Бесплатный автореферат и диссертация по биологии на тему
Генетический анализ роли гликозилфосфатидилинозита в биогенезе клеточной стенки и сворачивании секретируемых белков дрожжей Saccharomyces Cerevisiae
ВАК РФ 03.00.15, Генетика

Содержание диссертации, кандидата биологических наук, Фоминов, Глеб Вадимович

СПИСОК СОКРАЩЕНИЙ.

ВВЕДЕНИЕ.

ОБЗОР ЛИТЕРАТУРЫ.

1. Введение: структура и функции клеточной стенки.

2. Синтез глюканов клеточной стенки.

2.1. Синтез Р-1,3-глюканов клеточной стенки.

2.1.1. Р-1,3-глюкансинтетаза.

2.1.2. Ген НШ1.

2.1.3. Семейство генов, родственных

2.1.4. Семейство генов, родственны\BGL2.

2.2. Синтез Р-1,6-глюканов.

2.2.1. Ген КЯЕ5.

2.2.2. Ген ВЮ1.

2.2.3. С1УН41/СЬ81, 1ЮТ2ЮЬ82 и некоторые другие гены, кодирующие белки, участвующие в синтезе А^-связанных гликанов и сворачивании секретеру емых белков.

2.2.4. Гомологичные гены КЯЕ6 и БЮЛ.

2.2.5. Ген КЯЕП/тЯбЗ.

2.2.6. Ген КЯЕ1.

2.2.7. Гены КЯЕ9 и КЫН1.

3. Синтез хитина клеточной стенки.

3.1. Хитинсинтетаза 1.

3.2. Хитинсинтетаза II.

3.3. Хитинсинтетаза Ш.

4. Синтез ^-связанных гликанов секретируемых белков.

4.1. Формирование коровой части.

4.2. Реакции, протекающие в комплексе Гольджи: формирование «внешних цепей» или «зрелого кора».

5. Синтез О-связанных гликанов секретируемых белков.

6. Формирование гликозилфосфатидилинозитного (GPI) якоря.

6.1. Структура GPI якоря.

6.2. Формирование GPI якоря и его присоединение к белку.

6.3. События, следующие за присоединением GPI якоря к белку.

6.3.1. Деацилирование GPI.

6.3.2. Модификация липидной составляющей GPI якоря.

6.3.3. Добавление пятого остатка маннозы.

6.3.4. Встраивание некоторых белков, несших GPI якорь, в КС.

7. Сворачивание секретируемых белков.

7.1. Связанная с ЭР деградация неправильно свернутых белков (ERAD, endoplasmic reticulum associated degradation).

7.2. Ответ клетки на накопление в ЭР неправильно свернутых белков (UPR, unfolded protein response).

7.3. Роль ионов кальция в сворачивании секретируемых белков.

Введение Диссертация по биологии, на тему "Генетический анализ роли гликозилфосфатидилинозита в биогенезе клеточной стенки и сворачивании секретируемых белков дрожжей Saccharomyces Cerevisiae"

В настоящее время дрожжи ЗассИаготусез сегеугзгае являются одним из наиболее популярных объектов молекулярных биологов. Это связано, во-первых, с тем, что при изучении их клеток легко применимы методы как классической, так и молекулярной генетики. Во-вторых, на сегодняшний день расшифрована последовательность всех генов дрожжей, что существенно упрощает работу. В-третьих, дрожжи обладают очень высокой скоростью роста, что ускоряет проведение экспериментов. Кроме того, для выращивания дрожжей можно использовать относительно простые по составу и недорогие среды. Стоит также отметить, что, поскольку дрожжи являются представителями одноклеточных эукариот, многие данные, полученные при использовании этого модельного объекта, могут быть экстраполированы на клетки высших эукариот.

Клетки всех эукариот и некоторых архебактерий способны синтезировать гликозилфосфатидилинозит (СР1). При этом структура СР1 якоря, связывающего некоторые белки с мембраной (см. Обзор литературы), имеет много общих черт у дрожжей и млекопитающих, что, как было упомянуто выше, позволяет использовать данные, полученные при работе с клетками дрожжей, при изучении клеток высших эукариот. В тоже время, выявление особенностей синтеза СР1, свойственных только клеткам дрожжей, делает возможным разработку антигрибковых лекарственных препаратов, мишенями которых являются реакции, специфичные для клеток грибов.

