Бесплатный автореферат и диссертация по биологии на тему
Реконструкция трансляционных инициирующих комплексов на эукариотических мРНК со структурированными 5'-нетранслируемыми областями
ВАК РФ 03.00.03, Молекулярная биология

Содержание диссертации, кандидата биологических наук, Дмитриев, Сергей Евгеньевич

Список сокращений.

Введение.

Обзор литературы

Глава 1. Механизмы инициации трансляции у зукариот.

1.1 Особенности эукариотических мРНК.

1.2 Сканирующая модель инициации трансляции.

1.3 Влияние вторичной структуры мРНК на инициацию трансляции.

1.4 Факторы инициации трансляции.

1.4.1 Факторы, ассоциированные с 4OS субчастицей. eIF2. eIF3. elFl. elFIA.

1.4.2 Факторы, участвующие в привлечении мРНК в инициаторный комплекс. eIF4F и его компоненты. eIF4A. eIF4B. eIF4H.

Прочие белки, участвующие в преодолении вторичных структур мРНК.

1.4.3 Факторы, участвующие в присоединении 60S субчастицы. eIF5. eIF5B

Прочие белки, участвующие в инициации на стадии 80S.

1. 5 Современная модель и перспективы изучения инициации трансляции.

Глава 2. Метод реконструкции инициаторных комплексов из очищенных компонентов и техника тоу-принтинга.

Результаты и обсуждение

1. Наличие в 5'-НТО мРНК даже незначительного числа спаренных оснований приводит к неэффективности сборки 48S при использовании стандартного протокола.

2. Фактор инициации eIF4B критичен для реконструкции 48S комплексов с мРНК, имеющими в 5'-НТО незначительные вторичные структуры.

3. Фактор инициации eIF4H не может заменить eIF4B в системе реконструкции 48S комплексов с мРНК, имеющими в 5'-НТО незначительные вторичные структуры.

4. Эффективная реконструкция 48S комплексов с мРНК, содержащими полный трипартитный лидер и 5'-НТО мРНК р-актина.

5. Незначительные вариации вторичной структуры 5'-НТО изменяют требования мРНК к концентрации фактора инициации eIF2.

6. Изучение перехода 4 8S инициаторного комплекса в 8 0S комплекс методом тоу-принтинга.

Материалы и методы

1. Реактивы и материалы.

2. Плазмидные конструкции.

3. Генноинженерные манипуляции.

4. Получение РНК-транскриптов.

5. Трансляция в лизате ретикулоцитов кролика.

6. Сборка инициаторных комплексов в лизате ретикулоцитов кролика.

7. Зондирование вторичной структуры мРНК.

8. Реконструкция инициаторных комплексов из очищенных компонентов

8.1. Выделение рибосомных субчастиц и факторов инициации.

8.2. Аминоацилирование инициаторной тРНК.

8.3. Собственно сборка инициаторных комплексов.

8.4. Тоу-принтинг.

8.5. Анализ комплексов методом центрифугирования в градиенте сахарозы.

9. Количественная обработка' результатов.

Выводы.

Благодарности.

Введение Диссертация по биологии, на тему "Реконструкция трансляционных инициирующих комплексов на эукариотических мРНК со структурированными 5'-нетранслируемыми областями"

Синтез белковой цепи у эукариот является сложным многостадийным процессом, требующим согласованной работы значительного числа клеточных компонентов. В большинстве случаев его регуляция осуществляется на уровне инициации, и отчасти по этой причине данный этап трансляции привлекает наиболее пристальное внимание исследователей. Сканирующая модель М. Козак, объясняющая в общих чертах принцип инициации трансляции на кеп-зависимых мРНК и считающаяся на сегодняшний день общепринятой, была предложена уже почти четверть века назад, однако её биохимический аспект до сих пор не представляет собой целостную картину. Каждый из известных на данный момент белковых факторов, принимающих участие в этом сложном процессе, по отдельности неплохо изучен как со структурной, так и с функциональной стороны, однако как работает весь ансамбль факторов в целом, какова последовательность событий при инициации трансляции, до сих пор остаётся до конца не выясненным.

Безусловно, одним из наиболее перспективных методов в изучении инициации трансляции является реконструкция инициирующих комплексов из очищенных компонентов. Его сочетание с техникой тоу-принта, применяемой для визуализации комплексов, позволяет убедиться не только в их наличии, но и в правильности положения рибосомы на стартовом AUG-кодоне. Данный подход совершенно незаменим при исследовании трансляционного аппарата млекопитающих, поскольку в этом случае использование генетических методов крайне затруднено. Метод блестяще проявил себя при исследовании внутренней инициации на мРНК некоторых вирусов. Однако его применение к изучению кеп-зависимой инициации до сих пор привело к успешной реконструкции 48S и 80S инициирующих комплексов лишь на мРНК р-глобина и на искусственной матрице с (САА)П-лидером. Все попытки добиться сборки на других кеп-зависимых мРНК как в нашей, так и в других лабораториях заканчивались неудачей, несмотря на то, что эти мРНК (в частности, мРНК р-актина, поздняя аденовирусная мРНК, мРНК белка теплового шока Hsp70 и ряд других) прекрасно транслируются в клеточном лизате.

В ходе данной работы было показано, что сложности в реконструкции инициирующих комплексов на таких мРНК определяются наличием в их 5'-НТО вторичных структур, причём даже незначительное количество спаренных GC-оснований приводит к снижению выхода 488-комплекса. Было проведено исследование с использованием модельных конструкций, показавшее, что наличие в 5'-лидерах мРНК незначительных вторичных структур резко повышает требования к концентрации фактора инициации elF4B, который, будучи очищен до гомогенного состояния, становится очень нестабильным и быстро теряет активность даже при хранении в глубокой заморозке, чем и объяснялись предыдущие неудачи в реконструкции. У таких матриц также наблюдались повышенные требования к факторам elF4F, elF4A и elF2. С учётом этих данных начальная методика реконструкции 488-комплексов из очищенных компонентов была модифицирована, в результате чего впервые удалось добиться сборки 48S на кеп-зависимых мРНК со структурированными 5'-НТО и продемонстрировать правильность положения 40S субчастицы на AUG-кодоне методом тоу-принта.

Другая часть работы была посвящена применению метода тоу-принта для анализа различий между 48S и 80S инициирующими комплексами. Было обнаружено, что паттерны тоу-принтов от 48S и 80S комплексов как в лизате ретикулоцитов кролика, так и в системе реконструкции из очищенных компонентов различаются, что позволило изучить накопление комплексов в лизате под действием разных антибиотиков, обнаружить паузу в переходе 48S в 80S и проанализировать распределение комплексов на трёх AUG-кодонах вируса энцефаломиокардита.

Обзор литературы

Заключение Диссертация по теме "Молекулярная биология", Дмитриев, Сергей Евгеньевич

Выводы.

1. Разработан протокол реконструкции 48S инициирующих комплексов с мРНК, содержащими в 5-НТО G-богатые вторичные структуры.

2. Обнаружено, что даже незначительное спаривание оснований в 5'-НТО мРНК приводит к повышенным требованиям к концентрации и качеству фактора инициации elF4B.

3. Фактор инициации elF4H не в состоянии заменить elF4B в системе реконструкции 48S инициаторных комплексов из очищенных компонентов.

4. Для инициации трансляции по механизму шунтирования на мРНК, содержащих трипартитный лидер поздних аденовирусных мРНК, недостаточно набора канонических факторов инициации.

5. мРНК, имеющие спаренные основания в 5-НТО, проявляют повышенные требования к концентрации elF2.

6. Обнаружена разница в картине тоу-принтов от 48S от 80S инициаторных комплексов.

7. Методом тоу-принтинга продемонстрирована пауза в процессе инициации трансляции на стадии перехода 48S комплекса в 80S.

8. Обнаружен феномен аберрантного распределения 48S комплексов по близко расположенным AUG кодонам мРНК EMCV при невозможности гидролиза GTP/GMP-PNP, связанного с elF2.

Благодарности.

