Бесплатный автореферат и диссертация по биологии на тему
Характеристика взаимодействия ДНК-узнающего участка белка и ДНК по большой бороздке
ВАК РФ 03.00.03, Молекулярная биология
Содержание диссертации, кандидата биологических наук, Васильев, Сергей Александрович
Список принятых сокращений.
1. Введение.
2. Цель и задачи работы.
3. Научная новизна.
4 . Обзор литературы.
4.1. Принципы узнавания ДНК белком.
4.2. Особенности структуры ДНК.
4.3. Роль а-спирали и ^-структуры в образовании ДНК-белковых комплексов.
4.4. Строение ДНК-узнающих областей белка.
4.5. Роль конформационных изменений ДНК в образовании ДНК-белковых комплексов.
4.6. ДНК-узнающий домены.
4.6.1. ДНК-узнающий домен НТН.
4.6.2. Цинк содержащие ДНК-узнающие домены.
4.7. Код ДНК-белкового взаимодействия.
4.8. Базы данных, содержащие информацию о пространственной структуре ДНК-белковых комплексов.
5. Материалы и методы.
6. Определения основных объектов.
7 . Результаты.
7.1. Формализованное описание зоны контакта.
7.2. Распределение ДНК-узнающих белковых участков по кластерам.
7.3. Классификация ДНК-узнающих участков по вторичной структуре.
7.4. Распределение показателя водородных связей.
7.5. Распределение показателя гидрофобного взаимодействия.
7.6. Анализ вклада оснований ДНК в образование гидрофобного взаимодействия.
7.7. Роль коротких ДНК-узнающих участков.
7.8. Вариабельность показателей для
ДНК-узнающих участков.
7.9. Показатели у белков с малой специфичностью узнавания ДНК.
7.10. Распределение показателей по типам ДНК-узнающих доменов.
7.11. Сравнение двух показателей.
7.12. Построение таблиц физико-химических взаимодействий.
7.13. Расчет модели ДНК-белкового взаимодействия.
8. Обсуждение результатов.
8.1. Организация информации.
8.2. Выбор критерия отбора ДНК-узнающего участка фильтр 6М45).
8.3. Роли цитозина и гуанина в гидрофобном взаимодействии
8.4. Показатели взаимодействия белка с большой бороздкой ДНК.
8.5. Значение показателей у одинаковых зон контакта.
8.6. Соотношение показателей у разных
ДНК-узнающих доменов.
8.7. Построение таблиц физико-химических взаимодействий.
9. Выводы.
10. Литература.
Заключение Диссертация по теме "Молекулярная биология", Васильев, Сергей Александрович
9. Выводы.
1. Полученная в результате применения теоретических правил модель ДНК-белкового взаимодействия адекватно описывает специфические контакты, образующиеся при взаимодействии с промоторной областью собственного гена ДНК-метилтрансферазы SsoII, что свидетельствует о возможности применения теоретических правил для предсказания ДНК-белковых контактов.
2. Разработана оригинальная объектно-ориентированная реляционная база данных ДНК-белковых взаимодействий DNA-Protein Interaction Data Base (DPIDB) с адекватной организацией информации о трехмерных расшифровках ДНК-белковых комплексов.
3. Впервые разработано и алгоритмически реализовано формализованное описание зоны ДНК-белкового контакта, что позволяет эффективно осуществлять компьютерный сравнительный анализ зон контакта в любом объеме данных.
4. Впервые предложены нецелочисленные показатели водородных связей и гидрофобного взаимодействия, рассчитанные на основе метода извлечения потенциала взаимодействия из статистических данных о трехмерной структуре ДНК-белковых комплексов с учетом всех известных на сегодняшний день комплексов. Эти показатели численно отражают взаимодействие ДНК-узнающего участка белка с большой бороздкой ДНК.
5. Впервые показано, что для корректного расчета гидрофобного взаимодействия в зоне ДНК-белкового контакта необходимо учитывать, что в образовании гидрофобных взаимодействий между большой бороздкой ДНК и белком примерно в 45% случаев участвуют С5М и С б атомы тимина. Кроме того, атомы С5 и С б цитозина, и атомы С5 и С8 гуанина в сумме образуют примерно то же количество гидрофобных контактов.
6. Соотношение показателей водородных связей и парного гидрофобного взаимодействия и сами значения этих показателей у различных типов ДНК-узнающих доменов существенно различны.
Библиография Диссертация по биологии, кандидата биологических наук, Васильев, Сергей Александрович, Москва
1. Молекулярное взаимодействие. // М., Мир, 198 4
2. Васильев С.А., Севастьянова Г.А. Структурные аспекты ДНК-белкового взаимодействия на примере фермента 5-метилцитозин-метилтрансферазы. // М., МПГУ, 1997.
3. Васильев С.А., Алексеевский А.В., Спирин С.А., Ташлицкий В.Н., Тихонова Т.В., Карягина А. С. Оценка взаимодействия узнающей области белка с большой бороздкой ДНК. // Биофизика, 1999, 12 (в печати).
4. Зенгер В. Принципы структурной организации нуклеиновых кислот. // М., Мир, 1987.
5. Кантор Ч., Шиммел П. Биофизическая химия, в 3-х томах. // М., Мир, 1984.
6. Лыоин Б. Гены. // М., Мир, 1987.
7. Пташне М. Переключение генов. Регуляция генной активности и фаг X. // М., Мир, 1988.
8. PDB newsletter. // PDB, 1999.
9. Protein Data Bank Contents Guide: atomic coordinate entry format description, version 2.1 (draft). // PDB, 1996.
10. Abóla E.E., Sussman J.L., Prilusky J., Manning N.O. Protein Data Bank archives of three-dimensional macromolecu-lar structures. // Methods Enzymol., 1997, v. 277, p. 556571.
11. Abóla E.E., Manning N.O., Prilusky J., Stampf D.R., Sussman J.L. The Protein Data Bank: current status and future challenges. // J.Res.Natl.Inst.Stand.Technol., 1996, v. 101, p. 231-241.
12. Aggarwal A.K., Wah D.A. Novel site-specific DNA endonu-cleases. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 19-25.
13. Albright R.A., Matthews B.W. Crystal structure of a-Cro bounding to a consensus operator at 3.0 A resolution. // J.Mol.Biol., 1998 , v. 280, p. 137-151.