Данная работа посвящена изучению взаимосвязи формирования вР1 с другими процессами, протекающими в клетках дрожжей, такими, как биогенез клеточной стенки и сворачивание секретируемых белков. Ранее в нашей лаборатории был получен штамм, несущий мутацию в гене МСВ4 (Раск^Бег й а1., 1999). Эта мутация приводит к нарушению синтеза вР1 (ЬпЬоГ е1 а1., 2004), однако, кроме этого она обладает фенотипическими проявлениями, не связанными очевидным образом с нарушением синтеза гликозилфосфатидилинозита, такими, например, как чувствительность к кофеину и пониженному содержанию ионов кальция в среде (Packeiser et al., 1999). Это позволило предположить наличие у белка Mcd4p дополнительных функций. Таким образом, целью данной работы было прояснение физиологической роли белка Mcd4p, в связи с чем представлялось интересным выявить гены, функционально связанные с геном MCD4, и выяснить причины возникновения у мутации ssu21 в гене MCD4 фенотипических проявлений, не связанных явным образом с нарушением синтеза GPI.

ОБЗОР ЛИТЕРАТУРЫ

Заключение Диссертация по теме "Генетика", Фоминов, Глеб Вадимович

ВЫВОДЫ

1. Мутантная аллель ssu21 гена MCD4 содержит 2 мутации. Первая из них приводит к замене Argl05->Cys в кодируемом белке, вторая - к сдвигу рамки считывания, в результате чего должен синтезироваться укороченный с С-конца белок.

2. Получены 6 мутаций, летальных или полулетальных в комбинации с мутацией ssu21. Некоторые из этих мутаций приводят к нарушению формирования клеточной стеики и/или морфологии клеток.

3. Идентифицированы гены MNN9 и GWT1, комплементирующие фенотипические проявления 2-х из 6-ти полученных мутаций.

4. Показано, что белок Gwtlp локализован в эндоплазматическом ретикулуме.

5. Клонированы гены PSD1, НАС1, UBI4 и SK01, способные в мультикопийном состоянии супрессировать чувствительность мутанта ssu21 к кофеину.

6. Полученные результаты позволяют предположить, что причиной чувствительности мутанта ssu21 к кофеину и пониженному содержанию ионов кальция в среде является накопление в секреторных путях неправильно свернутых белков.

Библиография Диссертация по биологии, кандидата биологических наук, Фоминов, Глеб Вадимович, Москва

1. Abeijon,C. and Chen,L.Y. (1998). The role of glucosidase I (Cwh41p) in the biosynthesis of cell wall 0-1,6-glucan is indirect. Mol. Biol. Cell 9, 2729-2738.

2. Aebi,M., Gassenhuber,J., Domdey,H., and te,H.S. (1996). Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology 6, 439-444.

3. Agatep,R., Kirkpatrick,R.D., Parchaliuk,D.L., Woods,R.A., and Gietz,R.D. Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAc/ss-DNA/PEG) protocol, http://tto.trends.com.

4. Ahner,A. and BrodskyJ.L. (2004). Checkpoints in ER-associated degradation: excuse me, which way to the proteasome? Trends Cell Biol. 14,414-418.

5. Albright,C.F. and Robbins,R.W. (1990). The sequence and transcript heterogeneity of the yeast gene ALG1, an essential mannosyltransferase involved in N-glycosylation. J. Biol. Chem. 265, 7042-7049.

6. Antebi,A. and Fink,G.R. (1992). The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol. Biol. Cell 3, 633-654.

7. Ashida,H., Hong,Y., Murakami,Y., Shishioh,N., Sugimoto,N., Kim,Y.U., Maeda,Y., and Kinoshita,T. (2005). Mammalian PIG-X and yeast Pbnlp are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol. Biol. Cell 16, 1439-1448.

8. Azuma,M., Levinson,J.N., Page,N., and Bussey,H. (2002). Saccharomyces cerevisiae Biglp, a putative endoplasmic reticulum membrane protein required for normal levels of cell wall P-1,6-glucan. Yeast 19, 783-793.

9. Barnes,G., Hansen,W.J., Holcomb,C.L., and Rine,J. (1984). Asparagine-linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step. Mol. Cell Biol. 4, 2381-2388.

10. Bays,N.W., Gardner,R.G., Seelig,L.P., Joazeiro,C.A., and Hampton,R.Y. (2001). Hrdlp/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 3, 24-29.

