 2008 года в 1330 часов на заседании Диссертационного совета Д 208.073.01 по присуждению ученой степени кандидата биологических наук в ФГУ «Российский Кардиологический Научно-Производственный Комплекс Росмедтехнологий» (121552 Москва, ул. 3-я Черепковская, д. 15а)
С диссертацией можно ознакомиться в библиотеке ФГУ РКНПК Росмедтехнологий. Автореферат разослан /¡3 ноября 2008 года
Ученый секретарь диссертационного совета, доктор медицинских наук
В.Е. Синицын
0Б1ЦАЯ ХАРАКТЕРИСТИКА РАКОТЫ Актуальность проблемы. Морфогенез сосудисюй системы включает миграцию, пролиферацию и дт]х|>сренцировку гладкомышечных клеток-предшссгвенников Причем, гладкомышечные клетки (ГМК) сосудисюй сгенки характеризуются целым рядом особенностей дифференцировки Прежде всего, >то два фенотипа эмбриональный или синте гичсский и взрослый или сокрагительный ГМК присуще сочетание активной пролиферации в эмбриональном и раннем постнаталыгом (п/н) периоде с продукцией большого числа матриксных белков и формированием ба ильной мембраны Затухание митотической активности и выход ГМК в состояние покоя не приводит к прекращению синтеза инеклеточною матрикса.
Характерной особенностью дифференцированной гладкомышечиой ткани сосудов является крайне слабое клеточное обновление Ксли ГМК в эмбриональном и раннем п/н периоде активно нролнферируют, то во взрослом сосуде если обновление и идет, ю преимущественно путем полиплоидизации ГМК
Хотя на сегодняшний день известно, что популяция ГМК крупных артериальных сосудов и в частности аорты гегерогенна но целому ряду признаков, в том числе и но срокам выхода и по углубленности клеток в покой, тем не менее, по-прежнему остаекя неизвестным механизм регуляции пролиферативпот поведения ГМК в ходе развития сосудистой стенки и посути остается неизвестным, из каких субпопуляций (по пролиферативному поведению) складывается взрослая стенка аорты. В связи с последним в литературе остро обсуждается вопрос, сохраняю1ся ли в общей популяции ГМК сосудов клетки со свойствами эмбриональных? Поэтому представляется актуальным исследование особенности пролиферативного поведения ГМК в онтогенезе магистральных сосудов и, в частности, аорты
Другой особенностью гладкомышечиой ткани сосудистой стенки является мощное развитие экстранеллюляриого матрикса (ЭЦМ), который вырабатывают сами ГМК Поэтому становится очевидной активная роль матрикса в формировании и функционировании как эмбриональных, так и взрослых сосудов Роль рецепторов к компонентам матрикса выполняют интегрины, которым но праву принадлежит одно из ведущих мест среди регуляторов морфогенеза ткани Как основные рецепторы к компонентам матрикса, интегрины являются главными участниками процессов адгезии и миграции клеток В последнее время было показано, что они участвуют в ремоделировании матрикса и могу1, как поддерживать, так и иигибировать пролиферацию различных типов клеток.
Исследование пролиферативного поведения ГМК ири формировании артериальных сосудов и остающиеся неизвестными механизмы его контроля заставляют искать класс
молекул, играющих ведущую роль в дифференцировке отдельных ГМК и в становлении и поддержании целостности сосудистой стенки Учитывая особенности строения стенки аорты и диффсренцировки ГМК, можно сказать, что в поведении этих клеток огромную роль играет межклеточный магрике Поэтому представляется актуальным исследовать экспрессию ишегринов, как основных рецепторов к компонентам матрикса, слагающего стенку аорты, и их возможное участие в пролиферативном поведении ГМК
Цель н шдачи работы. Целью настоящей работы являлась оценка репертуара экспрессированных на поверхности ГМК интегринов Р1- и рЗ-семейств, как важнейших рецепторов к компонентам внеклеточного матрикса, и сопоставление полученных результатов с особенностями пролиферативного поведения ГМК в ходе эмбрионального и п/н развития аорты крысы. Для достижения цели были поставлены следующие задачи
1 Методом «отложенной метки» с использованием т ими дина, меченого тритием (ЗН-тимидина) исследовать особенности пролиферативного поведения ГМК в морфогенезе аор[ы крысы с раннего п/н периода и до наступления половой зрелости (с 6-го дня до 4-х месяцев после рождения)
2 Методом иммуноцитохимии исследовать экспрессию интегринов [М- и (33-семейств на ГМК в онтогенезе аорты крысы в эмбриональном и п/н периоде
3. Методом иммуноцитохимии исследовать экспрессию основных компонентов магрикса в онтогенезе аоргм крысы в эмбриональном и п/н периоде
4. Сопоставить картину экспрессии ингегринов на поверхности ГМК с пролиферативным поведением ГМК в ходе онтогенеза аорты крысы.
Научная новизна и практическая значимость работы. В работе были детально исследованы особенности пролиферативного поведения ГМК в ходе развития аорты крысы Было показано, что с возрастом в стенке аорты крысы пролиферация ГМК сильно снижается. Проведенные исследования позволили выявить гетерогенность популяции ГМК грудного отдела аоргы крысы по пролиферагивному поведению На ранних этапах онтогенеза основная масса ГМК составляс1 «быстропролиферирующую» субпопуляцию, за счет которой происходит рост аорты Показано, что эта субпопуляция постепенно уменьшается за счет асинхронного выхода клеток в состояние покоя Другая субпопуляция - "медленная" -пролиферирует значительно медленнее и видимо пополняется клетками из первой субпопуляции. Характер пролиферативного поведения ГМК позволяет предположить, что выход в состояние покоя клеток из «быстрой» субпопуляции на ранних сроках развития, вероятнее всего, происходит в СН-периоде клеточного цикла. Выход в состояние покоя клеток из «медленной» субпопуляции происходит, скорее всего, асинхронно на разных стадиях клеточного цикла (предположительно в 01- и 02-периодах)
Полученные результаты также показывают, чю уже с момеша рождения в ходе формирования стенки аорты из популяции исходных J"MK обособляется незначительный процент клеток, покидающих клеточный цикл и уходящих в состояние покоя В работе представлено деюлыюе фенотипическое описание экспрессии целого ряда интегринов на ГМК практически от момента закладки аорты в эмбриональном периоде до момента ее полною (]х)рмирования в п/н периоде Проведено сравнение пролиферагивпого поведения ГМК и экспрессии исследованных шпегринов
Полученные результаш имеют несомненное теоретическое и практическое значение, так как расширяют современное представление о механизмах регуляции пролиферации и дифференцировки ГМК сосудистой стенки, что может иметь большое значение для понимания патогенетических механизмов некоюрых сердечно-сосудистых заболеваний, и в частности, атеросклероза
Апробации работы. Резулыаты работы были представлены на Международной научно-практической конференции «Мсдико-бжшлические науки для теоретической и клинической медицины», посвященной 45-летию МЬ'Ф 1'ГМУ (Москва, 2008), на VI Всероссийской конференции по патологии клетки (Москва, 2000), на III Международной конференции Скандинавского общества по изучению атеросклероза (Hiimlebaek, 1996) и на межлабораторном семинаре Института экспериментальной кардиологии ФГУ РКШ1К Росмедтехнологий (2008)
Публикации. По материалам диссертации опубликована 1 статья и 3 тезисных сообщения. 1 статья подготовлена к печати
Структура и объем работы. Диссертация состоит из разделов «Введение». «Обзор литературы», «Материалы и методы», «Результаты и обсуждение», «Заключение», «Выводы» и «Список литературы» Работа изложена на 140 страницах и включает 11 рисунков и 7 таблиц Список литературы содержит более 500 ссылок
МАТЕРИАЛЫ II МЕТОДЫ Получение эмбрионов крысы. В работе использованы 2-х месячные половозрелые крысы линии Wistar (виварий РКНПК Росмедтехнологий). Эмбрионы (с 11-го по 17-й день внутриутробного (в/у) развития) получали от животных с датированным сроком беременности. На каждую стадию брали по 3 - 5 эмбрионов от 3-х животных Целые эмбрионы фиксировали в смеси метанол-Карнуа и заключали в парафин
Изучение экспрессии интегринов н белков внеклеточного матрнкса. Пммуноцнтохнмнп. Иммуноцитохимическую реакцию проводили на парафиновых срезах толщиной 5-7 мкм Антитела, использованные в работе, представлены в таблице 1 Вторые антитела, для мышиных моноклональных антител использовали меченые пероксидазой
поликлональные кроличьи антитела против иммуноглобулинов мыши (Sigma), для ноликлональных кроличьих антител использовали меченные пероксидазой козьи поликлональные антитела против иммуноглобулинов кролика (Sigma)
Таблица 1 «Антитела, использованные в работе»
Антитело Антнген Характеристика и источник антител
анти-Р-актин ß-актин Мышиные моноклональные (Sigma)
airin-SM-м иозин SM-миозин Мышиные моноклональные (Sigma)
aHTH-a-SM-aKTHii a-SM-актин Мышиные моноклональные (Sigma)
анти-Col I коллаген I типа Мышиные моноклональные (Sigma)
анти-Col III коллаген III типа Мышиные моноклональные (Sigma)
анти-Col IV коллаген IV типа Мышиные моноклональные (Sigma)
анти-тромбоспондин тромбоспондин Кроличьи поликлональные (Calbiochem)
анти-Fn фибронектин Кроличьи поликлональные (Sigma)
анги-Lm ламинин Кроличьи поликлональные (Sigma)
анти-эластин эластин Кроличьи поликлональные (Sigma)
ати-alßl alßl интегрин Кроличьи поликлональные (любезно предоставлены В М. Белкиным, ГНЦ РАМН, Москва)
анти-aSßl a5ßl ингегрин Кроличьи поликлональные (любезно предоставлены В.М. Белкиным, ГНЦ PAMII, Москва)
анти-ßl ßl субъединица интегрина Кроличьи поликлональные (любезно предоставлены И. Клеманской, Advanced Cell Technology, Worcester, Massachusetts, USA)
анти-а2 о2 субъединица интегрина Кроличьи поликлональные (любезно предоставлены И Клеманской, Advanced Cell Technology, Worcester, Massachusetts, USA)
анти-аб аб субъединица интегрина Кроличьи поликлональные (любезно предоставлены И Клеманской, Advanced Cell Technology, Worcester, Massachusetts, USA)
anTH-avß3 uvß3 ин!егрин Кроличьи поликлональные (любезно предоставлены И. Клеманской, Advanced Cell Technology, Worcester, Massachusetts, USA)
Связавшиеся антитела выявляли диаминобензидиновым методом На контрольные
срезы вместо первых антител наносили соответствующие неспецифические антитела Срезы докрашивали гематоксилином Эрлиха. Для идентификации дифференцирующихся ГМК в мезенхиме, окружающей аорту, на ранних сроках эмбрионального развития были использованы моноклональные антитела к гладкомышечному актину и миозину, как специфическим маркерам ГМК
Изучение пролиферагивного поведения гладкомышечных клеток. Авторадиография. Исследование особенности пролиферативного поведения ГМК грудного отдела аорты крысы в п/н период проводилось методом «отложенной метки» с применением ЗН-тимидина Суть метода состоит в том, что после введения животным ЗН-тимидина он включается в клетки, находящиеся в Б-фазе клеточного цикла Клетка, включившая изотоп, может в дальнейшем активно пролиферировать, тем самым снижая уровень мечения
дочерних клеток (разведение метки), а может cpaiy или после нескольких делений выти в сосюяние покоя и сохранить шпенсивноаь метки. Поэюму, исследуя срезы аорт, фиксированных через определенные промежутки времени после введения изотопа методом авюрадиографин, можно судить о пролиферативном поведении клеток
В экспериментах были использованы животные трех возрастных групп В каждой группе животным трехкратно в течение суток с интервалом 6-7 часов вводили ЗП-шмидшг первой ipynne подкожно из расчета 0,2 мкКи/г веса, а животным в юрой и третьей групп по 0,1 мкКи/г веса внутрибрюшинно, что coorueicniyei допустимым дозам при хронических экспериментах В первой группе ЗП-гимидин вводили на 6-е сутки после рождения (п/р), грудной отдел аорты фиксировали через 3 часа после последнею введения изоюпа; на 9-е, 13-е и 21-е сутки после рождения Во иторон группе (только самцы) ЗН-тимидин вводили на 26-е сутки п/р, i рудной отдел аорты фиксировали через 3 часа после последнего введения изотопа, на 43-е, 71-е и 101-е су1ки после рождения. В третьей группе (только самцы) ЗН-тимидип вводили на 52-е сутки u/p, грудной оиил аорты фиксировали черс s 3 часа после последнего введения изотопа; на 72-е; 97-е и 127-е сутки после рождения. Для исследования на каждый срок брали грудной отдел аорты не менее чем от трех животных, фиксировали его смесью метанол-Карнуа и заключали н парафин Серийные сре)ы толщиной в 5 мкм подвергали авторадиографии с использованием фотоэмульсии типа М с последующей стандартной обработкой автографов IIa срезах подсчитывали количество зерен серебра (з с ) над ядром в ГМК медии аорты и оценивали шпенснвпость мечения Кле1ки, содержащие от 5 зс считались мечеными Для животные первой группы подсчитывали число зс над 1000 клеток, а для животных второй и третьей групп - над 5000 - 7000 клеток IIa препаратах просчитывали также количество меченных и немеченых клеток и, исходя из полученных данных, вычисляли индекс мечения (ИМ) по формуле
„,, Количество меченых клеток
ИМ --* 100 %
Оби ¡ее количество клеток
Анализ распределения ГМК по количеству зс над ядром позволили разделить всю совокупность меченых клеток на три класса, слабомеченые (5 - Ю з е.), среднсмеченые (И -22 з с ) и силыюмеченые (более 22 з с.) клетки
Для совместного исследования проли(|>еративного поведения ГМК и экспрессии различных интегринов часть препаратов подвергали иммуноцитохимическому окрашиванию по описанной методике (без докрашивания гематоксилином), хорошо промывали водой и высушивали Затем препараты подвергали авторадиографии
Статистическая обработка результатов проводилась с помощью программы GraphPacl Prism 4 с применением методов непараметрического анализа (критерия Крускала -Уоллиса). Во всех случаях достоверными считались различия при Р < 0.05.
Взятие материала и эвтаназию животных осуществляли в соответствие с «Правилами проведения работе использованием экспериментальных животных».
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ Пролиферативное поведение гладкомышечных клеток в онтогенезе аорты крысы. В настоящей работе проведено исследование особенности пролиферативпого поведение ГМК с раннего п/н периода и до наступления половой зрелости с помощью метода «отложенной метки». Интенсивность мечения оценивалась по количеству зерен серебра над ядром клетки.
Первая возрастая группа (6 - 21 день н/р). Об активной пролиферации ГМК аорты в этот период свидетельствует высокий средний ИМ - 25,17% (см. рисунок 1 и таблицу 2). Если на 6-е сутки п/р ИМ составляет 23,21%, то к 9-му дню он увеличивается лишь на 4,5% и практически не изменяется до 21-го дня п/р (21,67%).
Таблица 2 «Индекс мечения ГМК. Первая возрастная группа»
JV» возраст среднее стандартное достоверность различий
(сутки п/р) значение отклонение 1 - 2 1-3 1 - 4 2-3 2-4 3-4
! б 23.21 4,64 Р>0,05 Р>0,05 РХ),05 Р>0,05 РХ),05 Р>0,05
2 9 27,73 1,72
3 13 28,08 4,74
4 21 21,67 4,49
5 среднее значение ММ 25. ] 7% 3,22
Примечание; Достоверность различий определялась с помощью критерия Крускалла - Уоллиса (программа OrapliPad Prism 4). Р > 0,05 означает, что различия недостоверны.
Рисунок 1 «Меченые ЗН-тимидином ГМК в аорте крысы. Первая возрастная группа». 21 день после рождения. Окрашено гематоксилином. Объектив х60
Анализ распределения ГМК по интенсивности мечения показал, что численность слабомеченых ГМК с 6-го по 21-й день п/р увеличивается с 36,5% до 56,67%. Количество среднемеченых клеток с 6-го по 9-й день п/р возрастает на 5,5%, а затем к 21-му дню достигает 35%. Процент сильномеченых клеток постоянно падает (от 23,33% на 6-й день до 8,33% на21-йдень п/р). Данные представлены на рисунке 2.
Рисунок 2 «Гистограмма распределении но классам меченых ЗИ-тнмидином ГМК аорты крысы. Первая возрастная группа»
1 60
бднеП ') лнеЯ 13 лне|1 21 день
Возраст, дни п/р
Такая динамика изменения численности классов ГМК прежде всего говорит о высокой пролиферативной активности ГМК стенки аорты крысы в раннем п/н периоде. Анализ динамики изменения численности классов ГМК дает основание предположить, что ГМК медии аорты крыс в раннем п/н периоде представляют собой в отношении пролиферативного поведения неоднородную клеточную популяцию. Существенно, что одна часть ГМК характеризуется интенсивными клеточными делениями (о чем свидетельствует резкий рост числа слабомечсных клеток), тогда как другая делится крайне медленно (сохранение небольшого числа сильномеченых клеток). Таким образом, более «медленная» по темпам проли<1>ерации и небольшая но численности клеточная популяция формируется и, возможно, в значительной мере поддерживается за счет постепенного пополнения ее клетками из более «быстрой» популяции.
Вторая возрастная группа (26 -101 день п/р). В этот период происходит замедление пролиферации ГМК аорты, о чем свидетельствует ИМ. не превышающий 2,5%. С течением времени ИМ во второй возрастной группе практически не изменяется (см. таблицу 3).
Таблица 3 «Индекс мечення ГМК. Вторая возрастая группа»
№ возраст среднее стандартное достоверность различий.
(сутки п/р) значение отклонение 1-2 1 -3 1-4 2-3 2-4 3 - 4
1 26 2.24 0,34 Р-0,05 Р>0.05 Р>0,05 Р-0.05 Р>0,05 Р-0.05
2 43 2,28 0,21
3 71 2,40 0,44
4 101 2,50 0,99
5 среднее значение ИМ 2,35% 0,12
Примечание: Достоверность различий определялась с помощью критерия Крускалла - Уоллиса (программа Graph Pad Prism 4). Р > 0,05 означает, что различия недостоверны.
Как видно из гистограммы распределения по классам меченых ЗН-тимидином ГМК аорты крысы (см. рисунок 3) во второй возрастной группе основные изменения происходят с 26-го по 43-й день п/р. Класс слабомеченых клеток увеличивается на 17,92%. Количество
срсднемеченых клеток уменьшается на 11%. Число сильномеченых клеток уменьшается с 18,75% до ¡2.5%. В дальнейшем численность классов практически не изменяется.
Рисунок 3 «Гистограмма распределении по классам меченых ЗН-тимпднном ГМК аорты крысы. Вторая возрастная группа»
0 елабомеченые (5-10 i.e.) И среднемеченые (11-22 з.с.)
1 i сильномеченые (белее 22 "1 с)
26 дней 43 дня 71 день 101 день
Возраст, дни п/р
Таким образом, в течение 2-го - 3-го месяца жизни пролиферативная активность ГМК по сравнению с предыдущим периодом резко замедляется (средний ИМ составляет 2,35%). Однако в медии аорты крысы сохраняется очень небольшая популяция пролиферирующих Г'МК, источником которой, с одной стороны, может быть «медленно пролиферирующая» популяция клеток, отчетливо выявляющаяся на ранних этапах онтогенеза, а с другой стороны, она может представлять собой результат постепенного асинхронного выхода клеток в состояние покоя из «быстро пролиферирующей» популяции.