14. Allen M.D., Yamasaki K., Ohme-Takagi M., Tateno M., Suzuki M. A novel mode of DNA recognition by a fJ-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. // EMBO J., 1998, v. 17, p. 5484-5496.
15. Anderson J.E., Ptashne M., Harrison S.C. Structure of the repressor-operator complex of bacteriophage 434. // Nature, 1987, v. 326 , p. 846-852.
16. Apaya R.P., Bondi M., Price S.L. The orientation of N-H.0=C and N-H.N hydrogen bonds in biological systems:
17. How good is a point charge as a model for a hydrogen binding atom? // J.Comput.-Aided Mol.Desighn, 1997, v. 11, p. 479-490.
18. Auffinger P., Westhof E. Simulation of the molecular dynamics of nucleic acids. // Curr . Opin.Struct.Biol. , 1998, v. 8, p. 227-236.
19. Balaeff A., Churchill M.E.A., Schulten K. Structural prediction of a complex between the chromosomal protein HMG-D and DNA. // Proteins Struct.Funct.Genet., 1998, v. 30, p. 113-135.
20. Barrett T., Savva R., Panayotou G., Barlow T., Brown T., Jiricny J., Pearl L.H. Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. // Cell, 1998, v. 92, p. 117129.
21. Bastia D. Structural aspects of protein-DNA interactions as revealed by conversion of the interacting protein into a sequence-specific cross-linking agent or a chemical nuclease. // Structure, 1996, v. 4, p. 661-664.
22. Berg J.M. DNA binding specificity of steroid receptors. // Cell, 1989, v. 57, p. 1065-1068.
23. Berg J.M. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. // Proc.Natl.Acad.Sci.U.S.A, 1988, v. 85, p. 99-102.
24. Berger C., Piubelli L., Haditsch U., Bosshard H.R. Diffu-siom-controlled DNA recognition by an unfolded, monomeric bZIP transcription factor. // FEBS Lett., 1998, v. 425, p. 14-18.
25. Berger J.M. Type II topoisomerases. // Curr.Opin.Struct. Biol., 1998, v. 8, p. 26-32.
26. Berger J.M., Gamblin S.J., Harrison S.C., Wang J.C. Structure and mechanism of DNA topoisomerase II. // Nature, 1996, v. 379, p. 225-232.
27. Bernstein F.C., Koetzle T.F., Williams G.J., Meyer E.E. Jr., Brice M.D., Rodgers J.R., Kennard 0., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. // J.Mol.Biol., 1977, v. 112, p. 535-542.
28. Billeter M., Qian Y.Q., Otting G., Muller M., Gehring W., Wuthrich K. Determination of the nuclear magnetic resonance solution structure of an antennapedia homeodomain-DNA complex. // J.Mol.Biol., 1993, v. 234, p. 1084-1097.
29. Bird L.E., Subramanya H.S., Wigley D.B. Helicases: a unifying structural theme? // Curr.Opin.Struct.Biol., 1998, v. 8, p. 14-18.
30. Bochkarev A., Barwell J.A., Pfuetzner R.A., Bochkareva E., Frappier L., Edwards A.M. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. // Cell, 1996, v. 84, p. 791800.
31. Bochkarev A., Barwell J.A., Pfuetzner R.A., Furey W., Edwards A.M., Frappier L. Crystal structure of the DNA-bind-ing domain of the Epstein-Barr virus origin-binding protein EBNA1. // Cell, 1995, v. 83, p. 39-46.
32. Bornberg-Bauer E., Rivals E., Vingron M. Computational approach to identify leucine zippers. // Nucleic Acids Res., 1998, v. 26, p. 2740-2746.
33. Brautigam C.A., Steitz T.A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. // Curr.Opin. Struct. Biol., 1998, v. 8, p. 63.
34. Brennan R.G. DNA recognition by the helix-turn-helix motif. // Curr.Opin.Struct.Biol. , 1992, v. 2, p. 100-108.
35. Brennan R.G. Interaction of the helix-turn-helix binding domain. // Curr.Opin.Struct.Biol., 1991, v. 1, p. 80-88.
36. Brennan R.G., Matthews B.W. Structural basis of DNA-protein recognition. // Trends Biochem.Sei., 1989, v. 14, p. 286-290.
37. Buning H., Gatner U., von Schack D., Baeuerle P.A., Zorbas H. The histidine tail of a recombination DNA binding proteins may influence the quality of interaxtion with DNA. // Anal.Biochem. , 1996, v. 234, p. 227-230.
38. Burley S.K. The TATA box binding protein. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 69-75.
39. Chen J., Pongor S., Simoncsits A. Recognition of DNA by single-chain derivatives of the phage 434 repressor: high affinity binding depends on both the contacted and non-contacted base pairs. // Nucleic Acids Res., 1997, v. 25, p. 2047-2054.
40. Cho Y., Gorina S., Jeffrey P.D., Pavletich N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. // Science, 1994, v. 265, p. 346-355.
41. Choo Y. End effects in DNA recognition by zinc finger arrays. // Nucleic Acids Res., 1998, v. 26, p. 554-557.
42. Clark K.L., Halay E.D., Lai E., Burley S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. // Nature, 1993, v. 364, p. 412-420.
43. Crothers D.M. DNA curvature and deformation in protein-DNA complexes: a step in the right direction. // Proc.Natl.Acad. Sci.USA, 1998, v. 95, p. 15163-15165.
44. Damante G., Pellizzari L., Esposito G., Fogolari F., Viglino P., Fabbro D., Tell G., Formisano S., Lauro R.D. A molecular code dictates sequence-specific DNA recognition by ho-meodomains. // EMBO J., 1996, v. 15 , p. 4992-5000.
45. Deng Q.L., Ishii S., Sarai A. Binding site analysis of c-Myb: screening of potentional binding sites by using the mutation matrix derived from systematic binding affinity measurements. // Nucleic Acids Res., 1996, v. 24, p. 766774 .
46. Desjarlais J.R., Berg J.M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. // Proc.Natl.Acad.Sci.USA, 1993, v. 90, p. 2256-2260.
47. Dickerson R.E. DNA bending: the prevalence of kinkiness and the virtues of normality. // Nucleic Acids Res., 1998, v. 26, p. 1906-1926.
48. Dickerson R.E. Definition and nomenclature of nucleic acid structure parameters. // J.Biomol.Struct.Dyn., 1989, v. 4, p. 627-634.