Выражаю искреннюю признательность своему научному руководителю Ивану Николаевичу Шатскому за организацию работы, обучение методам и всестороннюю поддержку; благодарю Илью Теренина за существенную помощь в проведении исследования; Андрея Писарева, Марию Рубцову и Дмитрия Андреева - сотрудникам нашей лаборатории - за обсуждение результатов и ценные советы; Дунаевского Я.Е. - за помощь в выделении факторов инициации; Овчинникова Л.П. - за предоставление препарата белка р50; Народицкого Б.С. -за ДНК, содержащую трипартитный лидер аденовируса; Надеждина Е.В. - за препарат кДНК из мозжечка человека.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (96-04-55009), РФФИ MAC (01-04-06503) и Федеральной целевой программы "Интеграция" (2000-1.5-88).

Библиография Диссертация по биологии, кандидата биологических наук, Дмитриев, Сергей Евгеньевич, Москва

1. Shatkin A.J. (1976) Capping of eucaryotic mRNAs. Cell, 9, 645-653.

2. Banerjee A.K. (1980) 5'-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol. Rev. 44, 175-205.

3. Lim L, Canellakis E.S. (1970) Adenine-rich polymer associated with rabbit reticulocyte messenger RNA. Nature. 227, 710-712.

4. Jacobson A. (1996). Poly(A) metabolism and translation: the closed-loop model. In Translational Control of Gene Exression (ed. N. Sonenberg, J. W. B. Hershey and M. B. Matthews), Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 451-480.

5. Sachs A, Wahle E. (1993) Poly(A) tail metabolism and function in eucaryotes. J. Biol. Chem. 268, 22955-22958.

6. Sarkar N. (1997) Polyadenylation of mRNA in prokaryotes. Annu. Rev. Biochem. 66, 173-97

7. Gallie D.R. (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108-2116.

8. Tarun S.Z, Sachs A.B. (1995) A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 9, 2997-3007.

9. Lewis J.D, Gunderson S.I, Mattaj I.W. (1995) The influence of 5' and 3' end structures on pre-mRNA metabolism. J. Cell Sci. Suppl. 19, 13-19.

10. Gunnery S, Mathews M.B. (1995) Functional mRNA can be generated by RNA polymerase III. Mol. Cell Biol. 15, 3597-3607.

11. Sherman F, McKnight G, Stewart J.W. (1980) AUG is the only initiation codon in eukaryotes. Biochim. Biophys. Acta 609, 343-346

12. Wilson J.E, Pestova T.V, Hellen C.U, Sarnow P. (2000) Initiation of protein synthesis from the A site of the ribosome. Cell. 102, 511-520.

13. Gordon K, Futterer J, Hohn T. (1992) Efficient initiation of translation at non-AUG triplets in plant cells. Plant J. 2, 809-813

14. Peabody D.S. (1989) Translation initiation at non-AUG triplets in mammalian cells. J. Biol. Chem. 264, 5031-5035

15. Kozak M. (1983) Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47, 1-45.

16. Saito R, Tomita M. (1999) On negative selection against ATG triplets near start codons in eukaryotic and prokaryotic genomes. J. Mol. Evol. 48, 213-217.

17. Morris D.R, Geballe A.P. (2000) Upstream open reading frames as regulators of mRNA translation. Mol. Cell Biol. 20, 8635-8642.

18. Hinnebusch A.G. (1993) Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol. Microbiol. 10, 215-223.

19. Ryabova L.A, Pooggin M.M, Hohn T. (2002) Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog. Nucleic Acid Res. Mol. Biol. 72, 1-39.

20. Kozak M. (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1-34

21. Matveeva O.V, Shabalina S.A. (1993) Intermolecular mRNA-rRNA hybridization and the distribution of potential interaction regions in murine 18S rRNA. Nucleic Acids Res. 21, 10071011

22. Mauro V.P, Edelman G.M. (1997) rRNA-like sequences occur in diverse primary transcripts: implications for the control of gene expression. Proc. Natl. Acad. Sci. USA. 94, 422-427.

23. Verrier S.B, Jean-Jean O. (2000) Complementarity between the mRNA 5'untranslated region and 18S ribosomal RNA can inhibit translation. RNA 6, 584-597

24. Chappell S.A, Edelman G.M, Mauro V.P. (2000) A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. USA. 97, 1536-1541.

25. Yueh A, Schneider R.J. (2000) Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev. 14, 414421

26. Kozak M. (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 12, 857-872.

27. Joshi C.P, Zhou H, Huang X, Chiang V.L. (1997) Context sequences of translation initiation codon in plants. Plant Mol. Biol. 35, 993-1001.

28. Pesole G, Gissi C, Grillo G, Licciulli F, Liuni S, Saccone C. (2000) Analysis of oligonucleotide AUG start codon context in eukariotic mRNAs. Gene 261, 85-91

29. Cavener D.R, Ray S.C. (1991) Eukaryotic start and stop translation sites. Nucleic Acids Res. 19, 3185-3192.

30. Kozak M. (1987) An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs: Nucleic Acids Res. 15, 8125-48.

31. Grunert S, Jackson R.J. (1994) The immediate downstream codon strongly influences the efficiency of utilization of eukaryotic translation initiation codons. EMBO J. 13, 3618-3630.

32. Pesole G, Bernardi G, Saccone C. (1999) Isochore specificity of AUG initiator context of human genes. FEBS Lett. 464, 60-62.

33. Hamilton R, Watanabe C.K, de Boer H.A. (1987) Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res. 15, 3581-3593.

34. Kozak M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947-950.

35. Cigan A.M, Pabich E.K, Donahue T.F. (1988) Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol. Cell Biol. 8, 2964-2975.

36. Lutcke H.A, Chow K.C, Mickel F.S, Moss K.A, Kern H.F, Scheele G.A. (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J. 6, 43-48.

37. McBratney S, Sarnow P. (1996) Evidence for involvement of trans-acting factors in selection of the AUG start codon during eukaryotic translational initiation. Mol. Cell Biol. 16, 3523-3534.

38. Kozak M. (1989) Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol. Cell Biol. 9, 5073-5080.

39. Dreyfuss G, Kim V.N, Kataoka N. (2002) Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195-205.

40. Овчинников Л,ГГ. Скабкин M.A, Рузанов П.В, Евдокимова В.М. (2001) Мажорные белки мРНК в структурной организации и функционировании мРНК в клетках эукариот. Мол. Биол. 35, 548-558.

41. Spirin A.S. (1994) Storage of messenger RNA in eukaryotes: envelopment with protein, translational barrier at 5' side, or conformational masking by 3' side? Mol. Reprod. Dev. 38, 107117.

42. Derrigo M, Cestelli A, Savettieri G, Di Liegro I. (2000) RNA-protein interactions in the control of stability and localization of messenger RNA (review). Int. J. Mol. Med. 5, 111-23.

43. Schell T, Kulozik A.E, Hentze M.W. (2002) Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol. 3, REVIEWS1006.

44. Wormington M. (1994) Unmasking the role of the 3' UTR in the cytoplasmic polyadenylation and translational regulation of maternal mRNAs. Bioessays. 16, 533-535.

45. Jacobs G.H, Stockwell P.A, Schrieber M.J, Tate W.P, Brown C.M. (2000) Transterm: a database of messenger RNA components and signals. Nucleic Acids Res. 28, 293-295.

46. Kozak M. (1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell. 15, 1109-1123.

47. Kozak M. (1977) Nucleotide sequences of 5'-terminal ribosome-protected initiation regions from two reovirus messages. Nature. 269, 391-394.

48. Kozak M. (1980) Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell 19, 79-90.

49. Zagorska L, Chroboczek J, Klita S, Szafranski P. (1982) Effect of secondary structure of messenger ribonucleic acid on the formation of initiation complexes with prokaryotic and eukaryotic ribosomes. Eur. J. Biochem. 122, 265-269

50. Kozak M. (1986) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA. 83, 2850-2854.

51. Kozak M. (1980) Binding of wheat germ ribosomes to fragmented viral mRNA. J. Virol. 35, 748-756.

52. Kozak M. (1983) Translation of insulin-related polypeptides from messenger RNAs with tandemly reiterated copies of the ribosome binding site. Cell. 34, 971-978.

53. Kozak M. (1977). Inability of circular mRNA to attach to eucariotic ribosomes. Nature. 280, 82-85.

54. Gunnery S, Maivali U, Mathews M.B. (1997) Translation of an uncapped mRNA involves scanning. J. Biol. Chem. 272, 21642-21646.