11. Bays,N.W. and Hampton,R.Y. (2002). Cdc48-Ufdl-Npl4: stuck in the middle with Ub. Curr. Biol. 12, R366-R371.

12. Benghezal,M., Benachour,A., Rusconi,S., Aebi,M., and Conzelmann,A. (1996). Yeast Gpi8p is essential for GPI anchor attachment onto proteins. EMBO J. 15, 6575-6583.

13. Bickle,M., Delley,P.A., Schmidt,A., and Hall,M.N. (1998). Cell wall integrity modulates Rhol activity via the exchange factor Rom2. EMBO J. 17, 2235-2245.

14. Biederer,T., Volkwein,C., and Sommer,T. (1996). Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J. 15, 2069-2076.

15. Bonilla,M. and Cunningham,K.W. (2003). Mitogen-activated protein kinase stimulation of Ca signaling is required for survival of endoplasmic reticulum stress in yeast. Mol. Biol. Cell 14, 42964305.

16. Bonilla,M., Nastase,K.K., and Cunningham,K.W. (2002). Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J. 21,2343-2353.

17. Boone,C., Sommer,S.S., Hensel,A., and Bussey,H. (1990). Yeast KRE genes provide evidence for a pathway of cell wall 0-glucan assembly. J. Cell Biol. 110,1833-1843.

18. Bordallo,J., Plemper,R.K., Finger,A., and Wolf,D.H. (1998). Der3p/Hrdlp is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209-222.

19. Borges-Walmsley,M.I. and Walmsley,A.R. (2000). cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol. 8,133-141.

20. Breinig,F., Schleinkofer,K., and Schmitt,M.J. (2004). Yeast Krelp is GPI-anchored and involved in both cell wall assembly and architecture. Microbiology 150,3209-3218.

21. Breinig,F., Tipper,D.J., and Schmitt,M.J. (2002). Krelp, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108,395-405.

22. Brown,J.L. and Bussey,H. (1993). The yeast KRE9 gene encodes an O-glycoprotein involved in cell surface p-glucan assembly. Mol. Cell Biol. 13, 6346-6356.

23. Brown,J.L., Kossaczka,Z., Jiang,B., and Bussey,H. (1993). A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1—>6)-p-glucan synthesis. Genetics 133, 837-849.

24. Bulawa,C.E. and Osmond,B.C. (1990). Chitin synthase I and chitin synthase II are not required for chitin synthesis in vivo in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A 87, 74247428.

25. Bulawa,C.E., Slater,M., Cabib,E., Au-Young,J., Sburlati,A., Adair,W.L., Jr., and Robbins,P.W. (1986). The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46, 213-225.

26. Burda,P. and Aebi,M. (1999). The dolichol pathway of TV-linked glycosylation. Biochim. Biophys. Acta 1426, 239-257.

27. Cabib,E., Sburlati,A., Bowers,B., and Silverman,S.J. (1989). Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J. Cell Biol. 108, 1665-1672.

28. Cabib.E., Silverman,S.J., and Shaw,J.A. (1992). Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J. Gen. Microbiol. 138, 97-102.

29. Camirand,A., Heysen,A., Grondin,B., and Herscovics,A. (1991). Glycoprotein biosynthesis in Saccharomyces cerevisiae. Isolation and characterization of the gene encoding a specific processing a-mannosidase. J. Biol. Chem. 266, 15120-15127.

30. Cappellaro,C., Mrsa,V., and Tanner,W. (1998). New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J. Bacterid. 180, 5030-5037.

31. Caro,L.H., Tettelin,H., Vossen,J.H., Ram,A.F., van den Ende,H., and Klis,F.M. (1997). In silicio identification of glycosylphosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13, 1477-1489.

32. Chapman,R.E. and Walter,P. (1997). Translational attenuation mediated by an mRNA intron. Curr. Biol. 7, 850-859.

33. Cid,V.J., Duran,A., del Rey,F., Snyder,M.P., Nombela,C., and Sanchez,M. (1995). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev. 59, 345386.

34. Conboy,M.J. and Cyert,M.S. (2000). Luvlp/Rkilp/Tcs3p/Vps54p, a yeast protein that localizes to the late Golgi and early endosome, is required for normal vacuolar morphology. Mol. Biol. Cell 77,2429-2443.

35. Conzelmann,A., Puoti,A., Lester,R.L., and Desponds,C. (1992). Two different types of lipid moieties are present in glycophosphoinositol-anchored membrane proteins of Saccharomyces cerevisiae. EMBO J. 11,457-466.

36. Costello,L.C. and Orlean,P. (1992). Inositol acylation of a potential glycosyl phosphoinositol anchor precursor from yeast requires acyl coenzyme A. J. Biol. Chem. 267, 8599-8603.