49. Dodd I.B., Egan J.B. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. // Nucleic Acids Res., 1990, v. 18, p. 5019-5026.
50. Doherty A.J., Serpell L.C., Ponting C.P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. // Nucleic Acids Res., 1996, v. 24, p. 2488-2497.
51. Duong T.H., Zakrzewska K. Sequence specificity of bacte-riphage 434 repressor-operator complexation. // J.Mol.Biol., 1998, v. 280, p. 31-39.
52. Edwards A.M., Bochkarev A., Frappier L. Origin DNA-binding proteins. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 49-53.
53. Ellenberger T.E., Brandl C.J., Struhl K., Harrison S.C. The GCN4 basic region leucine zipper binds DNA as a dinner of uninterrupted a helices: crystal structure of the protein-DNA complex. // Cell, 1992, v. 71, p. 1223-1237.
54. Elrod-Erickson M., Benson T.E., Pabo C.O. High-resolution structures of variant Zif268-DNA complexes: implication for understanding zinc finger-DNA recognition. // Structure, 1998, v. 6, p. 451-464.
55. Elrod-Erickson M., Rould M.A., Nekludova L., Pabo C.O. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interaction. // Structure, 1996, v. 4, p. 1171-1180.
56. Ezaz-Nikpay K., Verdine G.L. The effects of N7-methylgua-nine on duplex DNA structure. // Chem.Biol., 1994, v. 1, p. 235-240.
57. Fairall L., Schwabe J.W., Chapman L., Finch J.T., Rhodes D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. // Nature, 1993, v. 366, p. 483-487.
58. Feng D.F., Johnson M.S., Doolittle R.F. Aligning amino acid sequences: comparison of commonly used methods. // J.Mol.Evol., 1985, v. 21, p. 112-125.
59. Feng J.A., Johnson R.C., Dickerson R.E. Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. // Science, 1994, v. 263, p. 348-355.
60. Ferre-D'Amare A.R., Pognonec P., Roeder R.G., Burley S.K. Structure and function of the b/HLH/Z domain of USF. // EMBO J., 1994, v. 13, p. 180-189.
61. Fields D.S., Stormo G.D. Quantatative DNA sequencing to determine the relative protein-DNA binding constants to multiple DNA sequences. // Anal.Biochem., 1994, v. 219, p. 230239.
62. Fogh R.H., Ottleben G., Ruterjans H., Schnarr M., Boelens R., Kaptein R. Solution structure of the LexA repressor
63. DNA binding domain determined by 1H NMR spectroscopy. // EMBO J., 1994, v. 13, p. 3936-3944.
64. Fraenkel E., Pabo C.O. Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. // Nat.Struct.Biol., 1998, v. 5, p. 692-697.
65. Fraenkel E., Rould M.A., Chambers K.A., Pabo C.O. Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. // J.Mol.Biol. , 1998, v. 284, p. 351361.
66. Frankel A.D., Bredt D.S., Pabo C.O. Tat protein from human immunodeficiency virus forms a metal-linked dimer. // Science, 1988, v. 240, p. 70-73.
67. Freedman L.P., Luisi B.F., Korszun Z.R., Basavappa R., Si-gler P.B., Yamamoto K.R. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. // Nature, 1988, v. 334, p. 543546.
68. Giffin W., Torrance H., Rodda D.J., Prefontaine G.G., Pope L., Hache R.J.G. Sequence-specific DNA binding by Ku autoantigen and its effect on transcription. // Nature, 1996, v. 380, p. 265-268.
69. Gilis D., Rooman M.J. Stability changes upon mutation of solvent-accessible residues in proteins evaluted by database-derived potentials. // J.Mol.Biol., 1996, v. 257, p. 1112-1126.
70. Gorin A.A., Zhurkin V.B., Olson W.K. B-DNA twisting correlates with base-pare morphology. // J.Mol.Biol., 1995, v. 247, p. 34-48.
71. Gromiha M.M., Munteanu M.G., Simon I., Pongor S. The role of DNA bending in Cro protein-DNA interaction. // Biophys.Chem. , 1997, v. 69, p. 153-160.
72. Harrison S.C. A structural taxonomy of DNA-binding domains. // Nature, 1991, v. 353, p. 715-719.
73. Harrison S.C., Aggarwal A.K. DNA recognition by proteins with the helix-turn-helix motif. // Annu.Rev.Biochem., 1990, v. 59, p. 933-969.
74. Hegde R.S., Grossman S.R., Laimins L.A., Sigler P.B. Crystal structure at 1.7 Â of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. // Nature, 1992, v. 359, p. 505-512.
75. Jacobs G., Michaels G. Zinc finger gene database. // New Biol., 1990, v. 2, p. 583.
76. Janin J. Quantifuing biological specificity: the statistical mechanics of molecular recognition. // Proteins Struct.Funct. Genet., 1996, v. 25, p. 438-445.
77. Jansen C., Gronenborn A.M., Clore G.M. The binding of the cyclic AMP receptor protein to synthetic DNA sites containing permutations in the consensus sequence TGTGA. // Biochem.J., 1987, v. 246, p. 227-232.
78. Jeon C., Yoon H., Agarwal K. The transcription factor TFI-IS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase II. // Proc.Natl.Acad.Sci.U.S .A, 1994, v. 91, p. 9106-9110.
79. Jin C., Marsden I., Chen X., Liao X. Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. // J.Mol.Biol., 1999, v. 289, p. 683-690.
80. Jones S., van Heyningen P., Berman H.M., Thronton J.M. Protein-DNA interactions: a structural analysis. // J.Mol.Biol., 1999, v. 287, p. 877-896.
81. Jordan S.R., Pabo C.O. Structure of the lambda complex at 2.5 A resolution: details of the repressor-operator interactions. // Science, 1988, v. 242, p. 893-899.
82. Kabsch W. , Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. // Biopolymers, 1983, v. 22, p. 2577-2637.
83. Kaptein R., Zuiderweg E.R., Scheek R.M., Boelens R., van Gunsteren D. A protein structure from nuclear magnetic resonance data Lac repressor headpiece. // J.Mol.Biol., 1985, v. 182, p. 179-182.
84. Karlin S., Brendel V. Chance and statistical significance in protein and DNA sequence analysis. // Science, 1992, v. 257, p. 39-49.