55. Falvey A.K, Staehelin T. (1970) Structure and function of mammalian ribosomes. II. Exchange of ribosomal subunits at various stages of in vitro polypeptide synthesis. J. Mol. Biol. 53, 21-34

56. Kozak M. (1989) The scanning model for translation: an update. J. Cell Biol. 108, 229-241.

57. Kozak M. (1987) Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell Biol. 7, 3438-3445.

58. Kozak M. (1991) Effects of long 5' leader sequences on initiation by eukaryotic ribosomes in vitro. Gene Expr. 1, 117-125.

59. Gallie D.R, Ling J, Niepel M, Morley S.J, Pain V.M. (2000) The role of 54eader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes. Nucleic Acids Res. 28, 2943-2953.

60. Pelletier J, Sonenberg N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 334, 320-325.

61. Jang S.K, Davies M.V, Kaufman R.J, Wimmer E. (1989) Initiation of protein synthesis by internal entry of ribosomes into the 5'nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63, 1651-1660.

62. Tsukiyama-Kohara K, lizuka N, Kohara M, Nomoto A. (1992) Internal ribosome entry site within hepatitis С virus RNA. J. Virol. 66, 1476-1483.

63. Jackson R.J, Kaminski A. (1995) Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA"\, 985-1000

64. Macejak D.G, Sarnow P. (1990) Translational regulation of the immunoglobulin heavy-chain binding protein mRNA. Enzyme. 44, 310-319.

65. McBratney S, Chen C.Y, Sarnow P. (1993) Internal initiation of translation. Curr. Opin. Cell Biol. 5, 961-965.

66. Hellen C.U, Sarnow P. (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 15, 1593-1612.

67. Frisby D, Eaton M, Fellner P. (1976) Absence of 5' terminal capping in encephalomyocarditis virus RNA. Nucleic Acids Res. 3, 2771-2787.

68. Curran J, Kolakofsky D. (1989) Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo. EMBO J. 8, 521-526.

69. Futterer J, Kiss-Laszlo Z, Hohn T. (1993) Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell 73, 789-802.

70. Yueh A, Schneider R.J. (1996) Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev. 10, 1557-1567.

71. Peri S, Pandey A. A (2001) Reassessment of the translation initiation codon in vertebrates. Trends Genet. 17, 685-687.

72. Davuluri R.V, Suzuki Y, Sugano S, Zhang M.Q. (2000) CART classification of human 5' UTR sequences. Genome Res. 10, 1807-1816.

73. International Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human genome. Nature. 409, 860-921

74. Kim J, Cheong C, Moore P.B. (1991) Tetramerization of an RNA oligonucleotide containing a GGGG sequence. Nature 351, 331-332.

75. Ganoza M.C, Louis B.G. (1994) Potential secondary structure at the translational start domain of eukaryotic and prokaryotic mRNAs. Biochimie 76, 428-439.

76. Pesole G, Liuni S, Grillo G, Saccone C. (1997) Structural and compositional features of untranslated regions of eukaryotic mRNAs. Gene 205, 95-102

77. Mizuno M, Kanehisa M. (1994) Distribution profiles of GC content around the translation initiation site in different species. FEBS Lett. 352, 7-10.

78. Cigan A.M, Donahue T.F. (1987) Sequence and structural features associated with translational initiator regions in yeast a review. Gene 59, 1-18.

79. Joshi CP. (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 15, 6643-6653.

80. Kochetov A.V, Ischenko I.V, Vorobiev D.G, Kel A.E, Babenko V.N, Kisselev L.L, Kolchanov N.A. (1998) Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Lett. 440, 351-355.

81. Liebhaber S.A, Cash F.E, Shakin S.H. (1984) Translationally associated helix-destabilizing activity in rabbit reticulocyte lysate. J. Biol. Chem. 259, 15597-15602.

82. Pelletier J, Sonenberg N. (1985) Insertion mutagenesis to increase secondary structure within the 5' noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell 40, 515-526.

83. Kozak M. (1989) Circumstances and'mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell. Biol. 9, 5134-5142.

84. Kozak M. (1998) Primer extension analysis of eukaryotic ribosome-mRNA complexes. Nucleic Acids Res. 26, 4853-4859.

85. Liebhaber S.A, Cash F, Eshleman S.S. (1992) Translation inhibition by an mRNA coding region secondary structure is determined by its proximity to the AUG initiation codon. J. Mol. Biol. 226, 609-621.

86. Kozak M. (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87, 8301-8305.

87. Kozak M. (1988) Leader length and secondary structure modulate mRNA function under conditions of stress. Mol. Cell. Biol. 8, 2737-2744.

88. Baim S.B, Sherman F. (1988) mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 1591-1601.

89. Oliveira C.C, van den Heuvel J.J, McCarthy J.E. (1993) Inhibition of translational initiation in Saccharomyces cerevisiae by secondary structure: the roles of the stability and position of stem-loops in the mRNA leader. Mol. Microbiol. 9, 521-532.

90. Sagliocco F.A, Vega Laso M.R, Zhu D, Tuite M.F, McCarthy J.E, Brown A.J. (1993) The influence of 5'-secondary structures upon ribosome binding to mRNA during translation in yeast. J. Biol. Chem. 268, 26522-26530.

91. Thomas MA, Karlen S, D'Ercole M, Sanderson CJ. (1999) Analysis of the 5' and 3'UTRs in the post-transcriptional regulation of the interleukin-5 gene. Biochim. Biophys. Acta. 1444, 61-68.

92. Muhlrad D, Decker C.J, Parker R. (1995) Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15, 2145-2156.

93. Trachsel H. (1995). Binding of initiator methionyl-tRNA to ribosomes. In Translational Control of Gene Exression (ed. N. Sonenberg, J. W. B. Hershey and M. B. Matthews), Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 113-138.

94. Trachsel H, Staehelin T. (1978) Binding and release of eukaryotic initiation factor elF-2 and GTP during protein synthesis initiation. Proc. Natl. Acad. Sci. USA. 75, 204-208.

95. Chaudhuri J, Chowdhury D, Maitra U. (1999) Distinct functions of eukaryotic translation initiation factors elF1 A and elF3 in the formation of the 40 S ribosomal preinitiation complex. J. Biol. Chem. 274, 17975-17980.

96. Peterson D.T, Merrick W.C, Safer B. (1979) Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80 S initiation complex formation. J. Biol. Chem. 254, 25092516.

97. Barrieux A, Rosenfeld M.G. (1977) Characterization of GTP-dependent Met-tRNAf binding protein. J. Biol. Chem. 252, 3843-3847.

98. Barrieux A, Rosenfeld M.G. (1978) mRNA-induced dissociation of initiation factor 2. J. Biol. Chem. 253, 6311-6314.

99. Gonsky R, Itamar D, Harary R, Kaempfer R. (1992) Binding of ATP and messenger RNA by the. beta-subunit of eukaryotic initiation factor 2. Biochimie. 74, 427-434.

100. Flynn A, Shatsky I.N, Proud C.G, Kaminski A. (1994) The RNA-binding properties of protein synthesis initiation factor elF-2. Biochim. Biophys. Acta. 1219, 293-301.

101. Laurino JP, Thompson G.M, Pacheco E, Castilho B.A. (1999) The beta subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif. Mot. Cell. Biol. 19, 173-181.

102. Benkowski L.A, Ravel J.M, Browning K.S. (1995) mRNA binding properties of wheat germ protein synthesis initiation factor 2. Biochem. Biophys. Res. Commun. 214, 1033-1039.

103. Roy R, Ghosh-Dastidar P, Das A, Yaghmai B, Gupta N.K. (1981) Protein synthesis in rabbit reticulocytes. Co-elF-2A reverses mRNA inhibition of ternary complex (Met-tRNAf.elF-2.GTP) formation by elF-2. J. Biol. Chem. 256, 4719-4722.

104. Raychaudhuri P, Chaudhuri A, Maitra U. (1985) Formation and release of eukaryotic initiation factor 2 X GDP complex during eukaryotic ribosomal polypeptide chain initiation complex formation. J. Biol. Chem. 260, 2140-2145.

105. Chakrabarti A, Maitra U. (1992) Release and recycling of eukaryotic initiation factor 2 in the formation of an 80 S ribosomal polypeptide chain initiation complex. J. Biol. Chem. 267, 1296412972.

106. Ramaiah K.V, Dhindsa R.S, Chen J.J, London I.M, Levin D. (1992) Recycling and phosphorylation of eukaryotic initiation factor 2 on 60S subunits of 80S initiation complexes and polysomes. Proc. Natl. Acad. Sci. USA. 89, 12063-12067.