Третья возрастная группа (52 - 127 день п/р). Пролиферация ГМК в этот период невысока. Средний ИМ составляет всего 3,16%. Однако, ИМ несколько выше, чем во второй группе (Р > 0,05). Данные представлены в таблице 4.
Таблица 4 «Индекс мечения ГМК. Третья возрастная группа»
JY» возраст (сутки п/р) среднее значение стандартное отклонение достоверность различий.
1 - 2 1-3 1 -4 2-3 2-4 3-4
1 52 3,81 0,54 Р 0.05 Р>0,05 Р>0,05 Р-0,05 Р>0,05 Р>0,05
2 72 2,33 0,24
3 97 3,29 0,77
4 127 3,21 0,18
5 среднее значение IIM 3,16% 0,61
Примечание: Достоверность различий определялась с помощью критерия Крускалла - Уоллиса (программа GraphPad Prism 4). Р > 0,05 означает, что различия недостоверны.
Количество слабомеченых клеток с 52-го по 72-й день п/р увеличивается почти на 10%, а число средне- и сильномеченых клеток уменьшается на 8,17% и 5,16%, соответственно, В дальнейшем численность класса среднемеченых клеток практически не изменяется, а сильномеченых падает до 8,33% на 127-й день. Таким образом, изменения
численности классов меченых клеток напоминают происходящие во второй группе и
возможно отражают остаточную пролиферативную активность ГМК аорты у животных 3-го
- 4-го месяцев жизни (см. рисунок 4).
Рисунок 4 «Гистограмма распределения по классам меченых ЗН-тимиднном ГМК аорты крысы. Третья возрастная группа»
2 60 s50
f 40
и
3
I 30 г
0 20 fc
1 Ю
ИВ
■ сла&омеченые (5-10 з.с.)
■ средкемеченые (11-22 з.с.)
□ сильномеченые (более 22 з.с)
52 дня
72 дня 97 днеИ
Возраст, дни п/р
127 дней
Как известно, морфогенез медии крупных сосудов животных слагается из двух процессов: пролиферации эмбриональных ГМК, очень активной на начальных этапах, с параллельным накоплением значительного количества внеклеточного матрикса. У крысы к началу 2-го месяца п/р утолщение медии аорты идет в основном за счет накопления межуточных веществ и гипертрофии ГМК. Эти процессы и определяют особенности клеточного обновления ГМК сосудов в п/'н периоде, которое в норме очень низкое и составляет не более 0,1 - 0,3% (Clowes et al., 1983). Таким образом, ГМК медии нормальных сосудов взрослых животных являются высокодифференцированными и обладают крайне низким пролиферативным потенциалом.
Проведенные нами исследования показали, что с возрастом в стенке аорты крысы пролиферация ГМК сильно снижается. Наши данные об общем резком замедлении пролиферации ГМ1< согласуются с известными из литературы (Looker, Berry. 1972; Yurukova et al., 1976). Однако, наши результаты свидетельствуют, что уже с момента рождения в ходе формирования стенки аорты из популяции исходных ГМК обособляется небольшой процент клеток, уходящих в состояние покоя (это сильномеченые клетки (см. рисунки 2 - 4).
При анализе распределения ГМК по интенсивности мечения отчетливо выявляется гетерогенность популяции ГМК грудного отдела аорты крысы по пролиферативному поведению. На ранних этапах онтогенеза основная масса ГМК составляет «быстро пролиферирующую» субпопуляцию, за счет которой происходит рост аорты. Можно думать, что эта субпопуляция постепенно уменьшается за счет асинхронного выхода клеток в состояние покоя. Другая субпопуляция пролиферирует значительно медленнее и видимо пополняется клетками из первой субпопуляции. Выход в состояние покоя клеток из
«быстрой» субпопуляции на ранних сроках развития, вероятнее всего, происходит в G1-периоде клеточного цикла (Owens et al, 1983). В нашем случае не исключено, что выход в состояние покоя клеток из «медленной» субпопуляции происходит асинхронно на разных стадиях клеточного цикла (предположительно в Gl- и 02-периодах) (Заварзин, 1967) Поэтому можно предположить, что и «медленная» субпопуляция, сохраняющая свою активность на протяжении длительного времени, участвует в формировании пула полиплоидных клеток в стенке аорты, описанных G К. Owens (Owens et al, 1983) Те. субпопуляции ГМК в стенке аорты, различаются как по пролиферативной активности, так и, скорее всего по срокам выхода в состояние покоя. Это дает основание предполагать, что и степень углубленности в покой и продвинутость по дифференцировке у них также может отличаться Тем более что культивирование ГМК выявляет неоднородность их как по пролиферативному поведению, так и по степени дифференцированное™. На сегодняшний день имеются указания, что фенотипически менее дифференцированные ГМК обладают большей пролиферативной активностью в культуре (Fnd et al., 1997)
Общеизвестны экспериментальные результаты, которые свидетельствуют, что при повреждении сосудистой стенки спустя определенное время происходит постепенная миграция части медиальных ГМК в зону повреждения, сопровождающаяся сменой их фенотипа и началом здесь активной пролиферации и формированием неоинтимы. Изучение пролиферативного поведения ГМК в неоинтиме сонной артерии крысы позволило предположить, что в ответ на повреждение пролиферирует только небольшая субпопуляция ГМК (Clowes, Schwartz, 1985) Эти наблюдения получили подтверждение и в первичной культуре ГМК, выделенных из аорты взрослой крысы в норме и после деэвдотелизации Измерение межмитотических интервалов показало, что по этому критерию ГМК аорты крыс гетерогенны и составляют несколько субпопуляций. Те в стенке аорты, возможно, существуют ГМК, готовые к быстрому вступлению в клеточный цикл (Bochaton-Piallat et al., 1994) Эти и другие результаты позволяют предполагать, что ГМК аорты взрослых животных гетерогенны и по степени углубленности в покой Тем более что в последнее время убедительно показано, что в сосудистой стенке взрослых крыс могут присутствовать ранние потомки мезенхимных стволовых клеток, которые по своим свойствам отвечают части параметров стволовых клеток Они мигрируют в стенку через vasa vasorum из адвентиции и из периферического кровотока (Saiura et al, 2001; Simper et al., 2002, Hirschi, Majesky, 2004, Xu, 2006)
Это позволяет поставить вопрос о функциональной гетерогенности ГМК. Возможно различные субпопуляции ГМК, несущие те или иные фенотипические маркеры, по-разному участвуют в функционировании сосуда в норме и в патологии Можно предположить, что
помимо репопулирующих стенку клеток, в ответе на повреждение сосудистой стенки также участвуют наименее углубленные в покой ГМК медии. Скорее всего, это клетки, принадлежащие к "медленной" субпопуляции, но длительное время сохраняющие способность вступать в клеточный цикл.
Изучение экспрессии ннтсгрннов и белков внеклеточного матрнкса
В ходе формирования зачатков органов и тканей огромную роль играет ЭЦМ, причем в аорте он вырабатывается самими ГМК. ЭЦМ сосудов можно разделить на иитерстициальный матрикс и базальную мембрану Базальпая мембрана ГМК, содержит такие основные компоненты, как ламииин, коллаген IV, нидоген, гепарансульфаг-протеогликан Иитерстициальный матрикс включает изоформы фибронектина, витронектин, тромбоспондин, коллагены I, III, V, VI и др, эластин, тенасцин, остеопонтин
Как известно, изменения микроокружения является триггерным моментом в морфогенезе, так как смена состава матрикса приводит к изменению «соотношения» между дифференцировкой и пролиферацией клеток Известно, что делящаяся клетка изменяет характер взаимоотношения с ЭЦМ, так как для прохождения завершающих этапов митоза ей необходимо ошариться. Рецепторами для компонентов ЭЦМ служат интегрины В морфогенезе отдельных типов тканей ранее была описала периодическая смена репертуара интегринов. Так, по мере развития эпителия происходит изменение экспрессии интегринов и их локализации В эпителии кожи взрослых млекопитающих интегрины обнаруживаются почти всегда только в клетках базального слоя и желез (Нег11е е1 а1., 1991).
Исходя из особенностей дифференцировки ГМК аорты, мы исследовали репертуар экспрессии различш,к интегринов в онтогенезе аорты крысы и взаимосвязь их экспрессии и пролиферативного поведения ГМК Нас в первую очередь интересовала экспрессия интегринов р1- и (33-семейств, которые являются рецепторами для основных компонентов ЭЦМ стенки аорты.
В эмбриональный период для идентификации дифференцирующихся ГМК в мезенхиме, окружающей аорту, были использованы поликлональные антитела к гладкомышечному миозину и актину. С 12-го дня в/у развития в стенке аорты условно можно различить три слоя" первый - непосредственно подстилающий эндотелий, состоящий из плотных групп клеток, которые хорошо окрашиваются антителами к гладкомышечному миозину и актину, второй - рыхлые клеточные массы, слабо реагирующие с антителами; третий - наиболее удаленный от эндотелия с отдельными антиген-позитивными клетками По мере развития стенки аорты интенсивность экспрессии гладкомышечного актина и миозина увеличивается
Мы провели иммуноцитохимическое исследование экспрессии 01- и рЗ-интегринов с использованием поликлональных антител к а1р1, а5р1, аурЗ интегринам и к а2, аб, Р1 субъединицам интегринов в аорте крысы на разных этапах онтогенеза (с 11-го по 17-й день в/у развития и с 1-го дня до 4-х месяцев после рождения). Основные лигавды для этих интегринов представлены в таблице 5 Большинство клеток способно экспрессировать более одного типа интегринов, а как видно из таблицы большинство интегринов распознает более одного лиганда
Таблица 5 «Основные лнганды исследованных ннтегрннов»
Пнтегрии Лиганды
а1р1 Коллаген IV, коллаген I, ламинин
а5Р1 Фибронектин
а2Р1 Коллаген I, коллаген IV, ламинин
абР1 Ламинин
аурЗ Фибриноген, витронеетин, остеопонтин
На 11-й день в/у развития в стенке аорты эндотелиальные клетки (ЭК) интенсивно экспрессируют а1р1, а5р1, аурЗ интегрины и а2, аб, Р1 субъединицы. Надо сказать, что эндотелий взаимодействовал с антителами к интегринам в течение всего исследованного периода развития. Рыхлая мезенхима, окружающая ЭК, интенсивно экспрессирует а1р1, а5р1 интегрины и несколько слабее ол'рЗ и а2, аб субьединицы На 12-й день в/у развития обращает на себя внимание гетерогенность экспрессии а1р1, а5Р1 интегринов. группы клеток в зачатке аорты окрашены интенсивнее, чем окружающие клеточные массы. Причем, в дальнейшем такая тенденция сохраняется компактизация и продольная ориентация клеток сопровождается усилением экспрессии р1-интегринов. Несколько возрастает экспрессия аб-субъединицы Уровень экспрессии других интегринов не изменяется На 13-й день в/у развития наблюдается некоторое ослабление экспрессии а1Р1 и а5р1. Представленность а2-субъединицы продолжает оставаться на довольно низком уровне, зато усиливается экспрессия аб-субьединицы и а\'РЗ интегрина На 14-й день в/у развития в аорте продолжается компактизация ГМК, сопровождающаяся усилением экспрессии р1-интегринов Сохраняется высокий уровень экспрессии аб и аурЗ. На 15-н - 17-й день в/у развития происходит дальнейшее формирование стенки аорты, характер распределения а1р1 и а5р1 интегринов существенно не меняется, однако, усиливается экспрессия а2-, аб-субъединиц и а\'РЗ интегрина В первые дни п/р сохраняется высокий уровень экспрессии а1р1, а5р1, а\'РЗ интегринов и а2-, аб-, р1-субъединиц, характерный для последних дней в/у развития Интересно, что в дальнейшем по мере развития сохраняется относительно высокий уровень экспрессии а1р1, а5р1, ау[13 интегринов. В то же время экспрессия а2- и аб-субъединиц между 9-м и 13-м днем п/н развития несколько снижается и в дальнейшем поддерживается на том же уровне Причем, если а1р1, а5Р1, аурЗ интегрины равномерно
распределены по всем слоям стенки аорты, то а2- и аб-субъединицы локализованы преимущественно в эндотелии и в глубоких слоях медии.
Итак, р1- и Р3-интегрины широко представлены в аорте крысы с 11-го по 17-й день в/у развития и в п/н периоде Однако интенсивность экспрессии от стадии к стадии изменяется (см рисунки 5, 6, 7) Интенсивность окрашивания соответствующих интегринов и их субъединиц на ГМК аорты крысы оценивали полуколичественным методом в условных единицах.
Рисунок 5. «Динамика экспрессия ннтегрннов в онтогенезе аорты крысы» экспрессия интегринов
-а1Ы
-а5Ы
а2
-аб
-а АЗ
возраст
Экспрессия а1р1 и а5р1 интегринов совпадает.
Таким образом, интегрины а1р1 (рецептор коллагена IV) и а5р1 (фибронектиновый рецептор) экспрессируются на ГМК аорты крысы уже начиная с самых ранних этапов онтогенеза. Уровень их экспрессии постепенно повышается и сохраняется высоким в течение всей жизни животного. а2-субьединица (рецептор коллагена I) выявляется на достаточно высоком уровне только в конце беременности и после рождения. Несколько раньше выявляется аб-субъединица (ламининовый рецептор). Со второй половины беременности постепенно увеличивается экспрессия огерз интегрина (рецептор для фибриногена, витронектина, остеопонтина)
Хотя мы и провели исследование экспрессии основных белков ЭЦМ аорты, однако какой-либо периодичности их экспрессии выявлено не было. Возможно, это связано с использованием поликлональных антител, которые не позволяют отдифференцировать различные изоформы матриксных белков
Рисунок 6 «Экспрессии интегрииов в аорте крысы в эмбрноиалыюм периоде».
Иммуноцитохимическая реакция. Коричневый осадок соответствует выявляемому антигену. Препараты докрашены гематоксилином. Отрицательный контроль (пример)
I*?'я
6 день п/р Объектив х60
о.1В1 интегрнн
12 день в/у развития Объектив х60
а5р1 интегрнн
об субъединица
12 день в/у развития Объектив х60
12 день в/у развития Объектив х60
о.5р1 интегрнн
абсубъединица
13 день в/у развития Объектив х40
ол'РЗ интегрнн
» Г *
!
»
» С ^ 1 ' * V
12 день в/у развития Объектив х60
14 день в/у развития Объектив х60
илрЗ иитегрип
13 день в/у развития Объектив х60
«2 субъединнца * А
14 день в/у развития Объектив х60
12 день в/у развития Объектив х60
аб субъеднинца
«1р1 интегрин
4*5(51 интегрин
9 день п/р Объектив хбО
9 день п/р Объектив х40 (;5|!1 интегрин
13 день п/р Объектив хбО </.1[)1 интегрин
аб субъединнца
43 день п/р Объектив хбО
26 день п/р Объектив хбО
43 день п/р Объектив хбО аб субъединица
«1р1 интегрин
а5р1 интегрин
97 день п/р Объектив х40
52 день п/р Объектив хбО
97 день п/р Объектив хбО
Рисунок 7 «Экспрессия интегринов в аорте крысы в иостнатальном периоде».
Иммуноцитохимическая реакция. Коричневый осадок соответствует выявляемому антигену. Препараты докрашены гематоксилином.
Рисунок 7 «Экспрессия интегринов в аорте крысы в постнатальном периоде» (продолжение). Иммуноцитохимическая реакция. Коричневый осадок соответствует выявляемому антигену. Препараты докрашены гематоксилином. а2 субъединица яуВЗ интегрин
97 день п/р Объектив х40
9 день п/р Объектив х60 «урЗ интегрин
26 день п/р Объектив х60
72 день п/р Объектив х40
Аналогичные данные были получены при исследовании развития сосудов в цешральной нервной системе у мышей В эмбриональном и раннем постнатальном периоде на эндотелиальных клетках преобладают а4р1 и а5р1 ингегрины (фибронекгиновые рецепторы). У взрослых падает общий уровень экспрессии р1 интегринов, и на первый план выходят а1р1 и абр1 интегрины (ламининовые рецепторы) В соответствие с экспрессией интегриновых рецепторов происходит изменение в составе матрикса' количество фибронектина постепенно уменьшается, а ламинина - увеличивается (ВеНан с! а1, 2000, НаПтапп с! а!, 2005)
Проведенные исследования особенностей экспрессии а1 [31 и аЗр1 интегринов и соответствующих им лигацдов в морфогенезе аорты человека позволяет предположить, что взаимодействие а1р1 и аЗр1 интегринов с соответствующими компонентами базальной мембраны (например, с ы1р2у1 ламинином, характерным для взрослых) вызывает созревание ГМК и поддерживает их в диф<1>еренцированном состоянии (ИикЬоуа, К^еНапьку 1995; Вс1кш е1 а1, 1990) Учитывая, что большинство компонентов ЭЦМ имеют многочисленные изоформы, по-разному экспрессированные в ходе развития, можно сказать, что взаимодействие одних и тех же интегриновых рецепторов с теми или иными вариантами матриксных белков может, как активировать, так и ингибировать пролиферацию и дифференцировку клеток Мы показали, что интегрин а1 Р1 (рецептор коллагена IV) экспрессируются на ГМК аорты крысы уже начиная с самых ранних этапов онтогенеза Причем, уровень его экспрессии постепенно повышается и сохраняется высоким в течение всей жизни животного Известно, что дифференцировка ГМК аорты сопровождается формированием базальных мембран, одним из основных компонентов которых является коллаген IV. Обращает внимание (см рисунок 5), что между 20-м и 70-м днем п/р заметно снижается интенсивность окрашивания антителами к а!Р1 (рецептор коллагена IV), «5Р1 (фибронектиновый рецептор) и сп'РЗ интегринам (рецептор для фибриногена, витронсктина, остеопонтина), а окрашивание антителами к а2-субъединице (рецептор коллагена I) и к аб-субъединице (ламининовый рецешор) наоборот усиливается. Такие изменения скорее всего объясняются сменой изоформ части компонентов ма!рикса в дифференцирующейся стенке аорты Действительно в ходе созревания стенки аорты происходят смены изоформ ламинина и фибронектина. и значительно увеличивается содержания коллагена I
Огромную роль в регуляции ангиогенеза играет интегрин аурЗ. Лигандами для него могут служить практически все компоненты матрикса. Из литературы известно, что аурЗ интегрин играет ключевую роль в миграции ГМК после повреждения сосуда, в эмбриогенезе и в канцерогенезе. Причем один из возможных механизмов усиления миграции - продукция про!еиназ, которые вызывают высвобождение необходимых компонентов матрикса
(Bendeck, Nakada, 2001; Dormond et al, 2001). Кроме того, как стало ясно (Larsen et al, 2006) и некоторые другие интегрины играет огромную роль в ремоделировании матрикса не только в эмбриональном развитии, но и в постнагальном периоде, выступая в роли важнейшего участника репаративных процессов в тканях богатых ЭЦМ.