85. Keller W., Konig P., Richmond T.J. Crystal structure of a bZip/DNA complex at 2.2 Â: determinants of DNA specificrecognition. // J.Mol.Biol., 1995, v. 254, p. 657-667.
86. Kim J.L., Nikolov D.B., Burley S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. // Nature, 1993, v. 365, p. 520-527.
87. Kim Y., Geiger J.H., Hahn S., Sigler P.B. Crystal structure of a yeast TBP/TATA-box complex. // Nature, 1993, v. 365, p. 512-527.
88. Kissinger C.R., Liu B.S., Martin-Blanco E., Kornberg T.B., Pabo C.O. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. // Cell, 1990, v. 63, p. 579-590.
89. Klemm J.D., Rould M.A., Aurora R., Herr W., Pabo C.O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. // Cell, 1994, v. 77, p. 21-32.
90. Klug A., Rhodes D. Zinc fingers: a novel protein fold for nucleic acid recognition. // Cold Spring Harb.Symp. Quant.Biol., 1987, v. 52, p. 473-482.
91. Kodandapani R., Pio F., Ni C., Piccialli G., Klemsz M., McKercher S., Maki R.A., Ely K.R. A new pattern for helix-turn-helix recognition revealed by the PU.l ETS-domain-DNA complex. // Nature, 1996, v. 380, p. 456-460.
92. Kohn W.D., Mant C.T., Hodges R.S. a-helical protein assembly motifs. // J.Biol.Chem. , 1997, v. 272, p. 2583-2586.
93. Konig P., Girado R., Chapman L., Rhodes D. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. // Cell, 1996, v. 85, p. 125-136.
94. Kostrewa D., Winkler F.K. Mg-+ binding to the active site of EcoRV endonuclease: a cristallographic study of complexes with substrate and product DNA at 2 A resolution. // Biochemistry, 1995, v. 34, p. 683-696.
95. Kostrewa D., Granzin J., Stock D., Choe H.W., Labahn J., Saenger W. Crystal structure of the factor for inversion stimulation FIS at 2.0 A resolution. // J.Mol.Biol., 1992, v. 226, p. 209-226.
96. Koudelka G.B. Recognition of DNA structure by 434 repressor. // Nucleic Acids Res., 1998, v. 26, p. 669-675.
97. Leplae R. , Hubbard T., Tramontane» A. GLASS: a tool to visualize protein structure prediction data in three dimensions and evaluate their consistency. // Proteins Struct.Funct. Genet., 1998, v. 30, p. 339-351.
98. Lesser D.R., Kurpiewski M.R., Waters T., Connolly B.A., Jen-Jacobson L. Facilitated distortion of the DNA site enhances EcoRI endonuclease-DNA recognition. // Proc.Natl.Acad. Sci.U.S.A, 1993, v. 90, p. 7548-7552.
99. Lindauer K., Bendic C., Suhnel J. HBexplore a new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules. // CABIOS communication, 1996, v. 12 (4), p. 281-289.
100. Lipanov A., Kopka M.L., Kaczor-Grzeskowiak M., Quintana J., Dickerson R.E. Structure of the B-DNA decamer C-C-A-A-C-I-T-T-G-G in two different space groups: conformation flexibility of B-DNA. // Biochemistry, 1993, v. 32, p. 13731389.
101. Louse-May S., Auffinger P., Westhof E. Calculation of nucleic acid conformation. // Curr.Opin.Struct.Biol., 1996, v. 6, p. 289-298.
102. Luger K., Richmond T.J. DNA binding within the nucleosome core. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 33-40.
103. Luger K., Rechsteiner T.J., Flaus A.J., Waye M.M., Richmond T.J. Characterization of nucleosome core particles containing histone proteins made in bacteria. // J.Mol.Biol., 1997, v. 272, p. 301-311.
104. Luisi B.F., Xu W.X., Otwinowski Z., Freedman L.P., Yamamo-to K.R., Sigler P.B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. // Nature, 1991, v. 352, p. 497-505.
105. Luscombe N.M., Laskowski R.A., Thronton J.M. NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. // Nucleic Acids Res., 1997, v. 25, p. 4940-4945.
106. Ma P.C.M., Rould M.A., Weintraub H., Pabo C.O. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. // Cell, 1994, v. 77, p. 451-459.
107. Mandel-Gutfreund Y., Margalit H., Jernigan R.L., Zhurkin V.B. A role for CH.0 interactions in protein-DNA recognition. // J.Mol.Biol., 1998, v. 277, p. 1129-1140.
108. Mandel-Gutfreund Y., Margalit H. Quantitave parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites. // Nucleic Acids Res., 1998, v. 26, p. 2306-2312.
109. Mandel-Gutfreund Y., Schueler 0., Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: insearch of common principles. // J.Mol.Biol., 1995, v. 253, p. 370-382.
110. Marmorstein R.Q., Carey M., Ptashne M., Harrison S.C. DNA recognition by GAL4: structure of a protein-DNA complex. // Nature, 1992, v. 356, p. 408-414.
111. Matsuo H., Shirakawa M., Kyogoku Y. Three-dimentional dimer structure of the X-Cro repressor in solution as determined by heteronuclear multidimensional NMR. // J.Mol.Biol., 1995, v. 254, p. 668-680.
112. Matthews B.W. Protein-DNA interaction. No code for recognition. // Nature, 1988, v. 335, p. 294-295.
113. McCammon J.A. Theory of biomolecular recognition. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 245-249.
114. Misra V.K., Sharp K.A., Friedman R.A., Honig B. Salt effects on ligand-DNA binding minor groove binding antibiotics. // J.Mol.Biol., 1994, v. 238, p. 245-263.
115. Misra V.K., Hecht J.L., Sharp K.A., Friedman R.A., Honig B. Salt effects on protein-DNA interactions. The A-cI repressor and -EcoRI endonuclease. // J.Mol.Biol., 1994, v. 238, p. 264-280.
116. Mondragon A., Subbiah S., Almo S.C., Drottar M., Harrison S.C. Structure of the amino-terminal domain of phage 434 repressor at 2.0 A resolution. // J.Mol.Biol., 1989, v. 205, p. 189-200.
117. Mueser T.C., Nossal N.G., Hyde C.C. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA Exonu-clease with sequence similarity to the RAD2 family of eu-karyotic proteins. // Cell, 1996, v. 85, p. 1101-1112.