107. Webb B.L, Proud C.G. (1997) Eukaryotic initiation factor 2B (elF2B). Int. J. Biochem. Cell. Biol. 29, 1127-1131.

108. Pavitt G.D, Ramaiah K.V, Kimball S.R, Hinnebusch A.G. (1998) elF2 independently binds two distinct elF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev. 12, 514-526.

109. Erickson F.L, Hannig E.M. (1996) Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit. EMBO J. 15, 6311-6320.

110. Thompson G.M, Pacheco E, Melo E.O, Castilho B.A. (2000) Conserved sequences in the beta subunit of archaeal and eukaryal translation initiation factor 2 (elF2), absent from elF5, mediate interaction with elF2gamma. Biochem. J. 347, 703-9.

111. Flynn A, Oldfield S, Proud C.G. (1993) The role of the beta-subunit of initiation factor elF-2 in initiation complex formation. Biochim Biophys Acta 1174, 117-121.

112. Kimball S.R, Heinzinger N.K, Horetsky R.L, Jefferson L.S. (1998) Identification of interprotein interactions between the subunits of eukaryotic initiation factors elF2 and elF2B. J. Biol. Chem. 273, 3039-3044.

113. Das S, Maiti T, Das K, Maitra U. (1997) Specific interaction of eukaryotic translation initiation factor 5 (elF5) with the beta-subunit of elF2. J. Biol. Chem. 272, 31712-31718.

114. Gonsky R, Lebendiker M.A, Harary R, Banai Y, Kaempfer R. (1990) Binding of ATP to eukaryotic initiation factor 2. Differential modulation of mRNA-binding activity and GTP-dependent binding of methionyl-tRNAMetf. J. Biol. Chem. 265, 9083-9089.

115. Pathak V.K, Nielsen P.J, Trachsel H, Hershey J.W. (1988) Structure of the beta subunit of translational initiation factor elF-2. Cell 54, 633-639.

116. Huang H.K, Yoon H, Hannig E.M, Donahue T.F. (1997) GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 11, 2396-2413.

117. Mitsui K, Datta A, Ochoa S. (1981) Removal of beta subunit of the eukaryotic polypeptide chain initiation factor 2 by limited proteolysis. Proc. Natl. Acad. Sci. USA 78, 4128-4132

118. Colthurst D.R, Proud C.G. (1986) Eukaryotic initiation factor 2 from rat liver: no apparent function for the beta-subunit in the formation of initiation complexes. Biochim. Biophys. Acta 868, 77-86

119. Kaufman R.J. (2000) Double-stranded RNA-activated protein kinase PKR. In Translational Control of Gene Exression (ed. N. Sonenberg, J. W. B. Hershey and M. B. Matthews), Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 503-528.

120. Chen J-J. (2000) Heme-regulated elF2alpha kinase. In Translational Control of Gene Exression (ed. N. Sonenberg, J. W. B. Hershey and M. B. Matthews), Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 529-546.

121. DeverT.E. (2002) Gene-specific regulation by general translation factors. Cell 108, 545556.

122. Anderson P, Kedersha N. (2002) Visibly stressed: the role of elF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones. 7, 213-221.

123. Redpath N.T, Proud C.G. (1990) Activity of protein phosphatases against initiation factor-2 and elongation factor-2. Biochem J. 272, 175-180.

124. Choi S.Y, Scherer B.J, Schnier J, Davies M.V, Kaufman R.J, Hershey J.W. (1992) Stimulation of protein synthesis in COS cells transfected with variants of the alpha-subunit of initiation factor elF-2. J. Biol. Chem. 267, 286-293.

125. Mouat M.F, Manchester K. (1998) An alpha subunit-deficient form of eukaryotic protein synthesis initiation factor elF-2 from rabbit reticulocyte lysate and its activity in ternary complex formation. Mol. Cell. Biochem. 183, 69-78.

126. Donahue T.F, Cigan A.M, Pabich E.K, Valavicius B.C. (1988) Mutations at a Zn(ll) finger motif in the yeast elF-2 beta gene alter ribosomal start-site selection during the scanning process. Cell 54, 621-632.

127. Dorris D.R, Erickson F.L, Hannig E.M. (1995) Mutations in GCD11, the structural gene for elF-2 gamma in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO J. 14, 2239-2249.

128. Hashimoto N.N, Carnevalli L.S, Castiiho B.A. (2002) Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (elF) 2 subunits. Biochem. J. 367, 359-368.

129. Merrick W.C, Anderson W.F. (1975) Purification and characterization of homogeneous protein synthesis initiation factor M1 from rabbit reticulocytes. J. Biol. Chem. 250, 1197-1206.

130. Zoll W.L, Horton L.E, Komar A.A, Hensold J.O, Merrick W.C. (2002) Characterization of mammalian elF2A and identification of the yeast homolog. J. Biol. Chem. 277, 37079-37087.

131. Bhasker C.R, Zoll W.L, Merrick W.C. (2002) The influence of elF2, elF2A and elF5B on start-site selection. Abstracts of papers presented at the 2002 meeting on translational control, CSHL, 35 .

132. Hannig E.M. (1995) Protein synthesis in eukaryotic organisms: new insights into the function of translation initiation factor elF-3. Bioessays. 17, 915-919.

133. Trachsel H, Erni B, Schreier M.H, Staehelin T. (1977) Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116, 755-767.

134. Benne R, Hershey J.W. (1978) The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078-3087.

135. Seal S.N, Schmidt A, Marcus A. (1989) Ribosome binding to inosine-substituted mRNAs in the absence of ATP and mRNA factors. J. Biol. Chem. 264, 7363-7368.

136. Pestova T.V, Kolupaeva V.G. (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906-2922.

137. Thompson H.A, Sadnik I, Scheinbuks J, Moldave K. (1977) Studies on native ribosomal subunits from rat liver. Purification and characterization of a ribosome dissociation factor. Biochemistry. 16, 2221-2230.

138. Valasek L, Mathew A.A, Shin B.S, Nielsen K.H, Szamecz B, Hinnebusch A.G. (2003) The yeast elF3 subunits TIF32/a, NIP1/c, and elF5 make critical connections with the 40S ribosome in vivo. Genes Dev. 17, 786-799.

139. Valasek L, Nielsen K.H, Hinnebusch A.G. (2002) Direct elF2-elF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J. 21, 5886-5898.

140. Naranda T, MacMillan S.E, Donahue T.F, Hershey J.W. (1996) SUI1/p16 is required for the activity of eukaryotic translation initiation factor 3 in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2307-2313.

141. Fletcher C.M, Pestova T.V, Hellen C.U, Wagner G. (1999) Structure and interactions of the translation initiation factor elF1. EMBO J. 18, 2631-2637.

142. Bandyopadhyay A, Maitra U. (1999) Cloning and characterization of the p42 subunit of mammalian translation initiation factor 3 (elF3): demonstration that elF3 interacts with elF5 in mammalian cells. Nucleic Acids Res. 27, 1331-1337.

143. Asano К, Clayton J, Shalev A, Hinnebusch A.G. (2000) A multifactor complex of eukaryotic initiation factors, elF1, elF2, elF3, elF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev. 14, 2534-2546.

144. Methot N, Song M.S, Sonenberg N. (1996) A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (elF4B) self-association and interaction with elF3. Mol. Cell. Biol. 16, 5328-5334.

145. Kolupaeva V, Lomakin I, Hellen C.U, Pestova T.V. (2002) The interaction of elF3 and eIF1A with the 40S ribosomal subunit. Abstracts of papers presented at the 2002 meeting on translational control, CSHL, 107

146. Kyrpides N.C, Woese C.R. (1998) Universally conserved translation initiation factors. Proc. Natl. Acad. Sci. USA. 95, 224-228.

147. Lomakin I, Kolupaeva V, Pestova T.V (2002) Interaction of eukaryotic translation initiation factor elF1 with the 40S ribosomal subunit. Abstracts of papers presented at the 2002 meeting on translational control, CSHL, 267

148. Thomas A, Spaan W, van Steeg H, Voorma H.O, Benne R. (1980) Mode of action of protein synthesis initiation factor elF-1 from rabbit reticulocytes. FEBS Lett. 116, 67-71.

149. Yoon H.J, Donahue T.F. (1992) The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon. Mol. Cell. Biol. 12, 248-260.

150. Pestova T.V, Borukhov S.I, Hellen C.U. (1998) Eukaryotic ribosomes require initiation factors 1 and 1Ato locate initiation codons. Nature. 394, 854-859.