37. Courchesne,W.E. and Ozturk,S. (2003). Amiodarone induces a caffeine-inhibited, MID1-depedent rise in free cytoplasmic calcium in Saccharomyces cerevisiae. Mol. Microbiol. 47, 223234.

38. Couto,J.R., Huffaker,T.C., and Robbins,P.W. (1984). Cloning and expression in Escherichia coli of a yeast mannosyltransferase from the asparagine-linked glycosylation pathway. J. Biol. Chem. 259, 378-382.

39. Cox,J.S., Shamu,C.E., and Walter,P. (1993). Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73,11971206.

40. Cunningham,K.W. and Fink,G.R. (1994). Ca2+ transport in Saccharomyces cerevisiae. J. Exp. Biol. 196, 157-166.

41. Davydenko,S.G., Feng,D., Jantti,J., and Keranen,S. (2005). Characterization of GPI 141 YJR013w mutation that induces the cell wall integrity signalling pathway and results in increased protein production in Saccharomyces cerevisiae. Yeast 22, 993-1009.

42. Deak,P.M. and Wolf,D.H. (2001). Membrane topology and function of Der3/Hrdlp as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem. 276, 10663-10669.

43. Dean,N. (1999). Asparagine-linked glycosylation in the yeast Golgi. Biochim. Biophys. Acta 1426, 309-322.

44. Dean,N., Zhang,Y.B., and Poster,J.B. (1997). The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 272, 31908-31914.

45. DeMarini,D.J., Adams,A.E., Fares,H., De Virgilio,C., Valle,G., Chuang,J.S., and Pringle,J.R.1997). A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 139, 75-93.

46. Dijkgraaf,G.J., Abe,M., Ohya,Y., and Bussey,H. (2002). Mutations in Fkslp affect the cell wall content of p-1,3- and 0-1,6-glucan in Saccharomyces cerevisiae. Yeast 19, 671-690.

47. Dijkgraaf,G.J., Brown,J.L., and Bussey,H. (1996). The KNH1 gene of Saccharomyces cerevisiae is a functional homolog of KRE9. Yeast 12, 683-692.

48. Drgonova,J., Drgon,T., Tanaka,K., Kollar,R., Chen,G.C., Ford,R.A., Chan,C.S., Takai,Y., and Cabib,E. (1996). Rholp, a yeast protein at the interface between cell polarization and morphogenesis. Science 272, 277-279.

49. Drummond,I.A., Lee,A.S., Resendez,E., Jr, and Steinhardt,R.A. (1987). Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. J. Biol. Chem. 262, 12801-12805.

50. Ellgaard,L. and Helenius,A. (2003). Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4,181-191.

51. Fankhauser,C., Homans,S.W., Thomas-Oates,J.E., McConville,MJ., Desponds,C., Conzelmann,A., and Ferguson,M.A. (1993). Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J. Biol. Chem. 268, 26365-26374.

52. Finley,D., Ozkaynak,E., and Varshavsky,A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035-1046.

53. Fraering,P., Imhof,I., Meyer,U., Strub,J.M., van Dorsselaer,A., Vionnet,C., and Conzelmann,A. (2001). The GPI transamidase complex of Saccharomyces cerevisiae contains Gaalp, Gpi8p, and Gpil6p. Mol. Biol. Cell 12, 3295-3306.

54. Frank,C.G., Grubenmann,C.E., Eyaid,W., Berger,E.G., Aebi,M., and Hennet,T. (2004). Identification and functional analysis of a defect in the human ALG9 gene: definition of congenital disorder of glycosylation type IL. Am. J. Hum. Genet. 75, 146-150.

55. Frieman,M.B. and Cormack,B.P. (2003). The co-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol. Microbiol. 50, 883-896.

56. Frieman,M.B. and Cormack,B.P. (2004). Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150, 3105-3114.

57. Gao,X.D., Nishikawa,A., and Dean,N. (2001). Identification of a conserved motif in the yeast golgi GDP-mannose transporter required for binding to nucleotide sugar. J. Biol. Chem. 276, 44244432.

58. Gao,X.D., Nishikawa,A., and Dean,N. (2004). Physical interactions between the Algl, Alg2,iand Algll mannosyltransferases of the endoplasmic reticulum. Glycobiology 14, 559-570.

59. Garcia-Gimeno,M.A. and Struhl,K. (2000). Acal and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol. Cell Biol. 20, 4340-4349.