118. Nardelli J., Gibson T.J., Vesque C., Charnay P. Base sequence discrimination by zinc-finger DNA-binding domains. // Nature, 1991, v. 349, p. 175-178.
119. Nekludova L., Pabo C.O. Distinctive DNA conformation with enlarged major groove is found in Zn-finger-DNA and other protein-DNA complexes. // Proc.Natl.Acad.Sci.U.S.A, 1994, v. 91, p. 6948-6952.
120. Nelson H.C.M. Structure and function of DNA-binding proteins. // Curr.Opin.Genet.& Dev., 1995, v. 5, p. 180-189.
121. Newman M., Lunnen K., Wilson G., Greci J., Schildkraut I., Phillips S.E.V. Crystal structure of restriction endonu-clease Bgl I bound to its interrupted recognition sequence. // EMBO J., 1998, v. 17, p. 5466-5476.
122. Oelgeschlager T., Chiang C., Roeder R.G. Topology and reorganization of a human TFIID-promoter complex. // Nature,1996, v. 382, p. 735-738.
123. Ogata K., Morikawa S., Nakamura H., Sekikawa A., Inoue T., Kanai H., Sarai A., Ishii S., Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. // Cell, 1994, v. 79, p. 639-648.
124. Olson W.K., Gorkin A.A. , Lu X., Hock L.M., Zhurkin V.B. DNA sequence-dependent deformability deduced from proteinDNA crystal complexes. // Proc.Natl.Acad.Sci.USA, 1998, v. 95, p. 11163-11168.
125. Otwinowski Z., Schevitz R.W., Zhang R.G., Lawson C.L., Joachimiak A., Marmorstein R.Q., Luisi B.F., Sigler P.B. Crystal structure of trp repressor/operator complex at atomic-resolution. // Nature, 1988, v. 335, p. 321-329.
126. Pabo C.O., Aggarwal A.K., Jordan S.R., Beamer L.J., Obey-sekare U.R., Harrison S.C. Conserved residues make similar contacts in two repressor-operator complexes. // Science, 1990, v. 247, p. 1210-1213.
127. Pabo C.O. New generation databases for molecular biology. // Nature, 1987, v. 327, p. 467.136137138139140141142143144145146147148149
128. Pabo C.O., Suchanek E.G. Computer-aided model-building strategies for protein design. // Biochemistry, 1986, v. 25, p. 5987-5991.
129. Pabo C.O., Sauer R.T. Protein-DNA recognition. // Annu.Rev.Biochem. , 1984 , v. 53, p. 293-321. Pabo C.O., Lewis M. The operator-binding domain of X repressor: structure and DNA recognition. // Nature, 1982, v. 298, p. 443-447.
130. Pabo C.O., Sauer R.T., Sturtevant J.M., Ptashne M. The X repressor contains two domains. // Proc.Natl .Acad.Sci.U.S.A, 1979, v. 76, p. 1608-1612.
131. Packer M.J., Hunter C.A. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone. // J.Mol.Biol., 1998, v. 280, p. 407-420.
132. Pan T., Coleman J.E. GAL4 transcription factor is not a wzinc finger" but forms a Zn(II)2Cys6 binuclear cluster. // Proc.Natl.Acad.Sci.U.S.A, 1990, v. 87, p. 2077-2081 .
133. Pavletich N.P., Pabo C.O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. // Science, 1993, v. 261, p. 1701-1707.
134. Pavletich N.P., Pabo C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. // Science, 1991, v. 252, p. 809-817.
135. Pettitt M., Makarov V.A., Andrews B.K. Protein hydration density: theory, simulations and crystallography. // Curr.Opin.Struct.Biol. , 1998, v. 8, p. 218-221.
136. Phillips S.E.V. Specific p-sheet interaction. // Curr.Opin.Struct.Biol., 1991, v. 1, p. 89-98.
137. Pomerantz J.L., Pabo C.O., Sharp P.A. Analysis of home-odomain function by structure-based design of a transcription factor. // Proc.Natl.Acad.Sci.USA, 1995, v. 92, p. 97529756.
138. Povey J.F., Diakun G.P., Garner C.D., Wilson S.P., Laue E.D. Metal ion co-ordination in the DNA binding domain of the yeast transcriptional activator GAL4. // FEBS Lett.,1501511521531541551561571581591601611621631990, v. 266, p. 142-146.
139. Preibner R., Goede A., Fruromel C. Dictionary of interfaces in proteins (DIP) . Data bank of complementary molecular surface patches. // J.Mol.Biol., 1998, v. 280, p. 535-550.
140. Ptashne M., Jeffrey A., Johnson A.D., Maurer R., Meyer B.J., Pabo C.O., Roberts T.M., Sauer R.T. How the X repressor and cro work. // Cell, 1980, v. 19, p. 1-11.
141. Raumann B.E., Rould M.A., Pabo C.O., Sauer R.T. DNA recognition by ß-sheets in the Arc repressor-operator crystal structure. // Nature, 1994, v. 367, p. 754-757.
142. Rice P.A., Yang S., Mizuuchi K. , Nash H.A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. // Cell, 1996, v. 87, p. 1295-1306.
143. Ringe D. What makes a binding site a binding site? // Curr.Opin.Struct.Biol. , 1995, v. 5, p. 825-829.
144. Robinson H., Gao Y., McCrary B.S., Edmondson S.P., Shriver J.W., Wang A.H.J. Thehyperthermophile chromosomal protein Sac7d sharply kinks DNA. // Nature, 1998, v. 392, p. 202205.
145. Rozenberg H., Rabinovich D., Frolow F., Hegde R.S., Shakked Z. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets. // Proc.Natl.Acad.Sei.USA, 1998, v. 95, p. 15194-15199.
146. Sandmann C., Cordes F., Saenger W. Structure model of a complex between the factor for inversion stimulation (FIS) and DNA: modeling protein-DNA complexes with dyad symmetry and known protein structures. // Proteins, 1996, v. 25, p. 486-500.
147. Saroff H.A. Energetics of protein-DNA interactions: an exact calculation for binding of ligands to a lattice of overlapping sites. // Biopolymers, 1994, v. 36, p. 121134 .