151. Cui Y, Dinman J.D, Kinzy T.G, Peltz S.W. (1998) The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol. Cell. Biol. 18, 1506-1516.

152. Battiste J.L, Pestova T.V, Hellen C.U, Wagner G. (2000) The elF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell. 5, 109-119.

153. Goumans H, Thomas A, Verhoeven A, Voorma H.O, Benne R. (1980) The role of elF-4C in protein synthesis initiation complex formation. Biochim. Biophys. Acta. 608, 39-46.

154. Kainuma M, Hershey J.W. (2001) Depletion and deletion analyses of eucaryotic translation initiation factor 1A in Saccharomyces cerevisiae. Biochimie. 83, 505-514.

155. Wei C.L, MacMillan S.E, Hershey J.W. (1995) Protein synthesis initiation factor elF-1A is a moderately abundant RNA-binding protein. J. Biol. Chem. 270, 5764-5771.

156. Olsen D.S, Savner E.M, Mathew A, Zhang F, Krishnamoorthy T, Phan L, Hinnebusch A.G. (2003) Domains of elF1A that mediate binding to elF2, elF3 and elF5B and promote ternary complex recruitment in vivo. EMBO J. 22, 193-204.

157. Moazed D, Samaha R.R, Gualerzi C, Noller H.F. (1995) Specific protection of 16 S rRNA by translational initiation factors. J. Mol. Biol. 248, 207-210.

158. Brock S, Szkaradkiewicz K, Sprinzl M. (1998) Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors. Mol. Microbiol. 29,409-417.

159. Roll-Mecak A, Shin B.S, Dever T.E, Burley S.K. (2001) Engaging the ribosome: universal IFs of translation. Trends Biochem. Sci. 26, 705-709.

160. Lee J.H, Choi S.K, Roll-Mecak A, Burley S.K, Dever Т.Е. (1999) Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc. Natl. Acad. Sci. USA. 96, 4342-4347.

161. Abe B, Kainuma M, Ribeiro S, Komatsu S, Herring C, Qin J, Hershey J.W. (2002) Phosphorylation of yeast translation initiation factor elF1A inhibits its activity. Abstracts of papers presented at the 2002 meeting on translational control, CSHL, 14

162. Grifo J .A, Tahara S.M, Morgan M.A, Shatkin A.J, Merrick W.C. (1983) New initiation factor activity required forglobin mRNA translation. J. Biol. Chem. 258, 5804-5810.

163. Sonenberg N, Rupprecht K.M, Hecht S.M, Shatkin A.J. (1979) Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. Proc. Natl. Acad. Sci. USA. 76, 4345-4349.

164. Ray B.K, Lawson T.G, Kramer J.C, Cladaras M.H, Grifo J.A, Abramson R.D, Merrick W.C, Thach R.E. (1985) ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260, 7651-7658.

165. Etchison D, Milburn S. (1987) Separation of protein synthesis initiation factor elF4A from a p220-associated cap'binding complex activity. Mol. Cell. Biochem. 76, 15-25.

166. Webster C, Gaut R.L, Browning K.S, Ravel J.M, Roberts J.K. (1991) Hypoxia enhances phosphorylation of eukaryotic initiation factor 4A in maize root tips. J. Biol. Chem. 266, 2334123346.

167. Tarun S.Z, Sachs A.B. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor elF-4G. EMBO J. 15, 7168-7177.

168. Ptushkina M, Berthelot K, von der HaarT, Geffers L, Warwicker J, McCarthy J.E. (2001) A second elF4E protein in Schizosaccharomyces pombe has distinct elF4G-binding properties. Nucleic Acids Res. 29, 4561-4569.

169. Lasko P. (2000) The drosophila melanogaster genome: translation factors and RNA binding proteins. J. Cell. Biol. 150, F51-6.

170. Keiper B.D, Lamphear B.J, Deshpande A.M, Jankowska-Anyszka M, Aamodt E.J, Blumenthal T, Rhoads R.E. (2000) Functional characterization of five elF4E isoforms in Caenorhabditis elegans. J. Biol. Chem. 275, 10590-10596.

171. Joshi B, Cameron A, Jagus R (2002) Functional characterization of vertebrate elF4E family members. Abstracts of papers presented at the 2002 meeting on translational control, CSHL, 171

172. Rom E, Kim H.C, Gingras A.C, Marcotrigiano J, Favre D, Olsen H, Burley S.K, Sonenberg N. (1998) Cloning and characterization of 4EHP, a novel mammalian elF4E-related cap-binding protein. J. Biol. Chem. 273, 13104-13109.

173. Keiper B.D, Gan W, Rhoads R.E. (1999) Protein synthesis initiation factor 4G. Int. J. Biochem. Cell. Biol. 31, 37-41.

174. Gingras A.C, Raught B, Sonenberg N. (1999) elF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913-963.

175. Morley S.J, Curtis P.S, Pain V.M. (1997) elF4G: translation's mystery factor begins to yield its secrets. RNA. 3, 1085-1104.

176. Byrd M.P, Zamora M, Lloyd R.E. (2002) Generation of multiple isoforms of eukaryotic translation initiation factor 4GI by use of alternate translation initiation codons. Mol. Cell. Biol. 22, 4499-4511.

177. Han В, Zhang J.T. (2002) Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the elF4G story. Mol. Cell. Biol. 22, 7372-7384.

178. Henis-Korenblit S, Shani G, Sines T, Marash L, Shohat G, Kimchi A. (2002) The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc. Natl. Acad. Sci. USA. 99,.5400-5405.

179. Yamanaka S, Zhang X.Y, Maeda M, Miura K, Wang S, Farese R.V, Iwao H, Innerarity T.L. (2000) Essential role of NAT1/p97/DAP5 in embryonic differentiation and the retinoic acid pathway. EMBO J. 19, 5533-5541.

180. Craig A.W, Haghighat A, Yu A.T, Sonenberg N. (1998) Interaction of polyadenylate-binding protein with the elF4G homologue PAIP enhances translation. Nature 392, 520-523.

181. Browning K.S, Fletcher L, Lax S.R, Ravel J.M. (1989) Evidence that the 59-kDa protein synthesis initiation factor from wheat germ is functionally similar to the 80-kDa initiation factor 4B from mammalian cells. J. Biol. Chem. 264, 8491-8494.

182. Gallie D.R, Browning K.S. (2001) elF4G functionally differs from elFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J. Biol. Chem. 276, 36951-36960.

183. Pyronnet S. (2000) Phosphorylation of the cap-binding protein elF4E by the MAPK-activated protein kinase Mnk1. Biochem. Pharmacol. 60, 1237-1243.

184. Scheper G.C, Proud C.G. (2002) Does phosphorylation of the cap-binding protein elF4E play a role in translation initiation? Eur. J. Biochem. 269, 5350-5359.

185. Lawrence J.C, Abraham R.T. (1997) PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem. Sci. 22, 345-349.

186. De Gregorio E, Preiss T, Hentze M.W. (1998) Translational activation of uncapped mRNAs by the central part of human elF4G is 5' end-dependent. RNA 4, 828-836.

187. Lejbkowicz F, Goyer C, Darveau A, Neron S, Lemieux R, Sonenberg N. (1992) A fraction of the mRNA 5' cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc. Natl. Acad. Sci. USA. 89, 9612-9616.

188. Lang V, Zanchin N.I, Lunsdorf H, Tuite M, McCarthy J.E. (1994) Initiation factor elF-4E of Saccharomyces cerevisiae. Distribution within the cell, binding to mRNA, and consequences of its overproduction. J. Biol. Chem. 269, 6117-6123.

189. Dostie J, Ferraiuolo M, Pause A, Adam S.A, Sonenberg N. (2000) A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5' cap-binding protein, elF4E. EMBO J 19, 3142-3156

190. Dostie J, Lejbkowicz F, Sonenberg N. (2000) Nuclear eukaryotic initiation factor 4E (elF4E) colocalizes with splicing factors in speckles. J. Cell. Biol. 148, 239-247.

191. Dahlberg J.E, Lund E, Goodwin E.B. (2003) Nuclear translation: what is the evidence? RNA 9, 1-8.

192. Lazaris-Karatzas A, Montine K.S, Sonenberg N. (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature 345, 544-547

193. Imataka H, Sonenberg N. (1997) Human eukaryotic translation initiation factor 4G (elF4G) possesses two separate and independent binding sites for elF4A. Mol. Cell. Biol. 17, 69406947.