60. Gardner,R.G., Shearer,A.G., and Hampton,R.Y. (2001). In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell Biol. 21, 4276-4291.

61. Gaynor,E.C., Mondesert,G., Grimme,S.J., Reed,S.I., Orlean,P., and Emr,S.D. (1999). MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast. Mol. Biol. Cell 10, 627-648.

62. Gentzsch,M., Immervoll,T., and Tanner,W. (1995). Protein O-glycosylation in Saccharomyces cerevisiae: the protein Omannosyltransferases Pmtlp and Pmt2p function as heterodimer. FEBS Lett. 377, 128-130.

63. Gentzsch,M. and Tanner,W. (1996). The PMTgene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J. 15, 5752-5759.

64. Gentzsch,M. and Tanner,W. (1997). Protein-Oglycosylation in yeast: protein-specific mannosyltransferases. Glycobiology 7,481-486.

65. Gietz,R.D. and Sugino,A. (1988). New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527-534.

66. Gietz,R.D. and Woods,R.A. (1994). High efficiency transformation in yeast. In Molecular Genetics of Yeast: Practical Approaches. Johnston,J.A., ed. (Oxford University Press), 121-134.

67. Girrbach,V. and Strahl,S. (2003). Members of the evolutionarily conserved PMT family of protein Omannosyltransferases form distinct protein complexes among themselves. J. Biol. Chem. 278,12554-12562.

68. Goldman,R.C., Sullivan,P.A., Zakula,D., and Capobianco,J.O. (1995). Kinetics of p-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur. J. Biochem. 227, 372-378.

69. Gopal,P.K. and Ballou,C.E. (1987). Regulation of the protein glycosylation pathway in yeast: structural control of AMinked oligosaccharide elongation. Proc. Natl. Acad. Sci. U. S. A 84, 88248828.

70. Grimme,S.J., Westfall,B.A., Wiedman,J.M., Taron,C.H., and Orlean,P. (2001). The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols. J. Biol. Chem. 276,27731-27739.

71. Gustin,M.C., Albertyn,J., Alexander,M., and Davenport,K. (1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1264-1300.

72. Hamada,K., Terashima,H., Arisawa,M., and Kitada,K. (1998). Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J. Biol. Chem. 273, 26946-26953.

73. Hamada,K., Terashima,H., Arisawa,M., Yabuki,N., and Kitada,K. (1999). Amino acid residues in the co-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J. Bacterid. 181, 3886-3889.

74. Hamburger,D., Egerton,M., and Riezman,H. (1995). Yeast Gaalp is required for attachment of a completed GPI anchor onto proteins. J. Cell Biol. 129,629-639.

75. Hampton,R.Y. (2002). ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol. 14,476-482.

76. Hampton,R.Y., Gardner,R.G., and Rine,J. (1996). Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029-2044.

77. Hartland,R.P., Vermeulen,C.A., Klis,F.M., Sietsma,J.H., and Wessels,J.G. (1994). The linkage of (l-3)-P-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10, 15911599.

78. Hashimoto,H. and Yoda,K. (1997). Novel membrane protein complexes for protein glycosylation in the yeast Golgi apparatus. Biochem. Biophys. Res. Commun. 241, 682-686.

79. Hausler,A., Ballou,L., Ballou,C.E., and Robbins,P.W. (1992). Yeast glycoprotein biosynthesis: MNT1 encodes an a-l,2-mannosyltransferase involved in Oglycosylation. Proc. Natl. Acad. Sci. U. S. A 89, 6846-6850.

80. Haynes,C.M., Caldwell,S., and Cooper,A.A. (2002). An HRD/DER-independent ER quality control mechanism involves Rsp5p-dependent ubiquitination and ER-Golgi transport. J. Cell Biol. /55,91-101.

81. Helenius,A. and Aebi,M. (2004). Roles of //-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73,1019-1049.

82. Helenius,J., Ng,D.T., Marolda,C.L., Walter,P., Valvano,M.A., and Aebi,M. (2002). Translocation of lipid-linked oligosaccharides across the ER membrane requires Rftl protein. Nature 415, 447-450.

83. Hill,K. and Cooper,A.A. (2000). Degradation of unassembled Vphlp reveals novel aspects of the yeast ER quality control system. EMBO J. 19, 550-561.

84. Hiller,M.M., Finger,A., Schweiger,M., and Wolf,D.H. (1996). ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273,1725-1728.