148. Sauer R.T. Lac repressor at last. // Structure, 1996, v. 4, p. 219-222.
149. Sayle R. RasMol user manual. 1992.
150. Scheif R. DNA binding by proteins. // Science, 1988, v. 241, p. 1182-1187.
151. Schildbach J.F., Karzai A.W., Raumann B.E., Sauer R.T. Origins of DNA-binding specificity: role of protein contacts with the DNA backbone. // Proc .Natl .Acad. Sei . USA, 1999, v. 96, p. 811-817.
152. Schneider R., Daruvar A., Sander C. The HSSP database of protein structure-sequence aliment. // Nucleic Acids Res.,1997, v. 25, p. 226-230.
153. Schneider T.D. Sequence walker: a graphical method to display how binding proteins interact with DNA or RNA sequences. // Nucleic Acids Res., 1997, v. 25, p. 4408-4415.
154. Schreiber J., Enderich J., Wegner M. Structural requirement for DNA binding of GCM proteins. // Nucleic Acids Res., 1998, v. 26, p. 2337-2343.
155. Schultz S.C., Shields G.C., Steitz T.A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90. // Science, 1991, v. 253, p. 1001-1007.
156. Schumacher M.A., Choi K.Y., Zalkin H., Brennan R.G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. // Science, 1994, v. 266, p. 763-770.
157. Schwabe J.W.R., Chapman L., Flinch J.T. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. // Cell, 1993, v. 75, p. 567-578.
158. Shilov I., Tashlitskii V., Khodoun M., Vasil'ev S., Alek-seev Y., Kuzubov A., Kubareva E.A., Karyagina A.S. DNA-methyltransferase SsoII interaction with own promotor region binding site. // Nucleic Acids Res., 1998, v. 26, p. 2659-2664.
159. Shimofurutani N., Kisu Y., Suzuki M., Esaka M. Functional analyses of the Dof domain, a zinc finger DNA-binding domain, in a pumpking DNA-protein AOBP. // FEBS Lett., 1998, v. 430, p. 251-256.
160. Simoncsits A., Chen J., Percipalle P., Wang S., Toro I., Pongor S. Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators. // J.Mol.Biol., 1997, v. 267, p. 118-131.
161. Sippl M.J., Jaritz M. Prediction power of mean force pair potentials. // n/a, 1996, p. 113-134.
162. Sippl M.J., Ortner M., Jaritz M., Lackner P., Flockner H. Helmholtz free energies of atom pair interactions in proteins. // Fold.Des., 1996, v. 1, p. 289-298.
163. Sippl M.J. Helmholtz free energy of peptide hydrogen bonds in proteins. // J.Mol.Biol., 1996, v. 260, p. 644-648.
164. Somers W.S., Phillips S.E.V. Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by b-strands. // Nature, 1992, v. 359, p. 387393.176177178179180181182183184185186187188189
165. Steitz T.A. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. // Q.Rev.Biophys. , 1990, v. 23, p. 205-280.
166. Sternberg M.J.E., Gabb H.A., Jackson R.M. Predictive docking of protein-protein and protein-DNA complexes. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 250-256.
167. Stormo G.D., Fields D.S. Specifity, free energy and information contents in protein-DNA interaction. // TIBS, 1998, v. 23, p. 109-113.
168. Suzuki M., Amano N., Kakinuma J., Tateno M. Use a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. // J.Mol.Biol., 1997, v. 274, p. 421-435.
169. Suzuki M., Yagi N. An in-the-groove view of DNA structures in complexes with proteins. // J.Mol.Biol., 1996, v. 255, p. 677-687.
170. Suzuki M., Yagi N., Finch J.T. Role of base-backbone and base-base interactions in alternating DNA conformations. / / FEBS Lett., 1996, v. 379, p. 148-152.
171. Suzuki M., Brenner S.E., Gerstein M., Yagi N. DNA recognition code of transcription factors. // Protein Eng., 1995, v. 8, p. 319-328.
172. Suzuki M., Yagi N., Gerstein M. DNA recognition and superstructural formation by helix-turn-helix proteins. // Protein Eng., 1995, v. 8, p. 329-338.
173. Suzuki M., Gerstein M., Yagi N. Stereochemical basis of DNA recognition by Zn finger. // Nucleic Acids Res., 1994, v. 22, p. 3397-3405.
174. Suzuki M., Yagi N. DNA recognition rules for steroid hormone receptors and GATA1: specificity of the rules. // Proc.Japan Acad., 1994, v. 70B, p. 62-66.
175. Suzuki M., Yagi N. DNA recognition rules for steroid hormone receptors and GATA1: chemical and stereochemical rules. // Proc.Japan Acad., 1994, v. 70B, p. 58-61.
176. Suzuki M. A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. // Structure, 1994, v. 2, p. 317326.
177. Suzuki M., Yagi N. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. // Proc.Natl.Acad.Sci.USA, 1994, v. 91, p. 12357-12361.
178. Tan S., Richmond T.J. Eukariotic transcription factors. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 41-48.
179. Tan S., Hunziker Y., Sargent D.F., Richmond T.J. Crystal structure of a yeast TFIIA/TBP/DNA complex. // Nature, 1996, v. 381, p. 127-134.
180. Turner D.H. Thermodynamics of base pairing. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 299-304.
181. Vipond I.B., Baldwin G.S., Halford S.E. Divalent metal ions at the active sites of the EcoRV and EcoRI restriction endonucleases. // Biochemistry, 1995, v. 34, p. 697-704.
182. Vuister G.W., Kim S.J., Orosz A., Marquardt J., Wu C., Bax A. Solution structure of the DNA-binding domain of Droso-phila heat shock transcription factor. // Nat.Struct.Biol., 1994, v. 1, p. 605-614.
183. Waters T.R., Connolly B.A. Interaction of the restriction endonuclease UcoRV with the deoxyguanosine and deoxycyti-dine bases in its recognition sequence. // Biochemistry, 1994, v. 33, p. 1812-1819.
184. Werner M.H., Gronenborn A.M., Clore G.M. Intercalation, DNA kinking, and control of transcription. // Science, 1996, v. 271, p. 778-784.
185. Werner M.H., Clore G.M., Fisher C.L., Fisher R.J., Trinh L., Shiloach J., Gronenborn A.M. The solution structure of the human ETS1-DNA complex reveals a novel mode of binding and true side chain intercalation. // Cell, 1995, v. 83, p. 761-771.