194. Korneeva N.L, Lamphear B.J, Hennigan F.L, Merrick W.C, Rhoads R.E. (2001) Characterization of the two elF4A-binding sites on human elF4G-1. J. Biol. Chem. 276, 28722879.

195. Li W, Belsham G.J, Proud C.G. (2001) Eukaryotic initiation factors 4A (elF4A) and 4G (elF4G) mutually interact in a 1:1 ratio in vivo. J. Biol. Chem. 276, 29111-29115.

196. Yoder-Hill J, Pause A, Sonenberg N, Merrick W.C. (1993) The p46 subunit of eukaryotic initiation factor (elF)-4F exchanges with elF-4A. J. Biol. Chem. 268, 5566-5573.

197. Svitkin Y.V, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham G.J, Sonenberg N.2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5' secondary structure. RNA 7, 382-394.

198. Balasta M.L, Carberry S.E, Friedland D.E, Perez R.A, Goss D.J. (1993) Characterization of the ATP-dependent binding of wheat germ protein synthesis initiation factors elF-(iso)4F and elF-4A to mRNA. J. Biol. Chem. 268, 18599-18603.

199. Etchison D, Smith K. (1990) Variations in cap-binding complexes from uninfected and poliovirus-infected HeLa cells. J. Biol. Chem. 265, 7492-7500.

200. Korneeva N.L, Lamphear B.J, Hennigan F.L, Rhoads R.E. (2000) Mutually cooperative binding of eukaryotic translation initiation factor (elF) 3 and elF4A to human elF4G-1. J. Biol. Chem. 275, 41369-41376.

201. Baer B.W, Kornberg R.D. (1983) The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J. Cell. Biol. 96, 717-721.

202. Kuhn U, Pieler T. (1996) Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J. Mol. Biol. 256, 20-30.

203. Caponigro G, Parker R. (1995) Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 9, 2421-2432.

204. Grosset C, Chen C.Y, Xu N, Sonenberg N, Jacquemin-Sablon H, Shyu A.B. (2000) A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 103, 29-40.

205. Tarun S.Z, Sachs A.B. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor elF-4G. EMBO J. 15, 7168-7177.

206. Imataka H, Gradi A, Sonenberg N. (1998) A newly identified N-terminal amino acid sequence of human elF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480-7489.

207. Bi X, Goss D.J. (2000) Wheat germ poly(A)-binding protein increases the ATPase and the RNA helicase activity of translation initiation factors elF4A, elF4B, and elF-iso4F. J. Biol. Chem.275, 17740-17746.

208. Cuesta R, Laroia G, Schneider R.J. (2000) Chaperone hsp27 inhibits translation during heat shock by binding elF4G and facilitating dissociation of cap-initiation complexes. Genes Dev. 14, 1460-1470.

209. Laroia G, Cuesta R, Brewer G, Schneider R.J. (1999) Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science. 284, 499-502.

210. Lejeune F, Ishigaki Y, Li X, Maquat L.E. (2002) The exon junction complex is detected on CBP80-bound but not elF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBOJ. 21, 3536-3545

211. Ohlmann T, Rau M, Pain V.M, Morley S.J. (1996) The C-terminal domain of eukaryotic protein synthesis initiation factor (elF) 4G is sufficient to support cap-independent translation in the absence of elF4E. EMBO J. 15, 1371-1382.

212. Marcotrigiano J, Lomakin I.B, Sonenberg N, Pestova T.V, Hellen C.U, Burley S.K. (2001) A conserved HEAT domain within elF4G directs assembly of the translation initiation machinery. Mol. Cell. 7, 193-203.

213. Prevot D, Decimo D, Herbreteau C.H, Roux F, Garin J, Darlix J.L, Ohlmann T. (2003) Characterization of a novel RNA-binding region of elF4GI critical for ribosomal scanning. EMBO J. 22, 1909-1921.

214. Ali I.K, McKendrick L, Morley S.J, Jackson R.J. (2001) Truncated initiation factor elF4G lacking an elF4E binding site can support capped mRNA translation. EMBO J. 20, 4233-4242.

215. Tarun S.Z, Sachs A.B. (1997) Binding of eukaryotic translation initiation factor 4E (elF4E) to elF4G represses translation of uncapped mRNA. Mol. Cell. Biol. 17, 6876-6886.

216. Rau M, Ohlmann T, Morley S.J, Pain V.M. (1996) A reevaluation of the cap-binding protein, elF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J. Biol. Chem. 271, 8983-8990.

217. Under P, Lasko P.F, Ashburner M, Leroy P, Nielsen P.J, Nishi K, Schnier J, Slonimski P.P. (1989) Birth of the D-E-A-D box. Nature 337, 121-122.

218. Rogers G.W, Komar A.A, Merrick W.C. (2002) elF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307-331.

219. Gorbalenya A.E, Koonin E.V, Donchenko A.P, Blinov V.M. (1989) Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17, 4713-4730.83 : i

220. Tanner N.K, Under P. (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell. 8, 251-62.

221. Lu J, Aoki H, Ganoza M.C. (1999) Molecular characterization of a prokaryotic translation factor homologous to the eukaryotic initiation factor elF4A. Int. J. Biochem. Cell. Biol. 31, 215229.

222. Li Q, Imataka H, Morino S, Rogers G.W, Richter-Cook N.J, Merrick W.C, Sonenberg N. (1999) Eukaryotic translation initiation factor 4AIII (elF4AIII) is functionally distinct from elF4AI and elF4AII. Mol. Cell. Biol. 19, 7336-7346.

223. Nielsen P.J, Trachsel H. (1988) The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J. 7, 2097-2105.

224. Weinstein D.C, Honore E, Hemmati-Brivanlou A. (1997) Epidermal induction and inhibition of neural fate by translation initiation factor 4AIII. Development. 124, 4235-4242.

225. Morgan R, Sargent M.G. (1997) The role in neural patterning of translation initiation factor elF4AII; induction of neural fold genes. Development. 124, 2751-2760.

226. Le H, Browning K.S, Gallie D.R. (1998) The phosphorylation state of the wheat translation initiation factors elF4B, elF4A, and elF2 is differentially regulated during seed development and germination. J. Biol. Chem. 273, 20084-20089.

227. Abramson R.D, Dever T.E, Lawson T.G, Ray B.K, Thach R.E, Merrick W.C. (1987) The ATP-dependent interaction of eukaryotic.initiation factors with mRNA. J. Biol. Chem. 262, 38263832.

228. Rogers G.W, Lima W.F, Merrick W.C. (2001) Further characterization of the helicase activity of elF4A. Substrate specificity. J Biol. Chem. 276, 12598-12608.

229. Rogers G.W, Richter N.J, Lima W.F, Merrick W.C. (2001) Modulation of the helicase activity of elF4A by elF4B, elF4H, and elF4F. J. Biol. Chem. 276, 30914-30922.

230. Seal S.N, Schmidt A, Marcus A. (1983) Eukaryotic initiation factor 4A is the component that interacts with ATP in protein chain initiation. Proc. Natl. Acad. Sci. USA 80, 6562-6565.

231. Bi X, Ren J, Goss D.J. (2000) Wheat germ translation initiation factor elF4B affects elF4A and eiFiso4F helicase activity by increasing the ATP binding affinity of elF4A. Biochemistry. 39, 5758-5765.

232. Grifo J.A, Abramson R.D, Satler C.A, Merrick W.C. (1984) RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259, 8648-8654.

233. Lax S.R, Browning K.S, Maia D.M, Ravel J.M. (1986) ATPase activities of wheat germ initiation factors 4A, 4B, and 4F. J. Biol. Chem. 261, 15632-15636.

234. Lorsch J.R, Herschlag D. (1998) The DEAD box protein elF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry. 37, 2180-2193.

235. Lorsch J.R, Herschlag D. (1998) The DEAD box protein elF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194-2206.

236. Blum S, Schmid S.R, Pause A, Buser P, Under P, Sonenberg N, Trachsel H. (1992) ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89, 7664-7668.

237. Peck M.L, Herschlag D. (1999) Effects of oligonucleotide length and atomic composition on stimulation of the ATPase activity of translation initiation factor elF4A. RNA 5, 1210-1221.

238. Rozen F, Edery I, Meerovitch K, Dever T.E, Merrick W.C, Sonenberg N. (1990) Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10, 1134-1144.