85. Hirsch,C., Blom,D., and Ploegh,H.L. (2003). A role for W-glycanase in the cytosolic turnover of glycoproteins. EMBO J. 22,1036-1046.

86. Hirsch,C., Misaghi,S., Blom,D., Pacold,M.E., and Ploegh,H.L. (2004). Yeast JV-glycanase distinguishes between native and non-native glycoproteins. EMBO Rep. 5, 201-206.

87. Holkeri,H. and Makarow,M. (1998). Different degradation pathways for heterologous glycoproteins in yeast. FEBS Lett. 429,162-166.

88. Hong,E., Davidson,A.R., and Kaiser,C.A. (1996). A pathway for targeting soluble misfolded proteins to the yeast vacuole. J. Cell Biol. 135, 623-633.

89. Hong,Y., Ohishi,K., Kang,J.Y., Tanaka,S., Inoue,N., Nishimura,J., Maeda,Y., and Kinoshita,T. (2003). Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol. Biol. Cell 14,1780-1789.

90. Hong,Y., Ohishi,K., Watanabe,R., Endo,Y., Maeda,Y., and Kinoshita,T. (1999b). GPI1 stabilizes an enzyme essential in the first step of glycosylphosphatidylinositol biosynthesis. J. Biol. Chem. 274, 18582-18588.

91. Huffaker,T.C. and Robbins,P.W. (1982). Temperature-sensitive yeast mutants deficient in asparagine-linked glycosylation. J. Biol. Chem. 257, 3203-3210.

92. Huffaker,T.C. and Robbins,P.W. (1983). Yeast mutants deficient in protein glycosylation. Proc. Natl. Acad. Sci. U. S. A 80, 7466-7470.

93. Igual,J.C., Johnson,A.L., and Johnston,L.H. (1996). Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J. 15, 5001-5013.

94. Ikezawa,H. (2002). Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol. Pharm. Bull. 25, 409-417.

95. Imhof,I., Canivenc-Gansel,E., Meyer,U., and Conzelmann,A. (2000). Phosphatidylethanolamine is the donor of the phosphorylethanolamine linked to the al,4-linked mannose of yeast GPI structures. Glycobiology 10,1271-1275.

96. Inoue,H., Nojima,H., and Okayama,H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene 96,23-28.

97. Jackson,B.J., Kukuruzinska,M.A., and Robbins,P. (1993). Biosynthesis of asparagine-linked oligosaccharides in Saccharomyces cerevisiae: the alg2 mutation. Glycobiology 3, 357-364.

98. Jackson,B.J., Warren,C.D., Bugge,B., and Robbins,P.W. (1989). Synthesis of lipid-linked oligosaccharides in Saccharomyces cerevisiae: Man2GlcNAc2 and ManiGlcNAc2 are transferred from dolichol to protein in vivo. Arch. Biochem. Biophys. 272, 203-209.

99. Jakob,C.A., Bodmer,D., Spirig,U., Battig,P., Marcil,A., Dignard,D., Bergeron,J.J., Thomas,D.Y., and Aebi,M. (2001). Htmlp, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2,423-430.

100. Jakob,C.A., Burda,P., te Heesen,S., Aebi,M., and Roth,J. (1998). Genetic tailoring of TV-linked oligosaccharides: the role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. Glycobiology 8,155-164.

101. Jars,M.U., Osborn,S., Forstrom,J., and MacKay,V.L. (1995). N- and O-glycosylation and phosphorylation of the bar secretion leader derived from the barrier protease of Saccharomyces cerevisiae. J. Biol. Chem. 270, 24810-24817.

102. Jiang,B., Sheraton,J., Ram,A.F., Dijkgraaf,G.J., Klis,F.M., and Bussey,H. (1996). CWH41 encodes a novel endoplasmic reticulum membrane TV-glycoprotein involved in p 1,6-glucan assembly. J. Bacteriol. 178,1162-1171.

103. Jigami,Y. and Odani,T. (1999). Mannosylphosphate transfer to yeast mannan. Biochim. Biophys. Acta 1426, 335-345.

104. Jones,J.S. and Prakash,L. (1990). Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6, 363-366.

105. Jung,U.S. and Levin,D.E. (1999). Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol. 34,1049-1057.

106. JungmannJ. and Munro,S. (1998). Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with a-l,6-mannosyltransferase activity. EMBO J. 17, 423-434.

107. JungmannJ., Rayner,J.C., and Munro,S. (1999). The Saccharomyces cerevisiae protein MnnlOp/Bedlp is a subunit of a Golgi mannosyltransferase complex. J. Biol. Chem. 274, 65796585.