Совместное исследование пролнферативиого поведения и экспрессии интегринов на ГМК в онтогенезе аорты крысы не выявило существенной разницы в репертуаре экспрессии исследованных интегринов на субпопуляциях ГМК, отличающихся по проли(]>еративному поведению. Хотя в литературе ранее была описана четкая смена экспрессии и локализации интегринов при развитии такой быстро обновляющейся ткани как эпидермис кожи (Carter et al, 1990; Ilertle et al, 1991)
15 нашем исследовании, нам не удалось увидеть аналогичной столь отчетливой смены исследованных интегринов в зависимости от степени дифференцированности и пролиферативной активности ГМК и от изменения ЭЦМ. Прежде всего, это можно обьяснить особенностями формирования стенки аорты. В многослойном эпителии большая часть клеток по мере продвижения от слоя к слою постепенно умирает и слущивается, и лишь базальный слой сохраняется постоянно Таким образом, морфогенетическая роль интегринов утрачивается по мере дифференцировки Популяция же ГМК, составляющих стенку аорты складывается постепенно, и, в отличие от кожного эпителия, ГМК сами являются активными продуцентами массивного ЭЦМ и базальных мембран Кроме того, ГМК обладают большой продолжительностью жизни (сравнимой с продолжительностью жизни животного) Эти принципиальные отличия двух типов тканей - активно обновляющейся в течение жизни (эпителий) и очень слабо обновляющейся (популяция ГМК аорты) скорее всего и служат основой тех различий, которые мы видим Прежде всего, это касается репертуара интегринов у пролиферирующих и дифференцирующихся клеток в том и другом случаях Клетки базального слоя эпидермиса заякориваются на базальной мембране с участием очень малого числа интегринов (a2pi и a6pi), в то же время дифференцирующиеся ГМК (синтетического фенотипа) помимо высокой пролиферативной активности активно продуцируют с десяток мажорных компонентов ЭЦМ и формируют собственную базальную мембрану Таким образом, ГМК синтетического фенотипа, когда они еще акгтивно пролиферируют уже окружены множеством компонентов матрикса, с которым должны взаимодействовать через интегрины. Поэтому разнообразие интег ринов на ГМК аорты велико, а наблюдаемые колебания незначительны даже в период активной пролиферации. ГМК же сократительного фенотипа полностью одетые базальной мембраной и окруженные плотным хорошо сформированным ЭЦМ, составляющим большую часть стенки аорты (матрикс в аорте выполняет механическую функцию - сопротивление потоку
крови и растяжению) прежде всего, играют роль «контролеров» состава матрикса Они являюхся теми клетками, которые в норме участвуют в естественной перестройке матрикса и сохранении постоянства его состава. Поэтому дифференцированные ГМК стенки аорты, скорее всего, в отличие от базальных клеток эпидермиса просто должны сохранять большое разнообразие различных по лигандной специфичности интегринов
Кроме того, показано, что интегрииы могут существовать, гю крайней мере, в двух состояниях активированном и нсактивированном Активация интегриновых рецепторов сопровождается их конформационными изменениями Взаимодействие лиганда с интегринами приводит к кластеризации и стабилизации последних, и передаче сигнала в клетку Наряду с активацией шпегринов наблюдается и их инактивация. Инактивация ряда интегринов описана при митозе и миграции клегок Также наблюдается де! операция интегринов и утилизация их самой клеткой (Ьагъеп е( а1, 2006, ТакасЬ с! а1, 2007) Мы для исследования экспрессии интегринов использовали поликлональные антитела, которые выявляют как активированные, так и неактивированные формы интегринов. Поэтому мы не можем сказать, взаимодействует ли в данный период интегрин с матриксом или он просто находится на поверхности клетки в неактивированном состоянии
Также большинство интегринов способны взаимодействовать более чем с одним компонентом матрикса. Поэтому, можно предположить, что в различные периоды морфогенеза аорты для одних и тех же интегринов лигацдами могут служить разные компоненты матрикса. Мы исследовали фенотипическую картину экспрессии интегринов на ГМК аорты крысы в разные периоды развития. Вероятно, для выявления роли интегринов в регуляции пролиферации ГМК требуется более детальный анализ на уровне экспрессии генов и активации интегриновых молекул, а также исследование экспрессии других интегринов (аЗр1, а7р1) - рецепторов к изоформам основных компонентов ЭЦМ стенки аорты
Выводы
1. Авюрадиографическое исследование выявило гетерогенность по пролиферашвному поведению популяции ГМК формирующейся аорты крысы Выявлены две субпопуляции ГМК, отличающиеся по митотичсской активности «быстрая» и «медленная»
2. Анализ экспрессии интегринов а1р1, а5р1, аурЗ и а2-, аб-субъединиц интегринов в ходе развития гладкомышечной ткани аорты крысы с 11-го дня в/у развития и до 4-х месяцев после рождения показал, что интегрины а1(31 (рецептор коллагена IV), а5р1 (фибронектиновый рецептор) и аурЗ (рецептор для фибриногена, витронектина, остсопонтина) экспрессируются на ГМК аорты крысы уже начиная с самых ранних
этапов онтогенеза Уровень их экспрессии постепенно повышается и сохраняется высоким в течение всей жизни животного
3 а2-субъединица (рецептор коллагена I) и аб-убъединица (ламининовый рецептор) выявляются на достаточно высоком уровне только в конце эмбрионального периода и после рождения.
4 Не выявлено четкой смены экспрессии исследованных интегринов в зависимости о г пролиферативпого поведения ГМК развивающейся аорты крысы. Отсутствие четкой взаимосвязи между экспрессией исследованных интегринов и пролиферативным поведением ГМК в онтогенезе аорты крысы может объясняться особенностями дифференцировки ГМК, для которых характерно параллельное протекание процессов пролиферации и синтеза внеклеточного матрикса.
Список сокращении ГМК - гладкомышечные клетки, п/н - постнатальный, ЭЦМ -
экстрацеллюлярный магрикс, ЗН-тимидин - тимвдин, меченый тритием; в/у -
внутриутробный; п/р - после рождения, з с. - зерна серебра; ЭК - эпдотелиальные клетки.
Список литературы:
1 Belkin VM, Belkm AM, Koteliansky VE. Human smooth muscle VLA-1 integrin: purification, substrate specificity, localization in aorta, and expression during development. J Cell ВюI. v 111(5 Ptl)-2159-2170,1990.
2 Belkm AM, Stepp MA Integriiis as receptors for lamitiins Microsc Res Tech., v 51 (3) 280301,2000
3 Bendeck MP, Nakada MT. The f!3 integrin antagonist m7E3 reduces matrix metalloproteinase activity and smooth muscle cell migration J Vase Res; v. 38 (6) 590 - 599,2001
4 Bochaton-Piallat ML, Gabbiani F, Gabbiani G Heterogeneity of rat aortic smooth muscle cell replication during development' correlation with replicative activity after experimental endothelial denudation in adults JSubtmcrosc CytolPathol.-, v. 26 (1)- 1 - 8,1994
5, Carter WG, Wayner EA, Bouchard TS, Kaur P The role of integrins a2pi and a3|U in cell-cell and cell-substrate adhesion of human epidermal cells J Cell Biol-, v. 110 (4): 1387 - 1404, 1990.
6 Clowes AW, Reidy MA Clowes MM. Kinetics of cellular proliferation after arterial injury. 1. Smooth muscle growth in the absence of endothelium Lab Invest; v. 49 (3). 327 - 333,1983.
7 Clowes AW, Schwartz SM. Significance of quiescent smooth muscle migration in the injured rat carotid artery Circ Res, v. 56 (1): 139-145,1985.
8 Dormond O, Foletti A, Paroz C, Ruegg C. NSAIDs inhibit «v[i3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis Nat Med; v 7 (9). 1041 - 1047,2001
9. Frid MG, Aldashev AA, Deinpsey EC, Stenmark KR. Smooth musclc cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities CircRes, v. 81 (6). 940 - 952,1997.
10. Glukhova MA, Koleliansky VE. Integnns, cytoskeletal and extracellular matrix proteins in developing smooth muscle cells of human aorta In Vascular smooth muscle cell. Academic Press Inc.: 37 - 78,1995.
11. Hallmann R, Horn N, Selg M, Wendlcr O, Pausch F, Sorokin LM. Expression and function of laminms in the embryonic and mature vasculature. PhysiolRev:, v. 85 (3): 979 - 1000,2005.
12 Hertle MD, Adams JC, Watt FM. Intcgnn expression during human epidermal development in vivo and in vitro Development:, v. 112 (1): 193 - 206, 1991.
13 Hirschi KK, Majesky MW. Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol, v 276(1). 22-33, 2004.
14 Larson M, Artym VV, Green JA, Yamada KM. The matrix reorganized, extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol, v. 18 (5) 463 - 471,2006.
15. Looker T, Berry CL. The growth and development of the rat aorta. II Changes in nucleic acid and scleroprotein content JAiiat; v. 113 (Pt 1) 17 - 34,1972.
16 Owens GK, Schwartz SM Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Cut Res, v. 53 (4): 491 -501,1983
17. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M. Circulating smooth muscle progenitor cells contribute to atherosclerosis. NatMed, v. 7 (4) 382 - 383, 2001.
18. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM. Smooth muscle progenitor cells in human blood. Circulation , v. 106 (10) 1199 -1204, 2002.
19. Takada Y, Ye X, Simon S. The integnns Genome Biol:, v. 8 (5). 215, 2007
20 Xu Q The impact of progenitor cells in atherosclerosis Nat Clin Pract Cardiovasc Med; v 3 (2). 94- 101,2006
21. Yurukova Z, Hadjisky P, Renais J, Scebat L. On the proliferative activity of arteral smooth muscle cells in rat postnatal ontogenesis. Auto-historadiographic studies. Atherosclerosis, v. 23 297 - 304,1976
22. Заварзин A. A, "Синтез ДНК и кинетика клеточных популяций", изд "Наука", Ленинград 1967.
Список работ, опубликованных по теме диссертации
1 Матвеева Н А, Лацис Р.В. Пролиферативное поведение гладкомышечных клеток в онтогенезе аорты крысы. Доклады Академии Наук, том 419, № 1, 1-4, 2008.
2. Матвеева Н А., Лацис Р.В «Пролиферативное поведение и экспрессия интегринов в гладкомышечных клетках в отшенезе аоргы крысы» Тезисы Международной научно-
практической конференции «Медико-биологические науки для теоретической и клинической медицины», посвященной 45-летию МБФ РГМУ. Москва, 2008.
3 Еленич Н.Л.(Матвеева НА), Лацис Р.В. «Экспрессия интегринов pi- и рЗ-семейств в онтогенезе аорты крысы». Тезисы VI Всероссийской конференции по патологии клетки. 15, Москва, 2000
4. N.A Elenich (Matveeva), Е.Е. Balashova, Т A Kupnyanova, R V Latsis, V М Belkin «Periodicity of expression of pi-integrins dunng the ontogenesis of the rat aorta» Abstracts of 3rd Annual Scandinavian Atherosclerosis Conference. 56, Humlebaek, 1996
5 Матвеева H.A, Лацис Р.В. «Экспрессия интегринов в онтогенезе аоргы крысы» БЭБиМ, 2008 (подготовлена к печати)
Содержание диссертации, кандидата биологических наук, Матвеева, Наталия Алексеевна
СПИСОК СОКРАЩЕНИЙ.
ВВЕДЕНИЕ.
1. ОБЗОР ЛИТЕРАТУРЫ.
1.1. Морфогенез сосудов.
1.1.1. Развитие сосудистой стенки.
1.1.2. Маркеры дифференцировки ГМК.
1.1.3. Роль гемодинамических факторов в развитии сосудистой стенки.
1.1.4. Экстрацеллюлярный матрикс в развитии сосуда.
1.1.5. Миграция клеток сосудистой стенки.
1.1.6. Пролиферация ГМК.
1.1.7. Регуляция пролиферации и дифференцировки клеток сосудистой стенки.
1.1.8. Гетерогенность ГМК.
1.2. Интегрины в морфогенезе сосудов.
1.2.1. Строение и разнообразие интегриновых рецепторов.
1.2.2. Модуляция аффинности и специфичности интегринов. Интегрин-опосредованная передача сигнала.
1.2.3. Взаимодействие интегринов с лигандами.
1.2.4. Интегрины в эмбриогенезе.
1.2.5. Интегрины и поведение клеток.
2. МАТЕРИАЛЫ И МЕТОДЫ.
2.1 Использованные реактивы.
2.2 Получение эмбрионов крысы.
2.3 Изучение экспрессии интегринов и белков внеклеточного матрикса. Иммуноцитохимия.
2.4 Изучение пролиферативного поведения гладкомышечных клеток. Авторадиография.
2.5 Статистическая обработка результатов.
3. результаты и обсуждение.
3.1. Пролиферативное поведение гладкомышечных клеток в онтогенезе аорты крысы.
3.1.1. Первая возрастная группа (6-21 день после рождения).
3.1.2. Вторая возрастная группа (26 - 101 день после рождения).
3.1.3. Третья возрастная группа (52 - 127 день после рождения).
3.2 Изучение экспрессии интегринов и белков внеклеточного матрикса.
Введение Диссертация по биологии, на тему "Экспрессия интегринов и пролиферативное поведение гладкомышечных клеток в онтогенезе аорты крысы"
Механизм регуляции поведения клеток во многом неясен. На сегодняшний день мы знаем пока лишь часть этапов этого процесса, включающего регулирование экспрессии групп генов, воздействие факторов роста и других биологически активных молекул, взаимодействие клеток друг с другом и с экстрацеллюлярным матриксом (ЭЦМ) и т.п. Одним из важнейших звеньев в цепи регулирования поведения является интегрин-опосредованное взаимодействие клетки с матриксом, которое во многом определяет ее судьбу. Имеются многочисленные данные, указывающие, что различные компоненты ЭЦМ способны влиять на миграцию, пролиферацию, дифференцировку и апоптоз клеток, обеспечивая взаимосвязь цитоскелета и ЭЦМ (Montesano et al., 1983; Pratt et al., 1984; Schwartz, 1984; Choquet et al., 1997; Jones et al., 1997; Pepper, 1997; Heerkens et al., 2007; Hynes, 2007, Stupack, 2007; Takada et al., 2007). Кроме того, как стало ясно в последнее время (Larsen et al., 2006), часть интегринов играет огромную роль в ремоделировании матрикса не только в эмбриональном развитии, но и в постнатальном периоде, выступая в роли важнейшего участника репаративных процессов в тканях богатых ЭЦМ.
Морфогенез сосудистой системы включает миграцию, пролиферацию и дифференцировку предшественников гладкомышечных клеток (ГМК). Причем, ГМК, которые составляют основную массу клеток сосудистой стенки артерий и вен характеризуются целым рядом особенностей дифференцировки. Прежде всего, это два фенотипа: эмбриональный или синтетический и взрослый или сократительный. ГМК присуще сочетание активной пролиферации в эмбриональном и раннем постнатальном периоде с продукцией большого числа матриксных белков и формированием базальной мембраны. Митотическая активность ГМК затухает постепенно, и клетки выходят в состояние покоя, но продолжают синтезировать внеклеточный матрикс.
Надо отметить, что ГМК, пожалуй, единственный тип клеток у птиц и млекопитающих, которые способны в ответ на внешние стимулы выходить из покоя, что сопровождается модификацией их фенотипа из сократительного в синтетический (т.е. наблюдается процесс эмбрионализации гладкомышечной ткани). Это имеет огромное значение при развитии атеросклеротического поражения сосудов. R. Ross выдвинул концепцию развития атеросклероза, согласно которой повреждение сосуда вызывает миграцию ГМК медии и формировании ими неоинтимы (Ross, Glomset, 1976). Однако в последнее время было показано, что в формирование неоинтимы и атеросклеротической бляшки вносят свой вклад и клетки-предшественники ГМК, которые мигрируют в зону поражения по системе vasa vasorum из адвентиции и из периферической крови (Margariti et al., 2006). Кроме того, следует учитывать, что в ходе эмбрионального развития ГМК в различных сосудах происходят из разных источников (Hirschi, Majesky, 2004; Margariti et al., 2006). Также на сегодняшний день накоплен огромный материал, свидетельствующий, что популяция ГМК крупных артериальных сосудов и в частности аорты гетерогенна по целому ряду признаков.
Перечисленные выше особенности дифференцировки ГМК сосудов свидетельствуют, что огромную роль в поведении этих клеток играет взаимодействие с матриксом. Интегрины как рецепторы для компонентов матрикса в полной мере отражают свое название и являются важнейшими участниками морфогенеза сосудистой системы, как в эмбриональном, так и в постнатальном периоде (п/н). Поэтому представляется актуальным изучение экспрессии различных интегринов в онтогенезе аорты крысы и взаимосвязи их экспрессии и пролиферативного поведения ГМК.
Цель работы - оценка репертуара экспрессированных на поверхности гладкомышечных клеток интегринов (31- и (33- семейств, как важнейших рецепторов к компонентам внеклеточного матрикса, и сопоставление полученных результатов с особенностями пролиферативного поведения гладкомышечных клеток в ходе эмбрионального и постнатального развития аорты крысы.
Для достижения цели были поставлены следующие задачи:
1. Методом «отложенной метки» с использованием тимидина, меченого тритием, исследовать особенности пролиферативного поведения гладкомышечных клеток в морфогенезе аорты крысы с раннего постнатального периода и до наступления половой зрелости (с 6-го дня до 4-х месяцев после рождения).
2. Методом иммуноцитохимии исследовать экспрессию интегринов Р1- и РЗ-семейств на гладкомышечных клетках в онтогенезе аорты крысы в эмбриональном и постнатальном периодах.
3. Методом иммуноцитохимии исследовать экспрессию основных компонентов матрикса в онтогенезе аорты крысы в эмбриональном и постнатальном периодах.
4. Сопоставить картину экспрессии интегринов на поверхности гладкомышечных клеток с пролиферативным поведением г ладкомышечных клеток в ходе онтогенеза аорты крысы.
Заключение Диссертация по теме "Биохимия", Матвеева, Наталия Алексеевна
выводы
1. Авторадиографическое исследование выявило гетерогенность по пролиферативному поведению популяции ГМК формирующейся аорты крысы. Выявлены две субпопуляции ГМК, отличающиеся по митотической активности: «быстрая» и «медленная».
2. Анализ экспрессии интегринов а1р1, а5р1, аурЗ и а2-, аб-субъединиц интегринов в ходе развития гладкомышечной ткани аорты крысы с 11-го дня в/у развития и до 4-х месяцев после рождения показал, что интегрины а1р1 (рецептор коллагена IV), а5р1 (фибронектиновый рецептор) и алфЗ (рецептор для фибриногена, витронектина, остеопонтина) экспрессируются на ГМК аорты крысы уже начиная с самых ранних этапов онтогенеза. Уровень их экспрессии постепенно повышается и сохраняется высоким в течение всей жизни животного.
3. а2-субъединица (рецептор коллагена I) и аб-убъединица (ламининовый рецептор) выявляются на достаточно высоком уровне только в конце эмбрионального периода и после рождения.
4. Не выявлено четкой смены экспрессии исследованных интегринов в зависимости от пролиферативного поведения ГМК развивающейся аорты крысы. Отсутствие четкой взаимосвязи между экспрессией исследованных интегринов и пролиферативным поведением ГМК в онтогенезе аорты крысы может объясняться особенностями дифференцировки ГМК, для которых характерно параллельное протекание процессов пролиферации и синтеза внеклеточного матрикса.
ЗАКЛЮЧЕНИЕ
Сосудистая система закладывается и начинает функционировать в онтогенезе очень рано. Основные процессы формирования стенки сосуда — миграция, пролиферация и дифференцировка ГМК. В настоящей работе нами предпринята попытка исследовать особенности пролиферативного поведения ГМК в морфогенезе аорты крысы. Проведенные нами исследования показали, что с возрастом в стенке аорты крысы пролиферация ГМК сильно снижается. Об этом свидетельствует падение ИМ с 23% на 6 сутки п/р до 2,5% на 26 и 52 сутки п/р. Наши данные о резком замедлении пролиферации ГМК согласуются с известными из литературы (Looker, Веггу, 1972; Yurukova et al., 1976). При анализе распределения ГМК по интенсивности мечения отчетливо выявляется гетерогенность по пролиферативному поведению популяции ГМК грудного отдела аорты крысы. На ранних этапах онтогенеза основная масса ГМК составляет «быстропролиферирующую» субпопуляцию, за счет которой происходит рост аорты. Другая субпопуляция — «медленная» - пролиферирует значительно медленнее и видимо пополняется клетками из первой субпопуляции.