186. Westcott T.P., Tobias I., Olson W.K. Elasticity theory and numerical analysis of DNA supercoiling: an application to DNA looping. // J.Phys.Chem., 1995, v. 99, p. 17926-17935.
187. Wikstrum A., Berglund H., Hambraeus C., van der Berg S., Hurd T. Conformational dynamics and molecular recognition: backbone dynamics of the estrogen receptor DNA-binding domain. // J.Mol.Biol. , 1999, v. 289, p. 963-979.
188. Wilson D.S., Guenther B., Desplan C., Kuriyan J. High resolution cristal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. // Cell, 1995, v. 82, p. 709719.
189. Wingenber E., Dietze P., Karas H., Knuppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. // Nucleic Acids Res., 1996, v. 24, p. 238-241.
190. Wintjens R.T., Rooman M.J., Wodak S.J. Automatic classification and analysis of aa-turn motifs in proteins. // J.Mol.Biol., 1996, v. 255, p. 235-253.
191. Wintjens R.T., Rooman M.J. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. // J.Mol.Biol., 1996, v. 262, p. 294-313.
192. Wolberger C. Homeodomain interactions. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 62-68.
193. Wolberger C., Vershon A.K., Liu B., Johnson A.D., Pabo C.O. Crystal structure of a MATa2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. // Cell, 1991, v. 67, p. 517-528.
194. Wolberger C., Dong Y., Ptashne M., Harrison S.C. Structure of a phage 434 Cro/DNA complex. // Nature, 1988, v. 335, p. 789-795.
195. Wolfe S.A., Greisman H.A., Ramm E.I., Pabo C.O. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. // J.Mol.Biol., 1999, v. 285, p. 1917-1934.
196. Yang W., Steitz T.A. Crystal structure of the site-specific recombinase y5 resolvase complexed with a 34 bp cleavage site. // Cell, 1995, v. 82, p. 193-207.
197. Yura K., Tomoda S., Go M. Repeat of a helix-turn-helix module in DNA-binding proteins. // Protein Eng., 1993, v. 6, p. 621-628.
198. Zhang H., Zhao D., Revington M., Lee W., Jia X., Arrow-smith C., Jardetzky 0. The solution structures of the trp repressor-operator DNA complex. // J.Mol.Biol., 1994, v. 238, p. 592-614.
199. Zhang P., Tobias I., Olson W.K. Computer simulation of protein-induced structural changes in closed circular DNA. // J.Mol.Biol., 1994, v. 242, p. 271-290.
200. Zhou P., Sun L.J., Dotch V., Wagner G., Verdine G.L. Solution structure of the core NFATCl/DNA complex. // Cell, 1998, v. 92, p. 687-696.
201. Zou Q., Habermann-Rottinghaus S.M., Murphy K.P. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. // Proteins Struct.Funct.Genet., 1998, v. 31, p. 107-115.
202. Код БД-источника Kofl DPIDB БД-ис- ТОЧ-НИК Заголовок Состав Разрешение Дата (A)1 1А02 2 3 4 5 6 7
203. MOLECULE: DNA; CHAIN: D, E MOLECULE: 3-1BNK P1BNK PDB DNA REPAIR METHYLADENINE DNA GLYCOSYLASE; CHAIN: A, B, 2 . 70 29 . 07 .981. C; SYNONYM: AAG, I1BNZ P1BNZ PDB PROTEIN-DNA INTERACTION MOL ID: 1; MOLECULE: SS07D; CHAIN: NULL 2 .00 31 .07 . 98
204. CHAIN: T, P, D; ENGINEERED: YES;1BPX P1BPX PDB COMPLEX (NUCLEOTIDYL- OTHER DETAILS: GAPPED DNA IS COMPOSED OF 3 2 .40 11 . 04 .97
205. TRANSFERASE / DNA ) STRANDS TEMPLATE, PRIMER, AND DOWNSTREAM1. OLIGO SYNONYM: POL-B
206. CHAIN: T, P, D; ENGINEERED: YES;1BPY P1BPY PDB COMPLEX (NUCLEOTIDYLTRANSFERASE / DNA ) OTHER DETAILS: GAPPED DNA IS COMPOSED OF 3 STRANDS TEMPLATE, PRIMER, AND DOWNSTREAM 2 .20 15 .04 .971. OLIGO SYNONYM: POL B
207. COMPLEX (ENDONUCLEASE /DNA) CHAIN: B, C; ENGINEERED: YES MOLECULE: FOKI RESTRICTION ENDONUCLEASE; CHAIN: A; SYNONYM: 2.80 R. FOK 18.04.97
208. COMPLEX (GENE-REGULATORY PROTEIN/DNA) C-JUN PROTO-ONCOGENE (TRANSCRIPTION FACTOR AP-1) DIMERIZED WITH C-FOS AND COMPLEXED WITH 3.05 DNA 07.03.95
209. LU 1-- 1HCQ PI GLU P1HCQ PDB PDB PDB GLUCOCORTICOID RECEPTOR (DNA-BINDING DOMAIN) COMPLEX WITH DNA (FIRST SIX RESIDUES ARE CLONAL LINKERS) 2 . 90
210. COMPLEX (DNA-BINDING PROTEIN/DNA) MOL ID 1, MOLECULE: HUMAN SRY; CHAIN: A; MOL ID 2, HMP 09.05.951HRZ P1HRZ PDB COMPLEX (DNA-BINDING PROTEIN/DNA) MOL ID 1, MOLECULE: HUMAN SRY; CHAIN: A; MOL ID 2, HMP 09.05.95