108. Kamada,Y., Qadota,H., Python,C.P., Anraku,Y., Ohya,Y., and Levin,D.E. (1996). Activation of yeast protein kinase C by Rhol GTPase. J. Biol. Chem. 271, 9193-9196.

109. Kang,J.Y., Hong,Y., Ashida,H., Shishioh,N., Murakami,Y., Morita,Y.S., Maeda,Y., and Kinoshita,T. (2005). PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J. Biol. Chem. 280,9489-9497.

110. Kapteyn,J.C., ter Riet,B., Vink,E., Blad,S., De Nobel,H., Van Den Ende,H., and Klis,F.M. (2001). Low external pH induces HOG 1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol. Microbiol. 39,469-479.

111. Kapteyn,J.C., Van Den Ende,H., and Klis,F.M. (1999). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim. Biophys. Acta 1426, 373-383.

112. Kawahara,T., Yanagi,H., Yura,T., and Mori,K. (1997). Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Haclp/Ern4p that activates the unfolded protein response. Mol. Biol. Cell 8,1845-1862.

113. Kinoshita,T. and Inoue,N. (2000). Dissecting and manipulating the pathway for glycosylphosphatidylinositol-anchor biosynthesis. Curr. Opin. Chem. Biol. 4, 632-638.

114. Klebl,F. and Tanner,W. (1989). Molecular cloning of a cell wall exo-P-l,3-glucanase from Saccharomyces cerevisiae. J. Bacteriol. 171, 6259-6264.

115. Klis,F.M. (1994). Review: cell wall assembly in yeast. Yeast 10, 851-869.

116. Klis,F.M., Mol,P., Hellingwerf,K., and Brul,S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239-256.

117. Knauer,R. and Lehle,L. (1999). The oligosaccharyltransferase complex from yeast. Biochim. Biophys. Acta 1426, 259-273.

118. Kojima,H., Hashimoto,H., and Yoda,K. (1999). Interaction among the subunits of Golgi membrane mannosyltransferase complexes of the yeast Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 63,1970-1976.

119. Kollar,R., Petrakova,E., Ashwell,G., Robbins,P.W., and Cabib,E. (1995). Architecture of the yeast cell wall. The linkage between chitin and P(l— >3)-glucan. J. Biol. Chem. 270,1170-1178.

120. Lafontaine,D.L., Preiss,T., and Tollervey,D. (1998). Yeast 18S rRNA dimethylase Dimlp: a quality control mechanism in ribosome synthesis? Mol. Cell Biol. 18, 2360-2370.

121. Lai,M.H., Silverman,S.J., Gaughran,J.P., and Kirsch,D.R. (1997). Multiple copies of PBS2, MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae. Yeast 13, 199-213.

122. Leber,J.H., Bernales,S., and Walter,P. (2004). /^/-independent gain control of the unfolded protein response. PLoS. Biol. 2, E235.

123. Lee,R.J., Liu,C.W., Harty,C., McCracken,A.A., Latterich,M., Romisch,K., DeMartino,G.N., Thomas,P. J., and Brodsky,J.L. (2004). Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J. 23,2206-2215.

124. Leidich,S.D., Drapp,D.A., and Orlean,P. (1994). A conditionally lethal yeast mutant blocked at the first step in glycosylphosphatidylinositol anchor synthesis. J. Biol. Chem. 269,10193-10196.

125. Leidich,S.D. and Orlean,P. (1996). Gpil, a Saccharomyces cerevisiae protein that participates in the first step in glycosylphosphatidylinositol anchor synthesis. J. Biol. Chem. 271, 27829-27837.

126. Levinson,J.N., Shahinian,S., Sdicu,A.M., Tessier,D.C., and Bussey,H. (2002). Functional, comparative and cell biological analysis of Saccharomyces cerevisiae Kre5p. Yeast 19, 1243-1259.

127. Li,H., Page,N., and Bussey,H. (2002). Actin patch assembly proteins Lasl7p and Slalp restrict cell wall growth to daughter cells and interact with cw-Golgi protein Kre6p. Yeast 19, 1097-1112.

128. Lipke,P.N. and Ovalle,R. (1998). Cell wall architecture in yeast: new structure and new challenges. J. Bacterid. 180, 3735-3740.

129. Locke,E.G., Bonilla,M., Liang,L., Takita,Y., and Cunningham,K.W. (2000). A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Mol. Cell Biol. 20, 6686-6694.