Гетерогенность популяции ГМК взрослой ткани скорее всего объясняется различными сроками выхода клеток из клеточного цикла в состояние покоя в ходе эмбрионального и раннего п/н периода (Заварзин, 1967). Выход в состояние покоя клеток из «быстрой» субпопуляции на ранних сроках развития, вероятнее всего, происходит в Gl-периоде (Owens et al., 1983). А выход в состояние покоя клеток из «медленной» субпопуляции, скорее всего, происходит асинхронно на разных стадиях клеточного цикла (предположительно в Gl- и 02-периодах). Итак, можно сказать, что в аорте крысы существуют субпопуляции ГМК, различающиеся как по пролиферативной активности, так и по срокам выхода в покой, что отчетливо следует из наших результатов. Можно предположить, что и степень углубленности в покой и продвииутость по дифференцировке различных субпопуляций ГМК также может отличаться. Анализ литературных источников позволяет поставить вопрос о функциональной гетерогенности ГМК. Возможно, различные субпопуляции ГМК по-разному участвуют в функционировании сосуда в норме и в патологии (С1икЬоуа, Ко1еНап8ку, 1995). Надо отметить, что ГМК, находясь в состоянии покоя, способны в ответ на внешние стимулы (например, повреждение) выходить из покоя, и претерпевать модификацию фенотипа из сократительного в синтетический (т.е. эмбриональный). Можно предположить, что первыми отвечают на повреждение сосудистой стенки наименее углубленные в покой клетки. Скорее всего, это клетки, принадлежащие к «медленной» субпопуляции, длительное время сохраняющей способность вступать в клеточный цикл.
Характерной особенностью гладкомышечной ткани является крайне слабое клеточное обновление. Если ГМК в эмбриональном и раннем постнатальном периоде активно пролиферируют, то во взрослом сосуде обновление идет путем полиплоидизации. Полученные нами результаты свидетельствуют, что уже с момента рождения в ходе формирования стенки аорты из популяции исходных ГМК обособляется небольшой процент клеток, уходящих в состояние покоя. Итак, общая популяция ГМК аорты крысы состоит из нескольких субпопуляций. Большой интерес представляет изучение механизма возникновения и контроля гетерогенности как по срокам выхода, так и по углубленности в покой ГМК.
Другая особенность гладкомышечной ткани сосудистой стенки — мощное развитие ЭЦМ, который вырабатывают сами ГМК. Причем активная пролиферации и синтез матрикса в ГМК протекают параллельно. Участие ЭЦМ в формировании и функционировании как эмбриональных, так и взрослых сосудов, очевидно. Роль адгезивных рецепторов к компонентам матрикса на ГМК выполняют интегрины. Они участвуют в процессах адгезии и миграции клеток. Кроме того, в активированном состоянии интегрины участвуют в передаче сигнала в клетку. Сигнальная функция интегринов, прежде всего, связана с поддержанием целостности состава ЭЦМ и, следовательно, целостности ткани.
Из литературы известно, что интегрины способны как поддерживать пролиферацию, так и быть активными участниками ее ингибирования. Учитывая особенности дифференцировки ГМК аорты, мы постарались проследить экспрессию различных интегринов в онтогенезе аорты крысы и взаимосвязь их экспрессии и пролиферативного поведения ГМК. Мы исследовали экспрессию интегринов Р1- и Р3-семейств, которые являются рецепторами для основных компонентов ЭЦМ стенки аорты. Мы показали, что интегрины а1р1 (рецептор коллагена IV) и а5р1 (фибронектиновый рецептор) экспрессируются на ГМК аорты крысы уже начиная с самых ранних этапов онтогенеза. Уровень их экспрессии постепенно повышается и сохраняется высоким в течение всей жизни животного. а2 — субъединица (рецептор коллагена I) выявляется на достаточно высоком уровне только в конце беременности и после рождения. Несколько раньше выявляется аб субъединица (ламининовый рецептор). Со второй половины беременности постепенно увеличивается экспрессия аурз интегрина (рецептор для фибриногена, витронектина, остеопонтина). Хотя мы и провели исследование экспрессии основных белков ЭЦМ аорты, однако какой-либо периодичности их экспрессии выявлено не было. Возможно, это связано с использованием поликлональных антител, которые не позволяют отдифференцировать различные изоформы матриксных белков.
Изменения микроокружения является триггерным моментом в морфогенезе, так как смена состава матрикса приводит к изменению «соотношения» между дифференцировкой и пролиферацией клеток. В морфогенезе отдельных типов тканей ранее была описана периодическая смена репертуара интегринов. Так, по мере развития эпителия происходит изменение экспрессии интегринов и их локализации (Нейк & а1., 1991). Исследование развития сосудов в ЦНС у мышей показало, что в эмбриональном и раннем постнатальном периоде на эндотелиальных клетках преобладают a4pi и a5pi интегрины (фибронектиновые рецепторы). У взрослых на первый план выходят alpl и a6pl интегрины (ламининовые рецепторы). В соответствие с экспрессией интегриновых рецепторов происходит изменение в составе матрикса: количество фибронектина постепенно уменьшается, а ламинина -увеличивается (Milner, Campbell, 2002).
Проведенные исследования особенностей экспрессии в морфогенезе аорты человека aipi и a3pi интегринов и соответствующих им лигандов (Glukhova, Koteliansky 1995; Belkin et al., 1990) позволяет предположить, что взаимодействие alpl и a3pl интегринов с соответствующими компонентами базальной мембраны (например, с alp2yl ламинином, характерным для взрослых) вызывает созревание ГМК и поддерживает их в дифференцированном состоянии (Glukhova, Koteliansky 1995). Учитывая, что большинство компонентов ЭЦМ имеют многочисленные изоформы, по-разному экспрессированные в ходе развития, можно сказать, что взаимодействие одних и тех же интегриновых рецепторов с теми или иными вариантами матриксных белков может, как активировать, так и ингибировать пролиферацию и дифференцировку клеток.
Огромную роль в регуляции ангиогенеза играет интегрин avp3. Лигандами для него могут служить практически все компоненты матрикса (Eliceiri, Cheresh, 1999). Из литературы известно, что avP3 играет ключевую роль в миграции ГМК после повреждения сосуда, в эмбриогенезе и в канцерогенезе. Причем один из возможных механизмов усиления миграции -продукция протеиназ, которые вызывают высвобождение необходимых компонентов матрикса (Bendeck et al., 2000; Bendeck, Nakada, 2001; Dormond et al., 2001). Кроме того, как стало ясно (Larsen et al., 2006) и некоторые другие интегрины играет огромную роль в ремоделировании матрикса не только в эмбриональном развитии, но и в постнатальном периоде, выступая в роли важнейшего участника репаративных процессов в тканях богатых ЭЦМ.
Совместное исследование пролиферативного поведения и экспрессии интегринов на ГМК в онтогенезе аорты крысы не выявило существенной разницы в репертуаре экспрессии исследованных интегринов на субпопуляциях ГМК, отличающихся по пролиферативному поведению. В нашем исследовании нам не удалось увидеть отчетливой смены исследованных интегринов в зависимости от пролиферативной активности ГМК, характерной для многослойного эпителия (Carter et al., 1990b; Hertle et al., 1991). Прежде всего, это можно объяснить особенностями формирования стенки аорты. Популяция ГМК, составляющих стенку аорты складывается постепенно, и, в отличие от кожного эпителия, ГМК сами являются активными продуцентами массивного ЭЦМ и базальных мембран. Кроме того, ГМК обладают большой продолжительностью жизни (сравнимой с продолжительностью жизни животного). Эти принципиальные отличия двух типов тканей - активно обновляющейся в течение жизни (эпителий) и очень слабо обновляющейся (популяция ГМК аорты) скорее всего и служат основой тех различий, которые мы видим. ГМК синтетического фенотипа помимо высокой пролиферативной активности продуцируют различные компоненты ЭЦМ и формируют собственную базальную мембрану. ГМК сократительного фенотипа полностью одетые базальной мембраной и окруженные плотным хорошо сформированным ЭЦМ прежде всего участвуют в контроле состава матрикса. Они вовлечены в естественную перестройку матрикса и сохранение постоянства его состава Поэтому разнообразие интегринов на ГМК аорты велико, а наблюдаемые колебания незначительны даже в период активной пролиферации, так как ГМК стенки аорты, скорее всего, просто должны сохранять большое разнообразие различных по лигандной специфичности интегринов.
Кроме того, показано, что интегрины могут существовать в двух состояниях: активном и неактивном. Активация интегриновых рецепторов сопровождается их конформационными изменениями. (Оакоп е1 а1., 1995; ЬагБеп е1 а1., 2006; Такаёа е1 а1, 2007), и передачей сигнала в клетку. Инактивация ряда интегринов описана при митозе и миграции клеток, (р^апа et а1., 1990; Нупеэ, 1992; ОшпЫпег, 1996). Также наблюдается дегенерация интегринов и утилизация их самой клеткой (Такаёа е1 а1, 2007). Мы для исследования экспрессии интегринов использовали поликлональные антитела, которые выявляют как активные, так и неактивные формы интегринов. Поэтому мы не можем сказать, взаимодействует ли в данный период интегрин с матриксом или он просто находится на поверхности клетки в неактивном состоянии. Также большинство интегринов способны взаимодействовать более чем с одним компонентом матрикса. Поэтому, молено предположить, что в различные периоды морфогенеза аорты для одних и тех же интегринов лигандами могут служить разные компоненты матрикса. Мы исследовали фенотипическую картину экспрессии интегринов на ГМК аорты крысы в разные периоды развития. Вероятно, для выявления роли интегринов в регуляции пролиферации ГМК требуется более детальный анализ на уровне экспрессии генов и активации интегриновых молекул, а также исследование экспрессии других интегринов (аЗр1, а701) — рецепторов к основным компонентам ЭЦМ стенки аорты.
Библиография Диссертация по биологии, кандидата биологических наук, Матвеева, Наталия Алексеевна, Москва
1. Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEBJ.; v. 4(11): 2868-2880, 1990.2. and integrin signaling Current Opinion in Cell Biology 2006, 18:463-471
2. Arai H, Hirano H, Mushiake S, Nakayama M, Takada G, Sekiguchi K. Loss of EDB+ fibronectin isoform is associated with differentiation of alveolar epithelial cells in human fetal lung. Am J Pathol.-, v. 151 (2): 403 412,1997.
3. Ariel Gomez R, Sturgill ВС, Chevalier RL, Boyd DG, Lessard JL, Owens GK, Peach MJ. Fetal expression of muscle-specific isoactins in multiple organs of the Wistar-Kyoto rat. Cell Tissue Res.; v. 250 (1): 7 12,1987.
4. Ariyoshi H, Okahara K, Sakon M, Kambayashi J, Kawashima S, Kawasaki T, Monden M. Possible involvement of m-calpain in vascular smooth muscle cell proliferation. Arterioscler Thromb Vase Biol. ; v. 18 (3): 493 498, 1998.
5. Assoian RK, Sporn MB. Type p transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells .J Cell Biol.; v. 102 (4): 1217 1223,1986.
6. Aufderheide E, Chiquet-Ehrismann R, Ekblom P. Epithelial-mesenchymal interactions in the developing kidney lead to expression of tenascin in the mesenchyme. J Cell Biol. ; v. 105 (1): 599 608, 1987.
7. Augustine JM. Influence of the entoderm on mesodermal expansion in the area vasculosa of the chick. J Embryol Exp MorphoL; v. 65: 89 103, 1981.
8. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res.; v. 14 (1): 53 65,1977.
9. Avdalovic M, Fong D, Formby B. Adhesion and costimulation of proliferative responses of human gamma delta T cells by interaction of VLA-4 and VLA-5 with fibronectin. Immunol Lett.; v. 35 (2): 101 108,1993.
10. Bajanca F, Luz M, Duxson MJ, Thorsteinsdottir S. bitegrins in the mouse myotome: developmental changes and differences between the epaxial and hypaxial lineage. Dev Dyn.; v. 231 (2): 402 415, 2004.
11. Balzac F, Belkin AM, Koteliansky VE, Balabanov YV, Altruda F, Silengo L, Tarone G. Expression and functional analysis of a cytoplasmic domain variant of the pi integrin subunit. J Cell Biol. -, v. 121 (1): 171 178,1993.
12. Bao ZZ, Lakonishok M, Kaufman S, Horwitz AF. a7pi integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci.; v. 106 (Pt 2): 579 -589, 1993.
13. Baija F, Coughlin C, Belin D, Gabbiani G. Actin isoform synthesis and mRNA levels in quiescent and proliferating rat aortic smooth muscle cells in vivo and in vitro. Lab Invest.; v. 55 (2): 226 233,1986.
14. Barrett ТВ, Benditt EP. sis (platelet-derived growth factor В chain) gene transcript levels are elevated in human atherosclerotic lesions compared to normal artery. Proc Natl Acad Sci US A.; v. 84 (4): 1099 1103,1987.
15. Basson CT, Knowles WJ, Bell L, Albelda SM, Castronovo V, Liotta LA, Madri JA. Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events. J Cell Biol.-, v. 110 (3): 789 801,1990.
16. Bednarczyk JL, Teague TK, Wygant JN, Davis LS, Lipsky PE, Mclntyre BW. Regulation of T cell proliferation by anti-CD49d and anti-CD29 monoclonal antibodies. JLeukoc Biol.; v. 52 (4): 456 462,1992.
17. Belkin AM, Ornatsky OI, Glukhova MA, Koteliansky VE. Immunolocalization of meta-vinculin in human smooth and cardiac muscles. J Cell Biol.; v. 107 (2): 545 553, 1988.
18. Belkin AM, Stepp MA. Integrins as receptors for laminins. Microsc Res Tech.; v. 51 (3): 280-301,2000.
19. Belkin VM, Belkin AM, Koteliansky VE. Human smooth muscle VLA-1 integrin: purification, substrate specificity, localization in aorta, and expression during development. J Cell Biol.; v. Ill (5 Pt 1): 2159 2170,1990.
20. Bendeck MP, Irvin C, Reidy M, Smith L, Mulholland D, Horton M, Giachelli CM. Smooth muscle cell matrix metalloproteinase production is stimulated via avp3 integrin. Arterioscler Thromb Vase Biol.; v. 20 (6): 1467 1472, 2000.
21. Bendeck MP, Nakada MT. The P3 integrin antagonist m7E3 reduces matrix metalloproteinase activity and smooth muscle cell migration. J Vase Res.; v. 38 (6): 590 599,2001.
22. Bendeck MP, Zempo N, Clowes AW, Galardy RE, Reidy MA. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res.; v. 75 (3): 539 545,1994.
23. Benditt EP, Benditt JM. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A.; v. 70 (6): 1753 1756, 1973.
24. Benzonana G, Skalli O, Gabbiani G. Correlation between the distribution of smooth muscle or non muscle myosins and a-smooth muscle actin in normal and pathological soft tissues. Cell Motil Cytoskeleton.; v. 11 (4): 260 274, 1988.
25. Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AW, Resink TJ and Smirnov VN. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol. Cell. Biochem.; v. 144: 131 139,1995.
26. Bjorkerud S, Bjorkerud B, Joelsson M. Structural organization of reconstituted human arterial smooth muscle tissue. Arterioscler Thromb.; v. 14 (4): 644 -651,1994.
27. Bjorkerud S, Gustavsson K, Hasselgren M. In vitro cultivation of rabbit aortic media and the development of the cultures in relation to cellular heterogeneity. Acta Pathol Microbiol Immunol Scand AJ.; v. 92 (2): 113 124,1984.
28. Bjorkerud S. Agglomeration to nodules modulates human arterial smooth muscle cells to distinct postinjury phenotype via foam cell transition. Am J Pathol. -, v. 127 (3): 485 498,1987.
29. Bjorkerud S. Cultivated human arterial smooth muscle displays heterogeneous pattern of growth and phenotypic variation. Lab Invest.', v. 53 (3): 303 310, 1985.
30. Bjorkerud S. Separation of arterial smooth muscle cell subpopulations with different growth patterns. Acta Pathol Microbiol Immunol Scand AJ; v. 92 (5): 293-301,1984.
31. Blank RS, Thompson MM, Owens GK. Cell cycle versus density dependence of smooth muscle a actin expression in cultured rat aortic smooth muscle cells. J Cell Biol.; v. 107 (1): 299 306, 1988.
32. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell.; v. 105 (7): 829 841, 2001.
33. Bochaton-Piallat ML, Gabbiani F, Ropraz P, Gabbiani G. Age influences the replicative activity and the differentiation features of cultured rat aortic smoothmuscle cell populations and clones. Arterioscler Thromb.; v. 13 (10): 1449 -1455,1993.
34. Bochaton-Piallat ML, Gabbiani F, Ropraz P, Gabbiani G. Cultured aortic smooth muscle cells from newborn and adult rats show distinct cytoskeletal features. Differentiation; v. 49 (3): 175 185,1992.
35. Bochaton-Piallat ML, Ropraz P, Gabbiani F, Gabbiani G. Phenotypic heterogeneity of rat arterial smooth muscle cell clones. Implications for the development of experimental intimai thickening. Arterioscler Thromb Vase Biol.; v. 16 (6): 815 820,1996.
36. Bodin P, Stoclet JC, Travo P. Differences in myocyte subpopulations from segments of the thoracic aorta and their modifications with age and hypertension in the rat. Cell Tissue Res.; v. 247 (1): 227 231,1987.
37. Boissel JP, Bourdillon MC, Crouzet B, Suplisson A Petiot M, Perrin A. Évolution ultrastructurale de cultures primaires de média aortique de rats. Paroi Arteriélle; t. D (2): 105 121,1974.
38. Boissel JP, Bourdillon MC, Loire R, Crouzet B. Effect of hyperlipemic serum on the growth of primary cultures of rat aortic media. Artery; v. 2 (5): 438 450, 1976.
39. Bondjers G, Glukhova M, Hansson GK, Postnov YV, Reidy MA, Schwartz SM. Hypertension and atherosclerosis. Cause and effect, or two effects with one unknown cause? Circulation.; v. 84 (Suppl 6): VI2 16,1991.
40. Borrione AC, Zanellato AM, Giuriato L, Scannapieco G, Pauletto P, Sartore S. Nonmuscle and smooth muscle myosin isoforms in bovine endothelial cells. Exp Cell Res. \ v. 190 (1): 1-10,1990.
41. Borrione AC, Zanellato AMC, Scannapieco G, Pauletto P, Sartore S. Myosin heavy-chain isoforms in adult and developing rabbit vascular smooth muscle. Eur. J. Biochem.; v.l 83: 413 417,1989.
42. Botney MD, Kaiser LR, Cooper JD, Mecham RP, Parghi D, Roby J, Parks WC. Extracellular matrix protein gene expression in atherosclerotic hypertensive pulmonary arteries. Am J Pathol.-, v. 140 (2): 357 364,1992.
43. Boudreau NJ, Jones PL. Extracellular matrix and integrin signalling: the shape of things to come. Biochem J.; v. 339 (Pt 3): 481 488,1999.
44. Bozyczko D, Decker C, Muschler J7 Horwitz AF. Integrin on developing and adult skeletal muscle. Exp Cell Res. ; v. 183 (1): 72 91,1989.
45. Breier G, Albrecht U, Steuer S, Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development.; v. 114 (2): 521 532,1992.