239. Richter-Cook N.J, Dever T.E, Hensold J.O, Merrick W.C. (1998) Purification and characterization of a .new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J. Biol. Chem. 273, 7579-7587.

240. Sonenberg N, Guertin D, Cleveland D, Trachsel H. (1981) Probing the function of the eucaryotic 5' cap structure by using a monoclonal antibody directed against cap-binding proteins. Cell 27, 563-572.

241. Altmann M, Blum S, Pelletier J, Sonenberg N, Wilson T.M, Trachsel H. (1990) Translation initiation factor-dependent extracts from Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1050, 155-159.

242. Blum S, Mueller M, Schmid S.R, Under P, Trachsel H. (1989) Translation in Saccharomyces cerevisiae: initiation factor 4A-dependent cell-free system. Proc. Natl. Acad. Sci. USA. 86, 6043-6046.

243. Tahara S.M, Morgan M.A, Shatkin.A.J. (1983) Binding of inosine-substituted mRNA to reticulocyte ribosomes and eukaryotic initiation factors 4A and 4B requires ATP. J. Biol. Chem. 258,11350-11353.

244. Nelson E.M, Winkler M.M. (1987) Regulation of mRNA entry into polysomes. Parameters affecting polysome size and the fraction of mRNA in polysomes. J. Biol. Chem. 262, 1150111506.

245. Falcone D, Andrews D.W. (1991) Both the 5' untranslated region and the sequences surrounding the start site contribute to efficient initiation of translation in vitro. Mol. Cell. Biol. 11, 2656-2664.

246. Berthelot K, Nardelli M, Burns J, von der HaarT, McCarthy J.E. (2002) Mechanistic and structural studies of the ribosomal scanning process. Abstracts of papers presented at the 2002 meeting on translational control, CSHL, 6.

247. Milburn S.C, Hershey J.W, Davies M.V, Kelleher K, Kaufman R.J. (1990) Cloning and expression of eukaryotic initiation factor 4B cDNA: sequence determination identifies a common RNA recognition motif. EMBO J. 9, 2783-2790.

248. Altmann M, Muller P.P, Wittmer B, Ruchti F, Lanker S, Trachsel H. (1993) A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. EMBO J. 12, 3997-4003.

249. Coppolecchia R, Buser P, Stotz A, Linder P. (1993) A new yeast translation initiation factor suppresses a mutation in the elF-4A RNA helicase. EMBO J. 12, 4005-4011.

250. Metz A.M, Wong K.C, Malmstrom S.A, Browning K.S. (1999) Eukaryotic initiation factor 4B from wheat and Arabidopsis thaliana is a member of a multigene family. Biochem. Biophys. Res. Commun. 266, 314-321.

251. Methot N, Song M.S, Sonenberg N. (1996) A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (elF4B) self-association and interaction with elF3. Mol. Cell. Biol. 16, 5328-5334.

252. Hughes D.L, Dever T.E, Merrick W.C. (1993) Further biochemical characterization of rabbit reticulocyte elF-4B. Arch. Biochem. Biophys. 301, 311-319.

253. Methot N, Pickett G, Keene J.D, Sonenberg N. (1996) In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA remotif. RNA 2, 38-50.

254. Methot N, Pause A, Hershey J.W, Sonenberg N. (1994) The translation initiation factor elF-4B contains an RNA-binding region that is distinct and independent from its ribonucleoprotein consensus sequence. Mol. Cell. Biol. 14, 2307-2316.

255. Niederberger N, Trachsel H, Altmann M. (1998) The RNA recognition motif of yeast translation initiation factor Tif3/elF4B is required but not sufficient for RNA strand-exchange and translational activity. RNA 4, 1259-1267.

256. Sha M, Balasta M.L, Goss D.J. (1994) An interaction of wheat germ initiation factor 4B with oligoribonucleotides. J. Biol. Chem. 269, 14872-14877.

257. LawsonT.G, Lee K.A, Maimone M.M, Abramson R.D, DeverT.E, Merrick W.C, Thach R.E. (1989) Dissociation of double-stranded polynucleotide helical structures by eukaryotic initiation factors, as revealed by a novel assay. Biochemistry 28, 4729-4734.

258. Abramson R.D, DeverT.E, Merrick W.C. (1988) Biochemical evidence supporting a mechanism for cap-independent and internal initiation of eukaryotic mRNA. J. Biol. Chem. 263, 6016-6019. •

259. Altmann M, Wittmer B, Methot N, Sonenberg N, Trachsel H. (1995) The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, elF-4B, have RNA annealing activity. EMBO J. 14, 3820-3827.

260. Ray B.K, Lawson T.G, Abramson R.D, Merrick W.C, Thach R.E. (1986) Recycling of messenger RNA cap-binding proteins mediated by eukaryotic initiation factor 4B. J. Biol. Chem. 261, 11466-11470.

261. Gallie D.R, Le H, Caldwell C, Tanguay R.L, Hoang N.X, Browning K.S. (1997) The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J. Biol. Chem. 272, 1046-1053.

262. Duncan R.F, Hershey J.W. (1989) Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J. Cell. Biol. 109, 1467-1481.

263. Le H, Browning K.S, Gallie D.R. (2000) The phosphorylation state of poly(A)-binding protein specifies its binding to poly(A) RNA and its interaction with eukaryotic initiation factor (elF) 4F, elFiso4F, and elF4B. J. Biol. Chem. 275, 17452-17462.

264. Bonneau A.M, Sonenberg N. (1987) Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis. J. Biol. Chem. 262, 11134-11139.

265. Duncan R, Hershey J.W. (1985) Regulation of initiation factors during translational repression caused by serum depletion. Covalent modification. J. Biol. Chem. 260, 5493-5497.

266. Wolthuis R.M, Cremers A.F, Kasperaitis M.A, van der Mast C, Voorma H.O, Boonstra J. (1993) Epidermal growth factor stimulates phosphorylation of eukaryotic initiation factor 4B, independently of protein kinase C. Biochim. Biophys. Acta 1177, 160-166.

267. Gallie D.R, Le H, Caldwell C, Tanguay R.L, Hoang N.X, Browning K.S. (1997) The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J. Biol. Chem. 272, 1046-1053.

268. Duncan R, Hershey J.W. (1984) Heat shock-induced translational alterations in HeLa cells. Initiation factor modifications and the inhibition of translation. J. Biol. Chem. 259, 11882-11889.

269. Morley S.J, Traugh J.A. (1990) Differential stimulation of phosphorylation of initiation factors elF-4F, elF-4B, elF-3, and ribosomal protein S6 by insulin and phorbol esters. J. Biol. Chem. 265, 10611-10616.

270. Bushell M, Wood W, Clemens M.J, Morley S.J. (2000) Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur. J. Biochem. 267, 10831091.

271. Young T.E, Gallie D.R. (2000) Programmed cell death during endosperm development. Plant Mol. Biol. 44, 283-301.

272. Richter N.J, Rogers G.W, Hensold J.O, Merrick W.C. (1999) Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H. J. Biol. Chem. 274, 3541535424.

273. Strahl-Bolsinger S, Tanner W. (1993) A yeast gene encoding a putative RNA helicase of the "DEAD"-box family. Yeast 9, 429-432.

274. Pestova T.V, Hellen C.U. (2000) 48S complex reconstitution with mRNA possessing unsctructured 5'-UTR. Abstracts of papers presented at the 2000 meeting on translational control, CSHL, 139

275. Liu H.Y, Nefsky B.S, Walworth N.C. (2002) The Ded1 DEAD box helicase interacts with Chk1 and Cdc2. J. Biol. Chem. 277, 2637-2643.

276. Gulyas K.D, Donahue T.F. (1992) SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell 69, 1031-1042.

277. Yoon H, Miller S.P, Pabich E.K, Donahue T.F. (1992) SSL1, a suppressor of a HIS4 5'-UTR stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast. Genes Dev. 6, 2463-2477.

278. Raychaudhuri P, Chaudhuri A, Maitra U. (1985) Eukaryotic initiation factor 5 from calf liver is a single polypeptide chain protein of Mr = 62,000. J. Biol. Chem. 260, 2132-2139.

279. Das K, Chevesich J, Maitra U. (1993) Molecular cloning and expression of cDNA for mammalian translation initiation factor 5. Proc. Natl. Acad. Sci. USA 90, 3058-3062.