211. Fl 1IGN UHF PI I Fl PDB COMPLEX (DNA-BINDING PROTEIN/DNA) S MOLECULE: INTERFERON REGULATORY FACTOR 1; CHAIN: A, B; FRAGMENT: DNA- 3 . 00 2.25 12.09.97 29.02.96
212. P1IGN PDB P1IHF PDB ■ COMPLEX (DNA-BINDING PROTEIN/DNA) ENGINEERED: YES MOLECULE: RAP1; CHAIN: A, B; FRAGMENT: DNA
213. CHAIN: A, B; ENGINEERED: YE
214. DNA POLYMERASE I (KLENOW FRAGMENT)1KLN P1KLN PDB NUCLEOTIDYLTRANSFERASE (E.C.2.7.7.7) MUTANT WITH ASP 3 55 REPLACED BY 3.20 24 . 05. 94
215. ALA (D355A) COMPLEXED WITH DNA1LAT < 1 P1LAT PDB 1 1 COMPLEX (TRANSCRIPTION REGULATION/DNA) CHAIN: C, D; SYNONYM: GRESO; ENGINEERED: YES; OTHER DETAILS: 2 GRE HALF-SITES SEPARATED BY ZERO BASE PAIRS OF SPACE 1 . 90 18 . 12 . 95
216. C REPRESSOR ("HEADPIECE") COMPLEX WITH AN1LCC P1LCC PDB GENE-REGULATING PROTEIN 11 BASE-PAIR HALF-OPERATOR CORRESPONDING TO THE LEFT HALF OF THE WILD TYPE LAC OPERATOR ÜMP 25. 03. 931. NMR, BEST STRUCTURE)
217. C REPRESSOR ("HEADPIECE") COMPLEX WITH AN1LCD 1 PlLCD GENE-REGULATING PROTEIN 11 BASE-PAIR HALF-OPERATOR CORRESPONDING TO THE LEFT HALF OF THE WILD TYPE LAC OPERATOR HMP 25. 03. 931. NMR, 3 STRUCTURES)
218. MBDA REPRESSOR MUTANT WITH VAL 3 6 REPLACED1LLI P1LLI PDB TRANSCRIPTION REGULA- BY LEU, MET 40 REPLACED BY LEU, AND VAL 47 2.10 25. 03. 94
219. TION PROTEIN/DNA REPLACED BY ILE (V36L,M4OL,V471) COMPLEXED WITH DNA OPERATOR1LMB P1LMB PDB DNA-BINDING REGULATORY PROTEIN LAMBDA REPRESSOROPERATOR COMPLEX 1.80 05. 11. 91
220. MYOD BASIC-HELIX-LOOP-HELIX (BHLH) DOMAIN1MDY P1MDY PDB TRANSCRIPTION ACTIVA- (RESIDUES 102 166) MUTANT WITH CYS 135 RE- 2 .80 09. 06. 94
221. S F 1NFK 10CT 1 PAR COMPLEX (BINDING PRO-P1MSFPDB TEIN/DNA) C-MYB DNA-BINDING DOMAIN COMPLEXED WITH DNA (NMR, 25 STRUCTURES) 24.01.95
222. P1NFK PIOCT PI PAR PDB PDB PDB COMPLEX (TRANSCRIPTION FACTOR/DNA) THE HOMODIMER IS BOUND TO A KB SITE MOLECULE: NUCLEAR FACTOR KAPPA-B; CHAIN: A, B; FRAGMENT : P50 2 .30 03.10.96
223. DNA-BINDING PROTEIN OCT-1 (POU DOMAIN) 3 . 00 2 . 60 09.05.94 22.03.94
224. COMPLEX (DNA-BINDING PROTEIN/DNA)1TRO P1TRO PDB I L > — 51TRR P1TRR PDB
225. ARE NONCODING STRAND NUCLEOTIDES + 62 +92, CHAINS C AND F ARE CODING STRAND NUCLEOTIDES + 6
226. ENGINEERED: YES MOLECULE: HUMAN TATA BINDING PROTEIN; CHAIN: A; SYNONYM: HTBP;1TSR P1TSR PDB
227. DNA-BINDING REGULATORY PROTEIN
228. DNA-BINDING REGULATORY PROTEIN
229. COMPLEX (DNA-BINDING PROTEIN/DNA)
230. TRP REPRESSOR COMPLEX WITH OPERATOR290 13 1.90 30
231. TRP REPRESSOROPERATOR HALF-SITE TANDEM COMPLEX2.401TUP P1TUP PDB1UBD P1UBD PDB1.AS P1VAS PDB i1VOL P1VOL1VPW A00191.' I '1WET A00201.I ""1XBR1YRN 1YSA1. P1XBR1. P1YRN P1YSA1. PDB1. PDB1. PDB1. PDB1. PDB PDB
232. COMPLEX (TUMOR SUP-PRESSOR/DNA)
233. COMPLEX (TRANSCRIPTION CHAIN: A, B; ENGINEERED: YES MOLECULE: YY1; REGULATION/DNA) COMPLEX (ENDONUCLEase/dna)1. COMPLEX(TRANSCRIPTIONI1. FACTOR/REGN/DNA)
234. MOL ID: 1; MOLECULE: P53 TUMOR SUPPRESSOR; CHAIN: A, B, C; ENGINEERED: YE
235. MOL ID: 1; MOLECULE: TUMOR SUPPRESSOR P53; CHAIN: A, B, C; MOL ID: 2;chain: c; fragment: zinc5'-d(tpapgpcpgpcpapapcpgpcpgpa)-3'); chain: B, c; engineered: yes chain: a; ec: 3.1.25.1;
236. MOL ID: 3; MOLECULE: 16 BASE-PAIR TATA-CONTAINING OLIGONUCLEOTIDE; CHAIN: C, D; ENGINEERED: YES FRAGMENT: RESI1. PROTEIN/DNA)
237. ENGINEERED: YES; OTHER DETAILS: BOUND TO COMPLEX (DNA-BINDING COREPRESSOR, HYPOXANTHINE, AND PURF OPERATOR.
238. NO 5' PHOSPHATE ON OLIGONUCLEOTIDE CHAIN: A; ENGINEERED: YE
239. MOL ID: 1; MOLECULE: PURINE REPRESSOR-GUANINE-PURF-OPERATOR; CHAIN: A; MOL ID: 2;
240. COMPLEX (DNA-BINDING PROTEIN/DNA)
241. COMPLEX (TRANSCRIPTION FACTOR/DNA)1. COMPLEX (TWO DNA
242. ENGINEERED: YES; OTHER DETAILS: 24-MERIC DNA DUPLEX MOLECULE: T PROTEIN; CHAIN: A, B; FRAGMENT: T DO
243. DOMAIN: HOMEODOMAIN; SYNONYM: MAT ALPHA-2;
244. BINDING PROTEINS/DNA) ENGINEERED: YES; MOL ID: 3; MOLECULE: DNA;1.UCINE ZIPPER
245. GCN4 (BASIC REGION, LEUCINE ZIPPER) COMPLEX220 2.20 2.50275 2.702 .702128 11 0408
- Васильев, Сергей Александрович
- кандидата биологических наук
- Москва, 1999
- ВАК 03.00.03