46. Breton M, Berrou E, Brahimi-Horn MC, Deudon E, Picard J. Synthesis of sulfated proteoglycans throughout the cell cycle in smooth muscle cells from pig aorta. Exp Cell Res.; v. 166 (2): 416 626,1986.
47. Bronner-Fraser M. Neural crest cell formation and migration in the developing embryo. FASEBJ.; v. 8 (10): 699 706, 1994.
48. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin avß3 for angiogenesis. Science; v. 264 (5158): 569 571, 1994.
49. Brusselmans K, Bono F, Collen D, Herbert JM, Carmeliet P, Dewerchin M. A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem. ; v. 280 (5): 3493 3499, 2005.
50. Brzöska E, Bello V, Darribère T, Moraczewski J. Integrin a3 subunit participates in myoblast adhesion and fusion in vitro. Differentiation.; v. 74 (2 -3): 105- 118,2006.
51. Bucher B, Travo P, Laurent P, Stoclet JC. Use of vascular smooth muscle single cell suspensions for rapid cell number determination in rat thoracic aorta media layer. Cell Biol Int Rep.; v. 6 (2): 113 123, 1982a.
52. Bucher B, Travo P, Laurent P, Stoclet JC. Vascular smooth muscle cell hypertrophy during maturation in rat thoracic aorta. Volumetric and morphometric studies. Cell Biol Int Rep.; v. 6 (9): 883 892,1982b.
53. Burdsal CA, Damsky CH, Pedersen RA. The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak. Development. Jul; v. 118 (3): 829 844,1993.
54. Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinman H, Martin GR, Meneguzzi G, Paulsson M, Sanes J, et al. A new nomenclature for the laminins. Matrix Biol. ; v. 14 (3): 209 211,1994.
55. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. ; v. 4: 487 525,1988.
56. Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem.; v. 275 (30): 22607 22610, 2000.
57. Calderwood DA. Integrin activation. Journal of Cell Science; v. 117: 657 666, 2004.
58. Calvete JJ, Henschen A, Gonzalez-Rodriguez J. Assignment of disulphide bonds in human platelet GPHIa. A disulphide pattern for the beta-subunits of the integrin family. Biochem J.; v. 274 (Pt 1): 63 71,1991.
59. Campbell JH, Campbell GR. Endothelial cell influences on vascular smooth muscle phenotype. Annu Rev Physiol.; v. 48: 295 — 306,1986.
60. Campbell JH, Popadinec L, Nestel PJ, Campbell GR. Lipid accumulation in arterial smooth muscle cells. Influence of phenotype. Atherosclerosis:; v. 47: 279 265,1983.
61. Campbell JH, Tachas G, Black MJ, Cockerill G. Molecular biology of vascular hypertrophy. Basic Res Cardiol.-, v. 86 (Suppl 1): 3-11,1991.
62. Camper L, Heinegard D, Lundgren-Akerlund E. Integrin a2pl is a receptor for the cartilage matrix protein chondroadherin. J Cell Biol.', v. 138 (5): 1159 -1167,1997.
63. Carey DJ. Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annu Rev Physiol.', v. 53: 161 — 177,1991.
64. Carlevaro MF, Albini A, Ribatti D, Gentili C, Benelli R, Cermelli S, Cancedda R, Cancedda FD. Transferrin promotes endothelial cell migration and invasion: implication in cartilage neovascularization. J Cell Biol. ; v. 136 (6): 1375 1384, 1997.
65. Carmeliet P, Conway EM. Growing better blood vessels. A polymer scaffold that delivers two angiogenic factors with distinct kinetics shows promise for engineering mature blood vessels. Nature biotechnology,; v. 19: 1019 1020, 2001.
66. Carmeliet P. Angiogenesis in health and disease. Nat Med.; v. 9 (6): 653 660, 2003.
67. Carmeliet P. Angiogenesis in life, disease and medicine. Nature; v. 438: 932 -936, 2005.
68. Carmeliet P. Developmental biology. One cell, two fates. Nature.; v. 408 (6808): 43,45,2000a.
69. Carmeliet P. Integrin indecision. Nature Medicine; v. 8 (1): 14- 16, 2002.
70. Carmeliet P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med; v. 6: 1102 1103, 2000b.
71. Carter WG, Wayner EA, Bouchard TS, Kaur P. The role of integrins a2pi and a3pi in cell-cell and cell-substrate adhesion of human epidermal cells. J Cell Biol. -, v. 110 (4): 1387 1404,1990b.
72. Carver W, Price RL, Raso DS, Terracio L, Borg TK. Distribution of pi integrin in the developing rat heart. JHistochem Cytochem.; v. 42 (2): 167 175,1994.
73. Cascieri MA, Chicchi GG, Hayes NS, Slater EE. Stimulation of DNA synthesis in rat A10 vascular smooth muscle cells by threonine-59 insulin-like growth factor! CircRes.; v. 59 (2): 171 -177,1986.
74. Castellot JJ Jr, Cochran DL, Karnovsky MJ. Effect of heparin on vascular smooth muscle cells. I. Cell metabolism. J Cell Physiol.-, v. 124 (1): 21 — 28, 1985a.
75. Castellot JJ Jr, Wong K, Herman B, Hoover RL, Albertini DF, Wright TC, Caleb BL, Karnovsky MJ. Binding and internalization of heparin by vascular smooth muscle cells. J Cell Physiol/, v. 124 (1): 13-20,1985b.
76. Chaldakov GN, Vankov VN. Morphological aspects of secretion in the arterial smooth muscle cell, with special reference to the Golgi complex and microtubular cytoskeleton. Atherosclerosis:, v. 61 (3): 175 192,1986.
77. Chamley JH, Campbell GR, McConnell JD, Groschel-Stewart U. Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res.; v. 177 (4): 503 522,1977.
78. Chamley-Campbel J, Campbell GR, Ross R. The smooth muscle cell in culture. Physiol. Rev.; v. 59: 1 61,1979.
79. Chang DD, Wong C, Smith H, Liu J. ICAP-1, a novel pi integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of pi integrin. J Cell Biol.; v. 138 (5): 1149 1157, 1997.
80. Chen JK, Hoshi H, McKeehan WL. Transforming growth factor type P specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc Natl Acad Sci USA.; v. 84 (15): 5287 5291, 1987.
81. Chen XL, Tummala PE, Ollifï L, Medford RM. E-selectin gene expression in vascular smooth muscle cells. Evidence for a tissue-specific repressor protein. CircRes.; v. 80 (3): 305-311,1997.
82. Cheng YF, Kramer RH. Human microvascular endothelial cells express integrin-related complexes that mediate adhesion to the extracellular matrix. J Cell Physiol.\ v. 139 (2): 275 286,1989.
83. Cheresh DA, Stupack DG. Integrin-mediated death: An explanation of the integrin-knockout phenotype? Nature Medicine', v. 8: 193 194, 2002.
84. Cheuk BLY, Cheng SWK. Differential expression of integrin a5pi in human abdominal aortic aneurysm and healthy aortic tissues and its significance in pathogenesis. Journal of Surgical Research; v. 118 (2): 176 182, 2004.
85. Chobanian AV, Prescott MF, Haudenschild CC. Recent advances in molecular pathology. The effects of hypertension on the arterial wall. Exp Mol Pathol/, v. 41 (1): 153 169,1984.
86. Choi ET, Khan MF, Leidenfirost JE, Collins ET, Boc KP, Villa BR, Novack DV, Parks WC, Abendschein DR. 63-integrin mediates smooth muscle cell accumulation in neointima after carotid ligation in mice. Circulation; v. 109: 1564 1569, 2004.
87. Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell.; v. 88 (1): 39 48, 1997.
88. Clark RA, Tonnesen MG, Gailit J, Cheresh DA. Transient functional expression of avp3 on vascular cells during wound repair. Am J Pathol/, v. 148 (5): 1407 -1421,1996.
89. Clowes AW, Clowes MM, Kocher O, Ropraz P, Chaponnier C, Gabbiani G. Arterial smooth muscle cells in vivo: relationship between actin isoform expression and mitogenesis and their modulation by heparin. J Cell Biol.; v. 107 (5): 1939 1945, 1988.
90. Clowes AW, Clowes MM. Kinetics of cellular proliferation after arterial injury. IV. Heparin inhibits rat smooth muscle mitogenesis and migration. Circ Res. ; v. 58 (6): 839 845, 1986.
91. Clowes AW, Clowes MM. Kinetics of cellular proliferation after arterial injury. II. Inhibition of smooth muscle growth by heparin. Lab Invest.-, v. 52 (6): 611 — 616,1985.
92. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest.; v. 49 (3): 327 333,1983.
93. Clowes AW, Schwartz SM. Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ Res.; v. 56 (1): 139 145,1985.
94. Cochran DL, Castellot JJ Jr, Karnovsky MJ. Effect of heparin on vascular smooth muscle cells. Et. Specific protein synthesis. J Cell Physiol. ; v. 124 (1): 29 36,1985.
95. Coffin JD, Poole TJ. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embiyos. Development.; v. 102 (4): 735 748,1988.
96. Conway EM, Carmeliet P. The diversity of endothelial cells: a challenge for therapeutic angiogenesis. Genome Biolog; v 5 (2): 207, 2004.
97. Cook CL, Weiser MC, Schwartz PE, Jones CL, Majack RA. Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells. Circ Res.; v. 74 (2): 189 196,1994.
98. Couffinhal T, Duplaa C, Moreau C, Lamaziere JM, Bonnet J. Regulation of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 injhuman vascular smooth muscle cells. Circ Res.,v. 74 (2): 225 234,1994.
99. Daley S J, Gotlieb AI. Fibroblast growth factor receptor-1 expression is associated with neointimal formation in vitro. Am J Pathol. ; v. 148 (4): 1193 -1202,1996.
100. Dalton SL, Scharf E, Briesewitz R, Marcantonio EE, Assoian RK. Cell adhesion to extracellular matrix regulates the life cycle of integrins. Mol Biol Cell, v. 6 (12): 1781 1791,1995.
101. Dana N, Fathallah DM, Araaout MA. Expression of a soluble and functional form of the human beta 2 integrin CD1 lb/CD18. Proc Natl Acad Sci USA.; v. 88 (8): 3106-3110,1991.
102. Daum G, Hedin U, Wang Y, Wang T, Clowes AW. Diverse effects of heparin on mitogen-activated protein kinase-dependent signal transduction in vascular smooth muscle cells. Circ Res.; v. 81 (1): 17-23,1997.
103. Davenpeck KL, Marcinkiewicz C, Wang D, Niculescu R, Shi Y, Martin JL, Zalewski A. Regional differences in integrin expression: role of a5pi in regulating smooth muscle cell functions. Circ Res. ; v. 88 (3): 352 358, 2001.
104. Davenpeck KL, Marcinkiewicz C, Wang D, Niculescu R, Shi Y, Martin JL, Zalewski A. Regional differences in integrin expression: role of a5pi in regulating smooth muscle cell functions. Circ Res.; v. 88 (3): 352 358, 2001.
105. Davies PF. Vascular cell interactions with special reference to the pathogenesis of atherosclerosis. Lab Invest.; v. 55 (1): 5 — 24,1986.
106. Davis EC. Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in aortic medial organization. Lab Invest.; v. 68 (1): 89 99, 1993.
107. De Strooper B, Van der Schueren B, Jaspers M, Saison M, Spaepen M, Van Leuven F, Van den Berghe H, Cassiman JJ. Distribution of the ßl subgroup of the integrins in human cells and tissues. JHistochem Cytochem.; v. 37 (3): 299 -307, 1989.
108. Defilippi P, van Hinsbergh V, Bertolotto A, Rossino P, Silengo L, Tarone G. Differential distribution and modulation of expression of alßl integrin on human endothelial cells. J Cell Biol.; v. 114 (4): 855 863,1991.
109. Deindl E, Ziegelhoffer T, Kanse SM, Fernandez B, Neubauer E, Carmeliet P, Preissner KT, Schaper W. Receptor-independent role of the urokinase-type plasminogen activator during arteriogenesis. The FASEB Journal:; v. 17: 1174 -1176, 2003.
110. Delon I, Brown NH. Integrins and the actin cytoskeleton. Curr Opin Cell Biol.-, v. 19(1): 43-50, 2007.
111. Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer.-, v. 45 (1): 136 139,1982.
112. DeSimone DW. Adhesion and matrix in vertebrate development. Curr Opin Cell Biol.; v. 6 (5): 747 751,1994.
113. Desmouliere A, Rubbia-Brandt L, Gabbiani G. Modulation of actin isoform expression in cultured arterial smooth muscle cells by heparin and culture conditions. Arterioscler Thromb. ; v. 11 (2): 244 253,1991.
114. Dessau W, von der Mark H, von der Mark K, Fischer S. Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis. J Embryol Exp MorphoL; v. 57: 51-60,1980.
115. Deuel TF, Pierce GF, Yeh HJ, Shawver LK, Milner PG, Kimura A. Platelet-derived growth factor/sis in normal and neoplastic cell growth. J Cell Physiol Suppl.; Suppl 5: 95 99,1987.
116. Dilley RJ, McGeachie JK, Prendergast FJ. A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle. Atherosclerosis; v. 63: 99 107,1987.
117. Doctrow SR, Folkman J. Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens. J Cell Biol; v. 104 (3): 679 687,1987.
118. Dormond O, Foletti A, Paroz C, Ruegg C. NSAIDs inhibit avP3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med.; v. 7 (9): 1041 1047,2001.
119. Duband JL, Rocher S, Chen WT, Yamada KM, Thiery JP. Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex. J Cell Biol.; v. 102 (1): 160 178,1986.
120. Dubin D, Peters JH, Brown LF, Logan B, Kent KC, Berse B, Berven S, Cercek B, Sharifi BG, Pratt RE, et al. Balloon catheterization induced arterial expression of embryonic fibronectins. Arterioscler Thromb Vase Biol. -, v. 15 (11): 1958-1967,1995.
121. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. Induction by IL 1 and interferon-y: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol; v. 137 (1): 245 254,1986.
122. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol.; v. 146 (5): 1029 1039,1995.
123. Edelman ER, Nugent MA, Smith LT, Karnovsky MJ. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest.; v. 89 (2): 465 473,1992.
124. Edwards IJ, Wagner WD, Owens RT. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells. Am J Pathol.; v. 136 (3): 609 621,1990.
125. Eichmann A, Makinen T, Alitalo K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes & Dev.; v. 19: 1013 1021, 2005.
126. Ekblom P, Vestweber D, Kemler R. Cell-matrix interactions and cell adhesion during development. Annu Rev Cell Biol.; v. 2: 27 47,1986.
127. Eliceiri BP, Cheresh DA. The role of av integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest.; v. 103 (9): 1227 1230, 1999.
128. Faraldo MM, Deugnier MA, Thiery JP, Glukhova MA. Growth defects induced by perturbation of pl-integrin function in the mammary gland epithelium result from a lack of МАРК activation via the She and Akt pathways. EMBO.; v. 2 (5): 431-437, 2001.
129. Feder J, Marasa JC, Olander JV. The formation of capillary-like tubes by calf aortic endothelial cells grown in vitro. J Cell Physiol. ; v. 116 (1): 1 6,1983.
130. Fingerle J, Kraft T. The induction of smooth muscle cell proliferation in vitro using an organ culture system. IntAngioL; v. 6 (1): 65 72,1987.
131. Fisher SA, Ikebe M, Brozovich F. Endothelin-1 alters the contractile phenotype of cultured embryonic smooth muscle cells. Circ Res.; v. 80 (6): 885 893, 1997.
132. Flamme I, Breier G, Risau W. Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol. ; v. 169 (2): 699 712,1995.
133. Folkman J, Klagsbrun M. Angiogenic factors. Science.; v. 235 (4787): 442 -447,1987a.
134. Folkman J, Klagsbrun M. Vascular physiology. A family of angiogenic peptides. Nature.; v. 329 (6141): 671 672,1987b.
135. Folkman J. Angiogenesis. In: Jaffe EA (ed). Biology of Endothelial Cells. Martinus NijhoffPublishers, Boston; v. 42: 412-428,1984a.
136. Folkman J. What is the role of endothelial cells in angiogenesis? Lab Invest.; v. 51 (6): 601-604,1984b.
137. Forbes SJ, Poulsom R, Wright NA. Hepatic and renal differentiation from blood-borne stem cells. Gene Ther.; v. 9 (10): 625 630, 2002.
138. Form DM, Pratt BM, Madri JA. Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Lab Invest/, v. 55 (5): 521 530, 1986.
139. Fornaro M, Zheng DQ, Languino LR. The novel structural motif Gln795-Gln802 in the integrin ßlC cytoplasmic domain regulates cell proliferation. J Biol Chem.; v. 270 (42): 24666 24669,1995.
140. Francis SE, Goh KL, Hodivala-Dilke K, Bader BL, Stark M, Davidson D, Hynes RO. Central roles of a5ßl integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vase Biol.; v. 22 (6): 927 933, 2002.
141. Franco CD, Hou G, Bendeck MP. Collagens, integrins, and the discoidin domain receptors in arterial occlusive disease. Trends Cardiovasc Med.; v. 12 (4): 143 148, 2002.
142. Frid MG, Aldashev AA, Dempsey EC, Stenmark KR. Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circ Res.; v. 81 (6): 940 -952, 1997a.
143. Frid MG, Dempsey EC, Durmowicz AG, Stenmark KR. Smooth muscle cell heterogeneity in pulmonary and systemic vessels. Importance in vascular disease. Arterioscler Thromb Vase Biol; v. 17 (7): 1203 1209, 1997b.
144. Fujimoto D. Aging and cross-linking in human aorta. Bioehem Biophys Res Commun.; v. 109 (4): 1264-1269,1982.
145. Furcht LT. Critical factors controlling angiogenesis: cell products, cell matrix, and growth fectors. Lab Invest.; v. 55 (5): 505 509, 1986.
146. Gabbiani G, Gabbiani F, Lombardi D, Schwartz SM Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc Natl AcadSci USA.; v. 80 (8): 2361 -2364,1983.
147. Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K. Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J Clin Invest. ; v. 73 (1): 148 152,1984.
148. Gabbiani G, Rungger-Brandle E, de Chastonay C, Franke WW. Vimentin-containing smooth muscle cells in aortic intimal thickening after endothelial injury. Lab Invest.; v. 47 (3): 265 269,1982.
149. Gabella G. An introduction to the structural variety of smooth muscle. Vascular Neuroejfector Mechanisms: 4 th International Symposium: 13 35,1983.
150. Gabella G. Transverse bands in smooth muscle cells. Cell Tissue Res.; v. 237 (2): 203 208,1984.
151. Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Chem.; v. 263 (26): 12927 12932,1988.
152. Galis ZS, Kranzhofer R, Fenton JW 2nd, Libby P. Thrombin promotes activation of matrix metalloproteinase-2 produced by cultured vascular smooth muscle cells. Arterioscler Thromb Vase Biol; v. 17 (3): 483 489, 1997.
153. Gamble JR, Matthias LJ, Meyer G, Kaur P, Russ G, Faull R, Bemdt MC, Vadas MA. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol.; v. 121 (4): 931 943,1993.
154. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 p-converting enzyme. Am J Pathol. ; v. 147 (2): 251-266, 1995.
155. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-y, tumor necrosis factor-a, and interleukin-lp. Arterioscler Thromb Vase Biol.; v. 16 (1): 19-27,1996.
156. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development.; v. 119 (4): 1079 1091,1993.
157. George-Weinstein M, Foster RF, Gerhart JY, Kaufman SJ. In vitro and in vivo expression of a7 integrin and desmin define the primary and secondary myogenic lineages. Dev Biol.; v. 156 (1): 209 229, 1993.