280. Paulin F.E, Campbell L.E, O'Brien K, Loughlin J, Proud C.G. (2001) Eukaryotic translation initiation factor 5 (elF5) acts as a classical GTPase-activator protein. Curr. Biol. 11, 55-59.

281. Das S, Ghosh R, Maitra U. (2001) Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J. Biol. Chem. 276, 6720-6726.

282. Chakrabarti A, Maitra U. (1991) Function of eukaryotic initiation factor 5 in the formation of an 80 S ribosomal polypeptide chain initiation complex. J. Biol. Chem. 266, 14039-14045.

283. Chakravarti D, Maitra U. (1993) Eukaryotic translation initiation factor 5 from Saccharomyces cerevisiae. Cloning, characterization, and expression of the gene encoding the 45,346-Da protein. J. Biol. Chem. 268, 10524-10533.

284. Ghosh S, Chevesich J, Maitra U. (1989) Further characterization of eukaryotic initiation factor 5 from rabbit reticulocytes. Immunochemical characterization and phosphorylation by casein kinase II. J. Biol. Chem. 264, 5134-5140.

285. Majumdar R, Bandyopadhyay A, Deng H, Maitra U. (2002) Phosphorylation of mammalian translation initiation factor 5 (eIF5) in vitro and in vivo. Nucleic Acids Res. 30, 1154-1162.

286. Maiti T, Bandyopadhyay A, Maitra U. (2003) Casein kinase II phosphorylates translation initiation factor 5 (elF5) in Saccharomyces cerevisiae. Yeast 20, 97-108.

287. Si K, Das K, Maitra U. (1996) Characterization of multiple mRNAs that encode mammalian translation initiation factor 5 (elF-5). J. Biol. Chem. 271, 16934-16938.

288. Chaudhuri J, Das K, Maitra U. (1994) Purification and characterization of bacterially expressed mammalian translation initiation factor 5 (elF-5): demonstration that elF-5 forms a specific complex with elF-2. Biochemistry 33, 4794-4799.

289. Pestova T.V, Lomakin I.B, Lee J.H, Choi S.K, DeverT.E, Hellen C.U. (2000) The joining of ribosomal subunits in eukaryotes requires elF5B. Nature 403, 332-335.

290. Ghosh R, Maitra U. (2002) Translation initiation factors elF5 and elF5B act at distinct steps in the initiation process. Abstracts of papers presented at the 2002 meeting on translational control, CSHL, 102

291. Lee J.H, Choi S.K, Roll-Mecak A, Burley S.K, DeverT.E. (1999) Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc. Natl. Acad. Sci. USA. 96, 4342-4347.

292. Choi S.K, Lee J.H, Zoll W.L, Merrick W.C, Dever Т.Е. (1998) Promotion of met-tRNAiMet binding to ribosomes by ylF2, a bacterial IF2 homolog in yeast. Science 280, 1757-1760.

293. Lee J.H, Pestova T.V, Shin B.S, Cao C, Choi S.K, DeverT.E. (2002) Initiation factor elF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc. Natl. Acad. Sci. USA 99, 16689-16694

294. Shin B.S, Maag D, Roll-Mecak A, Arefin M.S, Burley S.K, Lorsch J.R, DeverT.E. (2002) Uncoupling of initiation factor elF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111, 1015-1025.

295. Merrick W.C, Kemper W.M, Anderson W.F. (1975) Purification and characterization of homogeneous initiation factor M2A from rabbit reticulocytes. J. Biol. Chem. 250, 5556-5562.

296. Marintchev A, Kolupaeva V.G, Pestova T.V, Wagner G. (2003) Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: a new interaction between old partners. Proc. Natl. Acad. Sci. USA 100, 1535-1540.

297. Boileau G, Butler P, Hershey J.W, Traut R.R. (1983) Direct cross-links between initiation factors 1, 2, and 3 and ribosomal proteins promoted by 2-iminothiolane. Biochemistry 22, 31623170.

298. Benne R, Brown-Luedi M.L, Hershey J.W. (1978) Purification and characterization of protein synthesis initiation factors elF-1, elF-4C, elF-4D, and elF-5 from rabbit reticulocytes. J. Biol. Chem. 253, 3070-3077

299. Gordon E.D, Mora R, Meredith S.C, Lee C, Lindquist S.L. (1987) Eukaryotic initiation factor 4D, the hypusine-containing protein, is conserved among eukaryotes. J. Biol. Chem. 262, 16585-16589.

300. Kim K.K, Hung L.W, Yokota H, Kim R, Kim S.H. (1998) Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. Proc. Natl. Acad. Sci. USA 95, 10419-10424.

301. Park M.H, Wolff E.C, Folk J.E. (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4, 95-104.

302. Chung S.I, Park M.H, Folk J.E, Lewis M.S. (1991) Eukaryotic initiation factor 5A: the molecular form of the hypusine-containing protein from human erythrocytes. Biochim. Biophys. Acta 1076,448-451.

303. Hershey J.W, Smit-McBride Z, Schnier J. (1990) The role of mammalian initiation factor elF-4D and its hypusine modification in translation. Biochim. Biophys. Acta 1050, 160-162.

304. Park M.H. (1989) The essential role of hypusine in eukaryotic translation initiation factor 4D (elF-4D). Purification of elF-4D and its precursors and comparison of their activities. J. Biol. Chem. 264, 18531-18535.

305. Aoki H, Adams S.L, Turner M.A, Ganoza M.C. (1997) Molecular characterization of the prokaryotic efp gene product involved in a peptidyltransferase reaction. Biochimie 79, 7-11.

306. Schnier J, Schwelberger H.G, Smit-McBride Z, Kang H.A, Hershey J.W. (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3105-3114.

307. Hanauske-Abel H.M, Park M.H, Hanauske A.R, Popowicz A.M, Lalande M, Folk J.E. (1994) Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochim. Biophys. Acta 1221, 115-124.

308. Kang H.A, Hershey J.W. (1994) Effect of initiation factor elF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269, 3934-3940.

309. Xu A, Chen K.Y. (2001) Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with postsystematic evolution of ligands by exponential enrichment RNA. J. Biol. Chem. 276, 2555-2561.

310. Algire M.A, Maag D, Savio P, Acker M.G, Tarun S.Z, Sachs A.B, Asano K, Nielsen K.H, Olsen D.S, Phan L, Hinnebusch A.G, Lorsch J.R. (2002) Development and characterization of a reconstituted yeast translation initiation system. RNA 8, 382-397.

311. Pestova T.V, Hellen C.U. (2003) Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev. 17, 181-186.

312. Lorsch J.R, Herschlag D. (1999) Kinetic dissection of fundamental processes of eukaryotic translation initiation in vitro. EMBO J. 18, 6705-6717.

313. Applefield D, Lorsch J (2002) Identification and characterization of a factor capable of activating 80S initiation complex in vitro. Abstracts of papers presented at the 2002 meeting on translational control, CSHL, 20.

314. McCallum C.D, Do H, Johnson A.E, Frydman J. (2000) The interaction of the chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) with ribosome-bound nascent chains examined using photo-cross-linking. J. Cell. Biol. 149, 591-602.

315. Dunn A.Y, Melville M.W, Frydman J. (2001) Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT. J. Struct. Biol. 135, 176-184.

316. Russell D.W, Spremulli L.L. (1979) Purification and characterization of a ribosome dissociation factor (eukaryotic initiation factor 6) from wheat germ. J. Biol. Chem. 254, 87968800.

317. Valenzuela D.M, Chaudhuri A, Maitra U. (1982) Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of Mr = 25,500 (eukaryotic initiation factor 6). J. Biol. Chem. 257, 7712-7719.

318. Sanvito F, Piatti S, Villa A, Bossi M, Lucchini G, Marchisio P.C, Biffo S. (1999) The beta4 integrin interactor p27(BBP/elF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J. Cell. Biol. 144, 823-837.

319. Basu U, Si K, Warner JR, Maitra U. (2001) The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 21, 1453-1462.

320. Ceci M, Offenhauser N, Marchisio PC, Biffo S. (2002) Formation of nuclear matrix filaments by p27(BBP)/elF6. Biochem. Biophys. Res. Commun. 295, 295-299.

321. Si K, Maitra U. (1999) The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol. Cell. Biol. 19, 1416-1426.

322. Foiani M, Cigan A.M, Paddon CJ, Harashima S, Hinnebusch A.G. (1991) GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3203-3216.