158. Gerrity RG, Cliff WJ. The aortic tunica media of the developing rat. I. Quantitative stereologic and biochemical analysis. Lab Invest.; v. 32 (5): 585 -600, 1975.
159. Giancotti FG, Ruoslahti E. Integrin signaling. Science.; v. 285 (5430): 1028 -1032,1999.
160. Gilbertson-Beadling SK, Fisher C. A potential role for N-cadherin in mediating endothelial cell-smooth muscle cell interactions in the rat vasculature. Lab Invest.; v. 69 (2): 203 209,1993.
161. Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M, Poelmann RE. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vase Biol:, v. 19 (7): 1589 1594,1999.
162. Gladson CL, Hancock S, Arnold MM, Faye-Petersen OM, Castleberry RP, Kelly DR. Stage-specific expression of integrin avfB in neuroblastic tumors. Am JPatholr, v. 148 (5): 1423 1434,1996.
163. Glukhova MA, Frid MG, Koteliansky VE. Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle. J Biol Chem.; v. 265 (22): 13042 13046, 1990a.
164. Glukhova MA, Frid MG, Koteliansky VE. Phenotypic changes of human aortic smooth muscle cells during development and in the adult vessel. Am J Physiol. ; v. 261 (suppl 4): 78 80,1991.
165. Glukhova MA, Frid MG, Shekhonin BV, Balabanov YV, Koteliansky VE. Expression of fibronectin variants in vascular and visceral smooth muscle cells in development. Dev Biol. Sep; v. 141 (1): 193 202, 1990b.
166. Glukhova MA, Frid MG, Shekhonin BV, Vasilevskaya TD, Grunwald J, Saginati M, Koteliansky VE. Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J Cell Biol. ; v. 109 (1): 357 366, 1989.
167. Glukhova MA, Kabakov AE, Belkin AM, Frid MG, Ornatsky OI, Zhidkova N1, Koteliansky VE. Meta-vinculin distribution in adult human tissues and cultured cells. FEBSLett.; v. 207 (1): 139 141,1986.
168. Glukhova MA, Koteliansky VE. Integrins, cytoskeletal and extracellular matrix proteins in developing smooth muscle cells of human aorta. In Vascular smooth muscle cell. Academic Press Inc.: 37 78,1995.
169. Glukhova MA, Thiery JP. Fibronectin and integrins in development. Semin Cancer Biol; v. 4 (4): 241 249,1993.
170. Goldberg ID, Stemerman MB, Ransil BJ, Fuhro RL. In vivo aortic muscle cell growth kinetics. Differences between thoracic and abdominal segments after intimal injury in the rabbit. Circ Res. ; v. 47 (2): 182 189,1980.
171. Gordon D, Mohai LG, Schwartz SM. Induction of polyploidy in cultures of neonatal rat aortic smooth muscle cells. Circ Res.; v. 59 (6): 633 — 644,1986.
172. Gordon D, Schwartz SM. Replication of arterial smooth muscle cells in hypertension and atherosclerosis. Am J Cardiol.; v. 59 (2): 44A 48A, 1987.
173. Gospodarowicz D, Hirabayashi K, Giguere L, Tauber JP. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture. J Cell Biol.; v. 89 (3): 568 578, 1981.
174. Gown AM, Tsukada T, Ross R. Human atherosclerosis. n. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol. ; v. 125 (1): 191 -207,1986.
175. Grant DS, Tashiro K, Segui-Real B, Yamada Y, Martin GR, Kleinman HK. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell.; v. 58 (5): 933 943,1989.
176. Grunwald J, Chobanian AV, Haudenschild CC. Smooth muscle cell migration and proliferation: atherogenic mechanisms in hypertension. Atherosclerosis., v. 67 (2-3): 215-221,1987.
177. Grunwald J, Haudenschild CC. Intimai injury in vivo activates vascular smooth muscle cell migration and expiant outgrowth in vitro. Arteriosclerosis; v. 4 (3): 183 188, 1984.
178. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell.; v. 84 (3): 345 357,1996.
179. Guyton JR, Rosenberg RD, Clowes AW, Karnovsky MJ. Inhibition of rat arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res.; v. 46 (5): 625 634, 1980.
180. Haider SR, Wang W, Kaufman S J. SV40 T antigen inhibits expression of MyoD and myogenin, up-regulates Myf-5, but does not affect early expression of desmin or a7 integrin during muscle development. Exp Cell Res.; v. 210 (2): 278 286, 1994.
181. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev.; v. 85 (3): 979 1000, 2005.
182. Han DK, Haudenschild CC, Hong MK, Tinkle BT, Leon MB, Liau G. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol.; v. 147 (2): 267 277,1995.
183. Hansen LK, Mooney DJ, Vacanti JP, Ingber DE. Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell ; v. 5 (9): 967 975, 1994.
184. Hansson GK, Bondjers G. Endothelial dysfunction and injury in atherosclerosis. Acta MedScandSuppl; v. 715: 11 17,1987.
185. Hansson GK, Jonasson L, Holm J, Clowes MM, Clowes AW. y-interferon regulates vascular smooth muscle proliferation and la antigen expression in vivo and in vitro. Circ Res. ; v. 63 (4): 712 719,1988.
186. Hasenstab D, Forough R, Clowes AW. Plasminogen activator inhibitor type 1 and tissue inhibitor of metalloproteinases-2 increase after arterial injury in rats. Circ Res. ; v. 80 (4): 490 496,1997.
187. Haudenschild CC, Grunwald J. Proliferative heterogeneity of vascular smooth muscle cells and its alteration by injury. Exp Cell Res.; v. 157 (2): 364 370, 1985.
188. Hautmann MB, Adam PJ, Owens GK. Similarities and differences in smooth muscle a-actin induction by TGF-p in smooth muscle versus non-smooth muscle cells. Arterioscler Thromb Vase Biol ; v. 19 (9): 2049 2058,1999.
189. Hedin U, Bottger BA, Forsberg E, Johansson S, Thyberg J. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol.; v. 107 (1): 307-319,1988.
190. Hedin U, Roy J, Tran PK, Lundmark K, Rahman A. Control of smooth muscle cell proliferation the role of the basement membrane. Thromb Haemost.; v. 82 (Suppl 1): 23 - 26,1999.
191. Hedin U, Thyberg J, Roy J, Dumitrescu A, Tran PK. Role of tyrosine kinases in extracellular matrix-mediated modulation of arterial smooth muscle cell phenotype. Arterioscler Thromb Vase Biol; v. 17 (10): 1977 1984,1997.
192. Heerkens EH, Izzard AS, Heagerty AM. Integrins, vascular remodeling, and hypertension. Hypertension. Jan; v. 49 (1): 1-4, 2007.
193. Heine UI, Roberts AB, Munoz EF, Roche NS, Spora MB. Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arch B Cell Pathol Incl Mol Pathol.; v. 50 (2): 135 152, 1985.
194. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-p in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development.; v. 126 (14): 3047 3055, 1999.
195. Herbert JM, Clowes M, Lea HJ, Pascal M, Clowes AW. Protein kinase Ca expression is required for heparin inhibition of rat smooth muscle cell proliferation in vitro and in vivo. J Biol Chem.; v. 271 (42): 25928 25935, 1996.
196. Herbert JM, Maffrand JP. Heparin interactions with cultured human vascular endothelial and smooth muscle cells: incidence on vascular smooth muscle cell proliferation. J Cell Physiol.; v. 138 (2): 424 432, 1989.
197. Herman B, Roe MW, Harris C, Wray B, Clemmons D. Platelet-derived growth factor-induced alterations in vinculin distribution in porcine vascular smooth muscle cells. CellMotil Cytoskeleton.; v. 8 (2): 91 105,1987.
198. Herman IM. Extracellular matrix-cytoskeletal interactions in vascular cells. Tissue Cell.; v. 19 (1): 1 19, 1987.
199. Hertle MD, Adams JC, Watt FM. Integrin expression during human epidermal development in vivo and in vitro. Development.; v. 112 (1): 193 206,1991.
200. Hirakow R, Hiruma T. Scanning electron microscopic study on the development of primitive blood vessels in chick embryos at the early somite-stage. Anat Embryol (Berl).; v. 163 (3): 299 306,1981.
201. Hirschi KK, Goodell MA. Hematopoietic, vascular and cardiac fetes of bone marrow-derived stem cells. Gene Ther. ; v. 9 (10): 648 652, 2002.
202. Hirschi KK, Majesky MW. Smooth muscle stem cells. Anat Rec A Discov Mol CellEvolBiol; v.276 (1): 22 33, 2004.
203. Hirschi KK, Majesky MW. Smooth muscle stem cells. Anat Rec A Discov Mol CellEvolBiol; v. 276 (1): 22 33, 2004
204. Hirschi KK, Rohovsky SA, D'Amore PA. PDGF, TGF-P, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol.; v. 141 (3): 805 -814, 1998.
205. Hodivala KJ, Watt FM. Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. J Cell Biol.; v. 124 (4): 589 600,1994.
206. Hollmann J, Thiel J, Schmidt A, Buddecke E. Increased activity of chondroitin sulfate-synthesizing enzymes during proliferation of arterial smooth muscle cells. Exp Cell Res.; v. 167 (2): 484 94,1986.
207. Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA. Differential av integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. The Journal of Cell Biology; v. 162 (5): 933 943, 2003.
208. Hood LC, Rosenquist TH. Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec.; v. 234 (2): 291 300,1992.
209. Hoofhagle MH, Wamhoff BR, Owens GK. Lost in transdifferentiation. J.Clin.Inves.t; v. 113 (9): 1249 1251, 2004.
210. Horn MC, Breton M, Deudon E, Berrou E, Picard J. The structural characterization of proteoglycans of cultured aortic smooth muscle cells and arterial wall of the pig. Biochim Biophys Acta.; v. 755 (1): 95 105,1983.
211. Hu N, Clark EB. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res.; v. 65 (6): 1665 1670,1989.
212. Humphries MJ, Travis MA, Clark K, Mould AP. Mechanisms of integration of cells and extracellular matrices by integrins. Biochem Soc Trans.; v.32: 822 -825, 2004.
213. Husain M, Bein K, Jiang L, Alper SL, Simons M, Rosenberg RD. c-Myby rdependent cell cycle progression and Ca storage in cultured vascular smooth muscle cells. Circ Res.; v. 80 (5): 617 626, 1997.
214. Hynes RO, Lander AD. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell. ; v. 68 (2): 303 322,1992.
215. Hynes RO, Lively JC, McCarty JH, Taveraa D, Francis SE, Hodivala-Dilke K, Xiao Q. The diverse roles of integrins and their ligands in angiogenesis. Cold Spring Harb Symp Quant Biol. ; v. 67: 143 153, 2002.
216. Hynes RO, Yamada KM. Fibronectins: multifunctional modular glycoproteins. J Cell Biol ; v. 95 (2 Pt 1): 369 377,1982.
217. Hynes RO. Cell-matrix adhesion in vascular development. J Thromb Haemost.; v. 5 Suppl 1: 32 40, 2007.
218. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell; v. 110 (6): 673 687, 2002.
219. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell; v. 69 (1): 11 -25,1992.
220. Ilan N, Mahooti S, Madri JA. Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J Cell Sci.; v. Ill (Pt 24): 3621 -3631,1998.
221. Ingber D, Folkman J. Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest.; v. 59 (1): 44 51,1988.
222. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest.; v. 103 (9): 1231 1236, 1999.
223. Jackson CJ, Jenkins KL. Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res.; v. 192 (1): 319 323,1991.
224. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiacmuscle and vascular endothelium by adult stem cells. J Clin Invest.; v. 107 (11): 1395 1402, 2001.
225. Janat MF, Argraves WS, Liau G. Regulation of vascular smooth muscle cell integrin expression by transforming growth factor pi and by platelet-derived growth factor-BB. J Cell Physiol.; v. 151 (3): 588 595, 1992.
226. Janat MF, Liau G. Transforming growth factor pi is a powerful modulator of platelet-derived growth factor action in vascular smooth muscle cells. J Cell Physiol.; v. 150 (2): 232 42, 1992.
227. Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest. ; v. 89 (2): 507 -511,1992.
228. Johnson AD, Berberian PA, Tytell M, Bond MG. Differential distribution of 70-kD heat shock protein in atherosclerosis. Its potential role in arterial SMC survival. Arterioscler Thromb Vase Biol.; v. 15 (1): 27 36, 1995.
229. Jonasson L, Holm J, Hansson GK. Smooth muscle cells express la antigens during arterial response to injury. Lab Invest.; v. 58 (3): 310 315, 1988.
230. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell; v. 73 (4): 713 724,1993.
231. Jovinge S, Hultgardh-Nilsson A, Regnstrom J, Nilsson J. Tumor necrosis factor-a activates smooth muscle cell migration in culture and is expressed in the balloon-injured rat aorta. Arterioscler Thromb Vase Biol; v. 17 (3): 490 497, 1997.
232. Kadoya Y, Yamashina S. Distribution of a6 integrin subunit in developing mouse submandibular gland. J Histochem Cytochem.; v. 41 (11): 1707 1714, 1993.
233. Kessel J, Fabian B. Inhibitory and stimulatory influences on mesodermal eiythropoiesis in the early chick blastoderm. Development.; v. 101 (1): 45 49, 1987.
234. Khachigian LM, Collins T. Inducible expression of Egr-1 -dependent genes. A paradigm of transcriptional activation in vascular endothelium. Circ Res. ; v. 81 (4): 457-461,1997.
235. Kieny M, Mauger A, Chevallier A, Sengel P. Origine embriologique des muscles lisses cutanés chez les oiseaux. Arch Anat Microsc Morphol Exp.; v. 68 (4): 283 290,1979.
236. Kinsella MG, Wight TN. Isolation and characterization of dermatan sulfate proteoglycans synthesized by cultured bovine aortic endothelial cells. J Biol Chem.; v. 263 (35): 19222 19231,1988.
237. Kirchhofer D, Languino LR, Ruoslahti E, Pierschbacher MD. a2pl integrins from different cell types show different binding specificities. J Biol Chem.; v. 265(2): 615-618, 1990.
238. Kocher O, Gabbiani G. Analysis of a-smooth-muscle actin mRNA expression in rat aortic smooth-muscle cells using a specific cDNA probe. Differentiation.; v. 34(3): 201 -209, 1987.
239. Kocher O, Gabbiani G. Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Hum Pathol.; v. 17 (9): 875 880,1986.
240. Kocher O, Skalli O, Bloom WS, Gabbiani G. Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimal thickening. Lab Invest.; v. 50 (6): 645 652,1984.
241. Kocher O, Skalli O, Cerutti D, Gabbiani F, Gabbiani G. Cytoskeletal features of rat aortic cells during development. An electron microscopic, immunohistochemical, and biochemical study. Circ Res.-, v. 56 (6): 829 838, 1985.
242. Koo EW, Gotlieb AI. Endothelial stimulation of intimal cell proliferation in a porcine aortic organ culture. Am J Pathol. ; v. 134 (3): 497 503,1989.
243. Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell.; v. 87 (6): 1069 1078,1996b.
244. Koyama H, Reidy MA. Reinjury of arterial lesions induces intimal smooth muscle cell replication that is not controlled by fibroblast growth factor 2. Circ Res.; v. 80 (3): 408 417,1997.
245. Kuro-o M, Nagai R, Tsuchimochi H, Katoh H, Yazaki Y, Ohkubo A, Takaku F. Developmentally regulated expression of vascular smooth muscle myosin heavy chain isoforms. J. Biol. Chem.; v. 264 (31): 18272 18275,1989.
246. Lark MW, Wight TN. Modulation of proteoglycan metabolism by aortic smooth muscle cells grown on collagen gels. Arteriosclerosis.-, v. 6 (6): 638 650, 1986.
247. Larsen M, Artym VV, Green JA, Yamada KM. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol.; v. 18(5): 463-471,2006.
248. Larson DM, Fujiwara K, Alexander RW, Gimbrone MA Jr. Myosin in cultured vascular smooth muscle cells: immunofluorescence and immunochemical studies of alterations in antigenic expression. J Cell Biol.; v. 99 (5): 1582 -1589,1984.
249. Larson RS, Springer TA. Structure and function of leukocyte integrins. Immunol Rev. ; v. 114: 181 -217,1990.
250. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell.; v. 84 (3): 359 369,1996.
251. Lee E, Grodzinsky AJ, Libby P, Clinton SK, Lark MW, Lee RT. Human vascular smooth muscle cell-monocyte interactions and metalloproteinase secretion in culture. Arterioscler Thromb Vase Biol.; v. 15 (12): 2284 2289, 1995.
252. Lee RT, Berditchevski F, Cheng GC, Hemler ME. Integrin-mediated collagen matrix reorganization by cultured human vascular smooth muscle cells. Circ Res.; v. 76 (2): 209 214,1995.
253. Lee SH, Hungerford JE, Little CD, Iruela-Arispe ML. Proliferation and differentiation of smooth muscle cell precursors occurs simultaneously during the development of the vessel wall. Dev Dyn. ; v. 209 (4): 342 352,1997.
254. Leivo I, Vaheri A, Timpl R, Wartiovaara J. Appearance and distribution of collagens and laminin in the early mouse embryo. Dev Biol.; v. 76 (1): 100 -114,1980.
255. Lemire JM, Covin CW, White S, Giachelli CM, Schwartz SM. Characterization of cloned aortic smooth muscle cells from young rats. Am J Pathol. ; v. 144 (5): 1068-1081,1994.
256. Li R, Bennett J.S, Degrado W.F. Structural basis for integrin allbp3 clustering.• Biochem Soc Trans.; v. 32: 412 415, 2004.
257. Li S, Van Den Diepstraten C, D'Souza SJ, Chan BMC, Pickering JG. Vascular smooth muscle cells orchestrate the assembly of type I collagen via a2Bl integrin, RhoA, and fibronectin polymerization. American Journal of Pathology; v. 163: 1045 1056, 2003.
258. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM. Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res.; v. 74 (2): 214 224,1994.
259. Libby P, Miao P, Ordovas JM, Schaefer EJ. Lipoproteins increase growth of mitogen-stimulated arterial smooth muscle cells. J Cell Physiol ; v. 124 (1): 1 -8,1985.
260. Libby P. Changing concepts of atherogenesis. Journal of Internal Medicine; v. 247: 349 358, 2000.
261. Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L, Aukhil I, Juliano RL. Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol. ; v. 136 (6): 1385 1395, 1997.
262. Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins. J Cell Sci.; v. 113 (Pt 20): 3563 3571. 2000.
263. Lofberg J, Ahlfors K, Fallstrom C. Neural crest cell migration in relation to extracellular matrix organization in the embryonic axolotl trunk. Dev Biol. Mar; v. 75 (1): 148 167,1980.
264. Lohler J, Timpl R, Jaenisch R. Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death. Cell.; v. 38 (2): 597 607,1984.
265. Lonai P. Epithelial mesenchymal interactions, the ECM and limb development. J. Anat.; v. 202: 43 50, 2003.
266. Longenecker JP, Kilty LA, Johnson LK. Glucocorticoid inhibition of vascular smooth muscle cell proliferation: influence of homologous extracellular matrix and serum mitogens .J Cell Biol.; v. 98 (2): 534 540,1984.
267. Looker T, Berry CL. The growth and development of the rat aorta, n. Changes in nucleic acid and scleroprotein content J Anat.; v. 113 (Pt 1): 17 34, 1972.
268. Lub M, van Kooyk Y, van Vliet SJ, Figdor CG. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1. MolBiol Cell.; v. 8 (2): 341 351, 1997a.
269. Lukito S, Schwartz SM, Mulvihill ER, Jaeger J, Sengupta R, Ruzzo WL, Reimer C. Atherosclerotic plaque smooth muscle cells have a distinct phenotype. Arterioscler. Thromb. Vase. Biol.; v. 24: 1283 1289, 2004.
270. Ma H, Calderon TM, Kessel T, Ashton AW, Berman JW. Mechanisms of hepatocyte growth factor-mediated vascular smooth muscle cell migration. Circulation Research; v. 93: 1066 1073, 2003.
271. Madri JA. Extracellular matrix modulation of vascular cell behaviour. Transpl Immunol.', v. 5 (3): 179 183, 1997.
272. Majack RA, Cook SC, Bornstein P. Control of smooth muscle cell growth by components of the extracellular matrix: autocrine role for thrombospondin. Proc Natl Acad Sci USA.; v. 83 (23): 9050 9054, 1986.
273. Majack RA. P-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures. J Cell Biol. ; v. 105 (1): 465 71, 1987.
274. Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA. Production of transforming growth factor pi during repair of arterial injury. J Clin Invest.; v. 88 (3): 904 910, 1991.
275. Manderson JA, Cocks TM, Campbell GR. Balloon catheter injury to rabbit carotid artery. EL Selective increase in reactivity to some vasoconstrictor drugs. Arteriosclerosis.; v. 9 (3): 299 307,1989.
276. Margariti A, Zeng L, Xu Q. Stem cells, vascular smooth muscle cells and atherosclerosis. Histol Histopathol.; v. 21(9): 97 85, 2006.
277. Mawatari K, Liu B, Kent KC. Activation of integrin receptors is required for growth factor-induced smooth muscle cell dysfunction. J Vase Surg. ; v. 31 (2): 375 381, 2000.
278. Mayne R. Collagenous proteins of blood vessels. Arteriosclerosis.; v. 6 (6): 585 593,1986.
279. McMahon MP, Faris B, Wolfe BL, Brown KE, Pratt CA, Toselli P, Franzblau C. Aging effects on the elastin composition in the extracellular matrix of cultured rat aortic smooth muscle cells. In Vitro Cell Dev Biol.; v. 21 (12): 674 -680,1985.
280. Mercurius KO, Morla AO. Inhibition of vascular smooth muscle cell growth by inhibition of fibronectin matrix assembly. Circ Res.; v. 82 (5): 548 — 556,1998.
281. Merklinger SL, Jones PL, Martinez EC, Rabinovitch M. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation; v. 112 (3): 423 431, 2005.
282. Meyrick B, Reid L. Normal postnatal development of the media of the rat hilar pulmonary artery and its remodeling by chronic hypoxia. Lab Invest. ; v. 46 (5): 505 514, 1982.
283. Miao H, Burnett E, Kinch M, Simon E, Wang B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol.; v. 2 (2): 62 69, 2000.
284. Miki S. Genesis of the splenic vein. Vascular Neuroeffector Mechanisms: 4 th International Symposium: 195 201,1983.
285. Millis AJ, Hoyle M, Kent L. In vitro expression of a 38,000 dalton heparin-binding glycoprotein by morphologically differentiated smooth muscle cells. J Cell Physiol.; v. 127 (3): 366 372,1986.
286. Milner R, Campbell IL. Developmental regulation of pi integrins during angiogenesis in the central nervous system. Mol Cell Neurosci.; v. 20 (4): 616 -626, 2002.
287. Moiseeva EP, Williams B, Goodall AH, Samani NJ. Galectin-1 interacts with ßl subunit of integrin. Biochem Biophys Res Commun.; v. 310 (3): 1010 1016, 2003.
288. Montesano R, Orci L, Vassalli P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol. ; v. 97 (5 Pt 1): 1648-1652,1983.
289. Montesano R, Orci L. Phorbol esters induce angiogenesis in vitro from large-vessel endothelial cells. J Cell Physiol. ; v. 130 (2): 284 291,1987.
290. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sei U S A.; v. 83 (19): 7297-7301, 1986.
291. Morton LF, Barnes MJ. Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, II and IV. Atherosclerosis; v. 42: 41 51,1982.
292. Moses HL, Coffey RJ Jr, Leof EB, Lyons RM, Keski-Oja J. Transforming growth factor ß regulation of cell proliferation. J Cell Physiol Suppl.; Suppl 5: 1 7, 1987.
293. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Developmen; v. 128: 3359 3370,2001.
294. Munro JM, Cotran RS. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Investv. 58 (3): 249 261,1988.
295. Murphy ME, Carlson EC. An ultrastructural study of developing extracellular matrix in vitelline blood vessels of the early chick embryo. Am J Anat.; v. 151 (3): 345 375,1978.
296. Nagai Y, Yamane T, Watanabe H, Yoshida Y. Diffuse intimal thickening and other mesenchymal changes. Ann N YAcad Sei.; v. 598: 71 76,1990.
297. Newman CM, Bruun BC, Porter KE, Mistry PK, Shan ah an CM, Weissberg PL. Osteopontin is not a marker for proliferating human vascular smooth muscle cells. Arterioscler Thromb Vase Biol; v. 15 (11): 2010-2018,1995.
298. Nicosia RF, Tchao R, Leighton J. Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In Vitro.; v. 18 (6): 538 549, 1982.
299. Nikkari ST, Koistinaho J, Jaakkola O. Changes in the composition of cytoskeletal and cytocontractile proteins of rat aortic smooth muscle cells during aging. Differentiation.; v. 44 (3): 216 221, 1990.
300. Nilsson J. Growth factors and the pathogenesis of atherosclerosis. Atherosclerosis; v. 62 (3): 185 199, 1986.
301. Nugent MA, Karnovsky MJ, Edelman ER. Vascular cell-derived heparan sulfate shows coupled inhibition of basic fibroblast growth factor binding and mitogenesis in vascular smooth muscle cells. Circ Res.; v. 73 (6): 1051 1060, 1993.
302. Ohkawa Y, Hayashi K, Sobue K. Calcineurin-mediated pathway involved in the differentiated phenotype of smooth muscle cells. Biochem Biophys Res Commune v. 301 (1): 78 83, 2003.
303. Ohlsson RI, Pfeifer-Ohlsson SB. Cancer genes, proto-oncogenes, and development. Exp Cell Res. ; v. 173 (1): 1 16,1987.
304. Oikawa S, Hori S, Sano R, Suzuki N, Fujii Y, Abe R, Goto Y. Effect of low density lipoprotein on DNA synthesis of cultured human arterial smooth muscle cells. Atherosclerosis.; v. 64 (1): 7 12,1987.
305. Olah I, Medgyes J, Glick B. Origin of aortic cell clusters in the chicken embiyo. AnatRec.; v. 222 (1): 60 68,1988.
306. Olivetti G, Anversa P, Melissari M, Loud AV. Morphometric study of early postnatal development of the thoracic aorta in the rat. Circ Res.; v. 47 (3): 417 -424,1980.
307. Olivetti G, Anversa P, Melissari M, Loud AV. Morphometry of medial hypertrophy in the rat thoracic aorta. Lab Invest.; v. 42 (5): 559 565, 1980.
308. Olivetti G, Melissari M, Marchetti G, Anversa P. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circ Res.; v. 51 (1): 19-26,1982.
309. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell.; v. 88 (2): 277 — 285,1997.
310. Orlidge A, D'Amore PA. Inhibition of capillary endothelial cell growth by pericytes and smopth muscle cells. J Cell Biol. \ v. 105 (3): 1455 1462,1987.
311. Osborn M, Caselitz J, Puschel K, Weber K. Intermediate filament expression in human vascular smooth muscle and in arteriosclerotic plaques. Virchows Arch A Pathol Anat Histopathol; v. 411 (5): 449 458,1987.
312. Osborn M, Weber K. Intermediate filaments: cell-type-specific markers in differentiation and pathology. Cell.; v. 31 (2 Pt 1): 303 306,1982.
313. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev.; v. 84: 767 801, 2004.
314. Owens GK, Loeb A, Gordon D, Thompson MM. Expression of smooth muscle-specific a-isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J Cell Biol; v. 102 (2): 343 352, 1986.
315. Owens GK, Rabinovitch PS, Schwartz SM. Smooth muscle cell hypertrophy versus hyperplasia in hypertension. Proc Natl Acad Sci USA.; v. 78 (12): 7759 -7763, 1981.
316. Owens GK, Reidy MA. Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by aortic coarctation. Circ Res.; v. 57 (5): 695 705,1985.
317. Owens GK, Schwartz SM. Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ Res.; v. 53 (4): 491 501, 1983.
318. Owens GK, Thompson MM. Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem.; v. 261 (28): 13373 80,1986.
319. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev.; v. 75 (3): 487 517,1995.
320. Palotie A, Tryggvason K, Peltonen L, Seppa H. Components of subendothelial aorta basement membrane. Immunohistochemical localization and role in cell attachment. Lab Invest.; v. 49 (3): 362 370,1983.
321. Pardanaud L, Yassine F, Dieterlen-Lievre F. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development.; v. 105 (3): 473 485,1989.
322. Pardee AB. The Yang and Yin of cell proliferation: an overview .J Cell Physiol SuppL; Suppl 5: 107 110,1987.
323. Parlavecchia M, Skalli O, Gabbiani G. LDL accumulation in cultured rat aortic smooth muscle cells with different cytoskeletal phenotypes. J. of Vascular Medicine and Biology; v. 1 (5): 308 313,1989.
324. Patel MK, Lymn JS, Clunn GF, Hughes AD. Thrombospondin-1 is a potent mitogen and chemoattractant for human vascular smooth muscle cells. Arterioscler Thromb Vase Biol.; v. 17 (10): 2107 2114,1997.
325. Pearson TA, Dillman JM, Solez K, Heptinstall RH. Clonal characteristics in layers of human atherosclerotic plaques. A study of the selection hypothesis of monoclonality. Am J Pathol ; v. 93 (1): 93 116,1978.
326. Peclo MM, Printseva OYu. Retinoic acid enhances the proliferation of smooth muscle cells. Experientia.; v. 43 (2): 196 198,1987.
327. Pepper MS, Montesano R. Proteolytic balance and capillary morphogenesis. Cell Differ Dev.; v. 32 (3): 319 327,1990.
328. Pepper MS. Manipulating angiogenesis. From basic science to the bedside. Arterioscler Thromb Vase Biol; v. 17 (4): 605 619,1997.
329. Peterson PE, Pow CS, Wilson DB, Hendrickx AG. Characterizationof theextracellular matrix during somitogenesis in the long-tailed monkey —v-Vlacacafascicularisj. ActaAnat (Basel):, v. 146 (4): 223 233,1993a.
330. Peterson PE, Pow CS, Wilson DB, Hendrickx AG. Distribution of extra.^^^ ^ matrix components during early embryonic development in the macaqts^1. Acta
331. Anat (Basel). -, v. 146 (1): 3 13,1993b.
332. Phillips DR, Charo IF, Scarborough RM. GPIIb-IDa: the responsivetegrin.
333. Cell.; v. 65 (3): 359 362,1991.
334. Pickering JG, Uniyal S, Ford CM, Chau T, Laurin MA, Chow LH, El:*-,1. J-is CG,
335. Fish J, Chan BM. Fibroblast growth factor-2 potentiates vascular smoot£>musclecell migration to platelet-derived growth factor: upregulation of a2Bl ^1. JJitegrinand disassembly of actin filaments. Circ Res. ', v. 80 (5): 627 637,199"ps*
336. Pinter E, Barreuther M, Lu T, Imhof BA, Madri JA. Platelet-endoth.^^ ^ adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation statesflangesduring vasculogenesis in the murine conceptus. Am J Pathol; v. 150 (5^ J523 1530,1997.
337. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to irtt«=».grins. J
338. Biol Chem.; v. 275 (29): 21785 21788, 2000.
339. Polverini PJ, Leibovich SJ. Induction of neovascularization in Vi\1. Vo andendothelial proliferation in vitro by tumor-associated macrophages. Lctf^ v. 51 (6): 635 642, 1984.
340. Polverini PJ. Cellular adhesion molecules. Newly identified medi^1. J^tors ofangiogenesis. Am J Pathol; v. 148 (4): 1023 -1029,1996.
341. Pompiii VJ, Gordon D, San H, Yang Z, Müller DW, Nabel GJ, Nabel EG. Expression and function of a recombinant PDGF B gene in porcine arteries. Arterioscler Thromb Vase Biol.; v. 15 (12): 2254 2264,1995.
342. Pourquie O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, Breant C, FrancisWest P, Brickell P, Tessier-Lavigne M, Le Douarin NM. Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell.; v. 84 (3): 461 -471,1996.
343. Pratt BM, Harris AS, Morrow JS, Madri JA. Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix. Am J Pathol ; v. 117 (3): 349 354,1984.
344. Printseva OYu, Faerman AI, Tjurmin AV. The expression of specific surface antigen of smooth muscle cells is related to proliferation. Exp Cell Res.; v. 169 (1): 85 94,1987.
345. Printseva OYu, Peclo MM, Gown AM. Various cell types in human atherosclerotic lesions express ICAM-1. Further immunocytochemical and immunochemical studies employing monoclonal antibody 10F3. Am J Pathol ; v. 140 (4): 889 896, 1992.
346. Prockop DJ, Kivirikko KI. Heritable diseases of collagen. Engl J Med.; v. 311 (6): 376 386,1984.
347. Pyeritz RE, Stolle CA, Parfrey NA, Myers JC. Ehlers-Danlos syndrome IV due to a novel defect in type HI procollagen. Am J Med Genet. ; v. 19 (3): 607 622, 1984.
348. Qin J, Vinogradova O, Plow EF. Integrin bidirectional signaling: a molecular view. PLoS Biology; v. 2 (6): 0726 0729, 2004.
349. Quinlan RA, Franke WW. Heteropolymer filaments of vimentin and desmin in vascular smooth muscle tissue and cultured baby hamster kidney cells demonstrated by chemical crosslinking. Proc Natl Acad Sei U S A.; v. 79 (11): 3452-3456,1982.
350. Rafii S, Heissig B, Hattori K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther.; v. 9 (10): 631 641, 2002.
351. Rafii S. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest.; v. 105 (1): 17 19, 2000.
352. Raines EW. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. J. Exp. Path.; v. 81: 173 182, 2000.
353. Rasmussen LM, Wolf YG, Ruoslahti E. Vascular smooth muscle cells from injured rat aortas display elevated matrix production associated with transforming growth factor-P activity. Am J Pathol.; v. 147 (4): 1041 — 1048, 1995.
354. Reed MJ, Corsa A, Pendergrass W, Penn P, Sage EH, Abrass IB. Neovascularization in aged mice: delayed angiogenesis is coincident with decreased levels of transforming growth factor pi and type I collagen. Am J Pathol; v. 152 (1): 113 123,1998.
355. Regen CM, Horwitz AF. Dynamics of pi integrin-mediated adhesive contacts in motile fibroblasts. J Cell Biol; v. 119 (5): 1347 1359,1992.
356. Reidy MA, Lindner V. Basic FGF and growth of arterial cells. Ann N Y Acad Sci.; v. 638: 290 -299, 1991.
357. Reidy MA, Schwartz SM. Endothelial regeneration, m. Time course of intimal changes after small defined injury to rat aortic endothelium. Lab Invest.; v. 44 (4): 301 308,1981.
358. Reidy MA. A reassessment of endothelial injury and arterial lesion formation. Lab Invest.; v. 53 (5): 513 520, 1985.
359. Reidy MA. Endothelial regeneration. VUL Interaction of smooth muscle cells with endothelial regrowth. Lab Invest. ; v. 59 (1): 36 43,1988.
360. Reilly CF, Fritze LM, Rosenberg RD. Heparin inhibition of smooth muscle cell proliferation: a cellular site of action. J Cell Physiol ; v. 129 (1): 11-19,1986.
361. Reilly CF, Fritze LM, Rosenberg RD. Heparin-like molecules regulate the number of epidermal growth factor receptors on vascular smooth muscle cells. J Cell Physiol:, v. 136 (1): 23 32,1988.
362. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr, Gimbron MA Jr. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci U S A.; v. 90 (16): 7908, 1993.
363. Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM. Enhanced pathological angiogenesis in mice lacking 03 integrin or (33 and (35 integrins. Nature Medicine v. 8 (1): 27 34, 2002.
364. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. ; v. 11: 73 91, 1995.
365. Rocnik EF, Chan BM, Pickering JG. Evidence for a role of collagen synthesis in arterial smooth muscle cell migration. J Clin Invest.; v. 101 (9): 1889 1898, 1998.
366. Rosen GD, Sanes JR, LaChance R, Cunningham JM, Roman J, Dean DC. Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell.; v. 69(7): 1107- 1119, 1992.
367. Ross R, Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med.; v. 295 (7): 369 377; v. 295 (8): 420 - 425,1976.
368. Ross R. The pathogenesis of atherosclerosis an update. N Engl J Med.; v. 314 (8): 488 - 500,1986.
369. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature.; v. 362 (6423): 801 809, 1993.
370. Ross RS, Borg TK. Integrins and the myocardium. Circ Res.; v. 88 (11): 1112 -1119, 2001.
371. Rothlein R, Dustin ML, Marlin SD, Springer TA. A human intercellular adhesion molecule (TCAM-1) distinct from LFA-1. J Immunol. ; v. 137 (4): 1270 1274,1986.
372. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science; v. 238 (4826): 491 497,1987.
373. Ruoslahti E. Integrins. J Clin Invest ; v. 87 (1): 1 5,1991.
374. Saborio JL, Segura M, Flores M, Garcia R, Palmer E. Differential expression of gizzard actin genes during chick embryogenesis. J Biol Chem.; v. 254 (21): 11119-11125,1979.
375. Saga S, Hamaguchi M, Hoshino M, Kojima K. Expression of meta-vinculin associated with differentiation of chicken embryonal muscle cells. Exp Cell Res.; v. 156 (1): 45-56,1985.
376. Sajid M, Stouffer GA. The role of avp3 integrins in vascular healing. Thromb Haemost.; v. 87 (2): 187 193, 2002.
377. Sajid M, Zhao R, Pathak A, Smyth SS, Stouffer GA. avp3-integrin antagonists inhibit thrombin-induced proliferation and focal adhesion formation in smooth muscle cells. Am. J. Physiol. Cell Physiol. ; v. 285: 1330 1338, 2003.
378. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M. Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med.; v. 7 (4): 382 383, 2001.
379. Santala P, Heino J. Regulation of integrin-type cell adhesion receptors by cytokines. J Biol Chem.; v. 266 (34): 23505 23509, 1991.
380. Sastry SK, Lakonishok M, Thomas DA, Muschler J, Horwitz AF. Integrin a subunit ratios, cytoplasmic domains, and growth factor synergy regulate muscle proliferation and differentiation. J Cell Biol.; v. 133 (1): 169 184, 1996.
381. Schiffers PM, Fazzi GE, van Ingen Schenau D, De Mey JG. Effects of candidate autocrine and paracrine mediators on growth responses in isolated rat arteries. Arterioscler Thromb.; v. 14 (3): 420-426,1994.
382. Schmid E, Osborn M, Rungger-Brandle E, Gabbiani G, Weber K, Franke WW. Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta. Exp Cell Res. ; v. 137 (2): 329 340,1982.
383. Schnapp LM, Breuss JM, Ramos DM, Sheppard D, Pytela R. Sequence and tissue distribution of the human integrin a8 subunit: a pi-associated a subunit expressed in smooth muscle cells. J Cell Set; v. 108 (Pt 2): 537 44,1995.
384. Schurch W, Skalli O, Seemayer ТА, Gabbiani G. Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. I. Smooth muscle tumors. Am J Pathol.; v. 128 (1): 91 103,1987.
385. Schwartz SM, Bennett MR. Death by any other name. Am J Pathol.; v. 147 (2): 229-234,1995.
386. Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cells in vascular disease. Circ Res. ; v. 58 (4): 427 444,1986.
387. Schwartz SM, Liaw L. Growth control and morphogenesis in the development and pathology of arteries. J Cardiovasc Pharmacol.; v. 21 (suppl 1): S31 49, 1993.
388. Schwartz SM, Reidy MA. Common mechanisms of proliferation of smooth muscle in atherosclerosis and hypertension. Hum Pathol.; v. 18 (3): 240 247, 1987.
389. Schwartz SM. Molecular biology and the vascular wall. Proceeding of a. meeting. Arteriosclerosis; v. 4: 647 656,1984.
390. Schwarzbauer JE. Alternative splicing of fibronectin: three variants, three functions. Bioessays.; v. 13 (10): 527 533,1991.
391. Seidel CL. Cellular heterogeneity of the vascular tunica media. Implications for vessel wall repair. Arterioscler Thromb Vase Biol.; v. 17 (10): 1868 1871, 1997.
392. Seki J, Koyama N, Kovach NL, Yednock T, Clowes AW, Harlan JM. Regulation of ßl-integrin function in cultured human vascular smooth muscle cells. Circ Res.; v. 78 (4): 596 605,1996.
393. Severson AR, Ingram RT, Fitzpatrick LA. Matrix proteins associated with bone calcification are present in human vascular smooth muscle cells grown in vitro. In Vitro CellDevBiolÄnim.; v. 31 (11): 853 857,1995.
394. Shanahan CM, Weissberg PL. Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb Vase Biol.; v. 18 (3): 333 338,1998.
395. Sheppard AM, Onken MD, Rosen GD, Noakes PG, Dean DC. Expanding roles for a4 integrin and its ligands in development. Cell Adhes Commun.; v. 2 (1): 27 43,1994.
396. Shimokado K, Yokota T, Umezawa K, Sasaguri T, Ogata J. Protein tyrosine kinase inhibitors inhibit Chemotaxis of vascular smooth muscle cells. Arterioscler Thromb.; v. 14 (6): 973 981,1994.
397. Sholley MM, Cavallo T, Cotran RS. Endothelial proliferation in inflammation. I. Autoradiographic studies following thermal injury to the skin of normal rats. Am J Pathol. ; v. 89 (2): 277 296,1977a.
398. Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest.; v. 51 (6): 624 634,1984.
399. Sholley MM, Gimbrone MA Jr, Cotran RS. Cellular migration and replication in endothelial regeneration: a study using irradiated endothelial cultures. Lab Invest.; v. 36 (1): 18-25,1977b.
400. Sibinga NE, Foster LC, Hsieh CM, Perrella MA, Lee WS, Endege WO, Sage EH, Lee ME, Haber E. Collagen VHI is expressed by vascular smooth muscle cells in response to vascular injury. Circ Res. ; v. 80 (4): 532 541, 1997.
401. Siliciano JD, Craig SW. Meta-vinculin a vinculin-related protein with solubility properties of a membrane protein. Nature.; v. 300 (5892): 533 - 535, 1982.
402. Siliciano JD, Craig SW. Properties of smooth muscle meta-vinculin. J Cell Biol.; v. 104 (3): 473-482,1987.
403. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM. Smooth muscle progenitor cells in human blood. Circulation.; v. 106 (10): 1199 1204, 2002.
404. Sims DE. The pericyte a review. Tissue Cell. ; v. 18 (2): 153 - 174,1986.
405. Sinha S, Hoofiiagle MH, Kingston PA, McCanna ME, Owens G.K. Transforming growth factor-pl signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol; v. 287: 1560- 1568,2004.
406. Skalli O, Gabbiani F, Gabbiani G. Action of general and a-smooth muscle-specific actin antibody microinjection on stress fibers of cultured smooth muscle cells. Exp Cell Res.; v. 187 (1): 119 125,1990.
407. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G. A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol.; v. 103 (6 Pt 2): 2787 2796,1986.
408. Skopicki HA, Lyons GE, Schatteman G, Smith RC, Andres V, Schirm S, Isner J, Walsh K. Embryonic expression of the Gax homeodomain protein in cardiac, smooth, and skeletal muscle. Circ Res.; v. 80 (4): 452 462,1997.
409. Slepian MJ, Massia SP, Dehdashti B, Fritz A, Whitesell L. ß3-integrins rather than ßl-integrins dominate integrin-matrix interactions involved in postinjury smooth muscle cell migration. Circulation.; v. 97 (18): 1818 1827,1998.
410. Sobue K, Hayashi K, Nishida W. Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem.; v. 190 (1 2): 105 - 118,1999.
411. Song J, Rolfe BE, Hayward IP, Campbell GR, Campbell JH. Effects of collagen gel configuration on behavior of vascular smooth muscle cells in vitro: association with vascular morphogenesis. In Vitro Cell. Dev. Biol Animal; v. 36: 600 - 610,2000.
412. Song WK, Wang W, Foster RF, Bielser DA, Kaufinan SJ. H36-a7 is a novel integrin a chain that is developmentally regulated during skeletal myogenesis. J Cell Biol.; v. 117 (3): 643 657,1992.
413. Stamatoglou SC, Enrich C, Manson MM, Hughes RC. Temporal changes in the expression and distribution of adhesion molecules during liver development and regeneration .J Cell Biol.; v. 116 (6): 1507 1515,1992.
414. Stary HC. Composition and classification of human atherosclerotic lesions. Virchows Arch A Pathol Anat HistopathoL ; v. 421 (4): 277 290,1992.
415. Stary HC. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur. Heart J. ; v. 11 (supl. E): 3 -19,1990.
416. Stemerman MB, Adelman B, Handin RI, Fuhro R. Proliferation of smooth muscle cells in the thoracic aorta after injury to the abdominal aorta: evidence for a humoral mediator in experimental arteriosclerosis. J Lab Clin Med.; v. 106 (4): 369-375,1985.
417. Stemerman MB, Weinstein R, Rowe JW, Maciag T, Fuhro R, Gardner R. Vascular smooth muscle cell growth kinetics in vivo in aged rats. Proc Natl Acad Sei USA.; v. 79 (12): 3863 3866, 1982.
418. Stetz EM, Majno G, Joris I. Cellular pathology of the rat aorta. Pseudo-vacuoles and myo-endothelial herniae. Virchows Arch A Pathol Anat Histol. ; v. 383 (2): 135 -148, 1979.
419. Stossel TP, Chaponnier C, Ezzell RM, Hartwig JH, Janmey PA, Kwiatkowski DJ, Lind SE, Smith DB, Southwick FS, Yin HL, et al. Nonmuscle actin-binding proteins. Annu Rev Cell Biol.; v. 1: 353 402,1985.
420. Stupack DG, Cheresh DA. Get a ligand, get a life: integrins, signaling and cell survival. Journal of Cell Science; v. 115: 3729 3738, 2002.
421. Stupack DG. The biology of integrins. Oncology (Williston Park).; v. 21 (9 Suppl 3): 6 12, 2007.
422. Sundberg-Smith LJ, Doherty JT, Mack CP, Taylor JM. Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J. Biol. Chem.; v. 280 (3): 2055 2064, 2005.
423. Sutcliffe MC, Davidson JM Effect of static stretching on elastin production by porcine aortic smooth muscle cells. Matrix.; v. 10 (3): 148 153,1990.
424. Sutherland AE, Calarco PG, Damsky CH. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development.; v. 119(4): 1175-1186,1993.
425. Taddei I, Faraldo MM, Teuliere J, Deugnier MA, Thieiy JP, Glukhova MA. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia.; v. 8 (4): 383 394, 2003.
426. Takada Y, Ye X, Simon S. The integrins. Genome Biol.; v. 8 (5): 215, 2007.
427. Takagi J. Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem. Soc. Trans.; v. 32: 403 406, 2004.
428. Tanaka H, Sukhova G, Schwartz D, Libby P. Proliferating arterial smooth muscle cells after balloon injury express TNF-a but not interleukin-1 or basic fibroblast growth factor. Arterioscler Thromb Vase Biol.; v. 16 (1): 12 — 18, 1996.
429. Tanaka H, Sukhova GK, Swanson SJ, Clinton SK, Ganz P, Cybulsky MI, Libby P. Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation.; v. 88 (4 Pt 1): 1788 1803,1993.
430. Taraboletti G, Belotti D, Giavazzi R. Thrombospondin modulates basic fibroblast growth factor activities on endothelial cells. EXS.; v. 61: 210 213, 1992.
431. Tarone G, Russo MA, Hirsch E, Odorisio T, Altruda F, Silengo L, Siracusa G. Expression of pi integrin complexes on the surface of unfertilized mouse oocyte. Development.; v. 117 (4): 1369 1375, 1993.
432. Taylor JM, Mack CP, Nolan K, Regan CP, Owens GK, Parsons JT. Selective expression of an endogenous inhibitor of FAK regulates proliferation and migration of vascular smooth muscle cells. Mol Cell Biol.; v. 21 (5): 1565 -1572, 2001.
433. Terranova VP, Aumailley M, Sultan LH, Martin GR, Kleinman HK. Regulation of cell attachment and cell number by fibronectin and laminin. J Cell Physiol. ; v. 127(3): 473-479,1986.
434. Thomas WA, Kim DN. Biology of disease. Atherosclerosis as a hyperplastic and/or neoplastic process. Lab Invest.; v. 48 (3): 245 255,1983.
435. Thorgeirsson G, Robertson AL Jr. Platelet factors and the human vascular wall. Part 2. Such factors are not required for endothelial cell proliferation and migration. Atherosclerosis.; v. 31 (2): 231 -238,1978.
436. Thyberg J, Palmberg L, Nilsson J, Ksiazek T, Sjolund M. Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation; v. 25 (2): 156 167, 1983.
437. Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem.; v. 180 (3): 487 502,1989.
438. Tjurmin AV, Lacis RV, Printseva OYu. Proliferation kinetics of aortic smooth muscle cell populations: comparison of normotensive and spontaneously hypertensive rats. Cell Tissue Kinet.;. v. 20 (1): 15 27,1987.
439. Tracy RE, Kissling GE, Curtis MB. Smooth muscle cell-reticulin lamellar units of 13.2 microns thickness composing the aortic intima. Virchows Arch A Pathol Anat Histopathol; v. 411 (5): 415-424,1987.
440. Travo P, Barrett G, Burnstock G. Differences in proliferation of primary cultures of vascular smooth muscle cells taken from male and female rats. Blood Vessels.; v. 17 (2): 110 116, 1980.
441. Travo P, Weber K, Osborn M. Co-existence of vimentin and desmin type intermediate filaments in a subpopulation of adult rat vascular smooth muscle cells growing in primary culture. Exp Cell Res.; v. 139 (1): 87 94,1982.
442. Trusolino L, Serini G, Cecchini G, Besati C, Ambesi-Impiombato FS, Marchisio PC, De Filippi R. Growth factor-dependent activation of avP3 integrin in normal epithelial cells: implications for tumor invasion. J Cell Biol. ; v. 142(4): 1145- 1156,1998.
443. Ueba H, Kawakami M, Yaginuma T. Shear stress as an inhibitor of vascular smooth muscle cell proliferation. Role of transforming growth factor-pi and tissue-type plasminogen activator. Arterioscler Thromb Vase Biol.; v. 17 (8): 1512-1516,1997.
444. Vainio S, Karavanova I, Jowett A, Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell; v. 75 (1): 45 58,1993.
445. Van Eynde A, Nuytten M, Dewerchin M, Schoonjans L, Keppens S, Beullens M, Moons L, Carmeliet P, Stalmans W, Bollen M. The nuclear scaffold protein
446. NEPP1 is essential for early embryonic development and cell proliferation. Mol Cell Biol.; v. 24 (13): 5863 5874, 2004.
447. Varadarajulu J, Laser M, Hupp M, Wu R, Hauck CR. Targeting of av integrins interferes with FAK activation and smooth muscle cell migration and invasion. Biochemical and Biophysical Research Communications; v. 331 (2): 404 412, 2005.
448. Vernon RB, Sage EH. Between molecules and morphology. Extracellular matrix and creation of vascular form. Am J Pathol. ; v. 147 (4): 873 883,1995.
449. Wagers AJ, Christensen JL, Weissman IL. Cell fate determination from stem cells. Gene Ther.; v. 9 (10): 606 612, 2002.
450. Wang T, Xu Z, Jiang W, Ma A. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol; v. 109 (1): 74 81,2006.
451. Wang T, Xu Z, Jiang W, Ma A. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol.; v. 109 (1): 74-81,2006.
452. Warner SJ, Friedman GB, Libby P. Regulation of major histocompatibility gene expression in human vascular smooth muscle cells. Arteriosclerosis.; v. 9 (3): 279 288,1989.
453. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein She couples a class of integrins to the control of cell cycle progression. Cell; v. 87 (4): 733 743, 1996.
454. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBOJ.; v.21 (15): 3919 3926, 2002.
455. Watt FM. The extracellular matrix and cell shape. TIBS; v. 11: 482 485,1986.
456. Weber K, Osbora M. The molecules of the cell matrix. SciAm.; v. 253 (4): 110 -120,1985.
457. Wewer UM, Thornell LE, Loechel F, Zhang X, Durkin ME, Amano S, Burgeson RE, Engvall E, Albrechtsen R, Virtanen I. Extrasynaptic location of1.minin p2 chain in developing and adult human skeletal muscle. Am J Pathol. ; v. 151 (2): 621-631, 1997.
458. Wexler BC. Spontaneous arteriosclerosis in old, male, virgin Sprague-Dawley rats. Atherosclerosis.; v. 34 (3): 277 290,1979.
459. Wier ML, Scott RE. Aproliferin a human plasma protein that induces the irreversible loss of proliferative potential associated with terminal differentiation. Am J Pathol.; v. 125 (3): 546 - 554,1986.
460. Wight TN, Hascall VC. Proteoglycans in primate arteries. III. Characterization of the proteoglycans synthesized by arterial smooth muscle cells in culture. J Cell Biol ; v. 96 (1): 167 176, 1983.
461. Wilcox JN, Smith KM, Williams LT, Schwartz SM, Gordon D. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J Clin Invest.; v. 82 (3): 1134 1143,1988.
462. Williams LT, Tremble P, Antoniades HN. Platelet-derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissociable. Proc Natl Acad Sci U S A.; v. 79 (19): 5867 5870, 1982.
463. Wilson E, Mai Q, Sudhir K, Weiss RH, Ives HE. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol.; v. 123 (3): 741 747,1993.
464. Wilt FH. Erythropoiesis in the chick embryo: the role of endoderm. Science.; v. 147: 1588-1590, 1965.
465. Winkles JA, Alberts GF, Peifley KA, Nomoto K, Liau G, Majesky MW. Postnatal regulation of fibroblast growth factor ligand and receptor gene expression in rat thoracic aorta, vl/w J Pathol; v. 149 (6): 2119 2131,1996.
466. Wood KM, Cadogan MD, Ramshaw AL, Parums DV. The distribution of adhesion molecules in human atherosclerosis. Histopathology.; v. 22 (5): 437 -444,1993.
467. Woodcock-Mitchell J, Mitchell JJ, Low RB, Kieny M, Sengel P, Rubbia L, Skalli O, Jackson B, Gabbiani G. a-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation.; v. 39 (3): 161 — 166, 1988.
468. Woods A, Couchman JR. Integrin modulation by lateral association. J Biol Chem.; v. 275 (32): 24233 24236, 2000.
469. Xu Q. The impact of progenitor cells in atherosclerosis. Nat Clin Pract Cardiovasc Med; v. 3 (2): 94- 101, 2006.
470. Yamamoto M, Fujita K, Shinkai T, Yamamoto K, Noumura T. Identification of the phenotypic modulation of rabbit arterial smooth muscle cells in primary culture by flow cytometry. Exp Cell Res. -, v. 198 (1): 43 51,1992.
471. Yang JT, Hynes RO. Fibronectin receptor functions in embryonic cells deficient in a5pi integrin can be replaced by av integrins. Mol Biol Cell; v. 7 (11): 1737 -1748,1996.
472. Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in a5 integrin-deficient mice. Development.; v. 119 (4): 1093 1105,1993.
473. Yau-Young AO, Shio H, Fowler S. Growth, biochemistry, and morphology of isolated rabbit aortic smooth muscle cells maintained in the presence or absence of serum. J Cell Physiol.-, v. 108 (3): 461 473,1981.
474. Yurukova Z, Hadjisky P, Renais J, Scebat L. On the proliferative activity of arteral smooth muscle cells in rat postnatal ontogenesis. Auto-historadiographic studies. Atherosclerosis; v. 23: 297 304,1976.
475. Zanellato AMC, Borrione AC, Giuriato L, Tonello M, Scannapieco G, Pauletto P, Sartore S. Myosin isoform and cell heterogeneity in vascular smooth muscle. I. Developing and adult bovine aorta. Dev. Biol; v. 141: 431 446,1990a.
476. Zanellato AMC, Borrione AC, Tonello M, Scannapieco G, Pauletto P, Sartore S. Myosin isoform expression and smooth muscle cell heterogeneity in normal and atherosclerotic rabbit aorta. Arteriosclerosis.; v. 10 (6): 996 1009,1990b.
477. Zempo N, Kenagy RD, Au YP, Bendeck M, Clowes MM, Reidy MA, Clowes AW. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vase Surg.; v. 20 (2): 209 217,1994.
478. Zhu AJ, Haase I, Watt FM. Signaling via |31 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc Natl AcadSci US A.; v. 96 (12): 6728 6733, 1999.
479. Ziober BL, Vu MP, Waleh N, Crawford J, Lin CS, Kramer RH. Alternative extracellular and cytoplasmic domains of the integrin a7 subunit are differentially expressed during development. J Biol Chem.; v. 268 (35): 26773 -26783,1993.
480. Астауров Б.Л. Объекты биологии развития. М., «Наука», 1975.
481. Боценовский В.А., Барышников А.Ю. Молекулы клеточной адгезии человека. Успехи современной биологии; т. 114: 741 752,1994.
482. Гланц С.А. Медико-биологическая статистика. М., «Практика», 1999.
483. Епифанова О.И., Терских В.В., Захаров А.Ф. Радиоавтография. М. «Высшая школа», 1977.
484. Заварзин А.А. Синтез ДНК и кинетика клеточных популяций. «Наука», Ленинград, 1967.
485. Список работ, опубликованных по теме диссертации
486. Матвеева H.A., Лацис Р.В. Пролиферативное поведение гладкомышечных клеток в онтогенезе аорты крысы. Доклады Академии Наук, том 419, № 1, 14, 2008.
487. Еленич H.A.(Матвеева Н.А), Лацис Р.В. «Экспрессия интегринов ßl- и ß3-семейств в онтогенезе аорты крысы». Тезисы VI Всероссийской конференции по патологии клетки. 15, Москва, 2000.
488. Матвеева H.A., Лацис Р.В. «Экспрессия интегринов в онтогенезе аорты крысы». БЭБиМ, 2008 (подготовлена к печати).
- Матвеева, Наталия Алексеевна
- кандидата биологических наук
- Москва, 2008
- ВАК 03.00.04
- Новый компонент адгезивных контактов: локализация и экспрессия в гладкой мышце
- Молекулы клеточной адгезии в культуре эндотелиальных клеток аорты человека
- Структурно-функциональное состояние плазматических мембран гладкомышечных клеток аорты крыс при старении
- Морфологические аспекты нормального гистогенеза и реактивных изменений гладкой мышечной ткани миометрия крыс
- Морфо-функциональная характеристика гладкой мышечной ткани матки в различные физиологические периоды