130. Lu,C.F., KurjanJ., and Lipke,P.N. (1994). A pathway for cell wall anchorage of Saccharomyces cerevisiae a-agglutinin. Mol. Cell Biol. 14, 4825-4833.

131. Lu,C.F., Montijn,R.C., Brown,J.L., Klis,F., Kuijan,!, Bussey,H., and Lipke,P.N. (1995). Glycosylphosphatidylinositol-dependent cross-linking of a-agglutinin and P-l,6-glucan in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 128, 333-340.

132. Luo,WJ., Gong,X.H., and Chang,A. (2002). An ER membrane protein, Sop4, facilitates ER export of the yeast plasma membrane H+-ATPase, Pmal. Traffic. 3, 730-739.

133. Lussier,M., Sdicu,A.M., Bussereau,F., Jacquet,M., and Bussey,H. (1997). The Ktrlp, Ktr3p, and Kre2p/Mntlp mannosyltransferases participate in the elaboration of yeast O- and //-linked carbohydrate chains. J. Biol. Chem. 272,15527-15531.

134. Lussier,M., Sdicu,A.M., and Bussey,H. (1999). The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1426, 323-334.

135. Ma,P., Wera,S., Van Dijck,P., and Thevelein,J.M. (1999). The PDEI-qncoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol. Biol. Cell 10, 91-104.

136. Ma,Y. and Hendershot,L.M. (2001). The unfolding tale of the unfolded protein response. Cell 107, 827-830.

137. Machi,K., Azuma,M., Igarashi,K., Matsumoto,T., Fukuda,H., Kondo,A., and Ooshima,H. (2004). Rotlp of Saccharomyces cerevisiae is a putative membrane protein required for normal levels of the cell wall 1,6-p-glucan. Microbiology 150, 3163-3173.

138. MacLennan,D.H., Rice,W.J., and Green,N.M. (1997). The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem. 272,28815-28818.

139. Maeda,Y., Watanabe,R., Harris,C.L., Hong,Y., Ohishi,K., Kinoshita,K., and Kinoshita,T. (2001). PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 20, 250-261.

140. Mazur,P. and Baginsky,W. (1996). In vitro activity of 1,3-P-D-glucan synthase requires the GTP-binding protein Rhol. J. Biol. Chem. 271, 14604-14609.

141. Mazur,P., Morin,N., Baginsky,W., el Sherbeini,M., Clemas,J.A., Nielsen,J.B., and Foor,F. (1995). Differential expression and function of two homologous subunits of yeast 1,3-P-D-glucan synthase. Mol. Cell Biol. 15, 5671-5681.

142. McConville,M.J. and Ferguson,M.A. (1993). The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 294 (Pt 2), 305-324.

143. McCracken,A.A. and Brodsky,J.L. (1996). Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132,291-298.

144. Meaden,P., Hill,K., Wagner,J., Slipetz,D., Sommer,S.S., and Bussey,H. (1990). The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1—6)-p-D-glucan synthesis and normal cell growth. Mol. Cell Biol. 10, 3013-3019.

145. Meldolesi,J. and Pozzan,T. (1998). The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23, 10-14.

146. Menon,A.K., Mayor,S., and Schwarz,R.T. (1990). Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosyl-phosphoryldolichol as the mannose donor. EMBO J. 9,4249-4258.

147. Menon,A.K. and Stevens,V.L. (1992). Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein. J. Biol. Chem. 267, 15277-15280.

148. Meyer,U., Benghezal,M., Imhof,I., and Conzelmann,A. (2000). Active site determination of Gpi8p, a caspase-related enzyme required for glycosylphosphatidylinositol anchor addition to proteins. Biochemistry 39,3461 -3471.

149. Miller,J.H. (1972). Experiments in Molecular Genetics. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory).

150. Molano,J., Bowers,B., and Cabib,E. (1980). Distribution of chitin in the yeast cell wall. Ari ultrastructural and chemical study. J. Cell Biol. 85,199-212.

151. Molinari,M., Calanca,V., Galli,C., Lucca,P., and Paganetti,P. (2003). Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299,1397-1400.

152. Montijn,R.C., Vink,E., Muller,W.H., Verkleij,A.J., Van Den Ende,H., Henrissat,B., and Klis,F.M. (1999). Localization of synthesis of P-l,6-glucan in Saccharomyces cerevisiae. J. Bacteriol. 181, 7414-7420.

153. Mrsa,V., Klebl,F., and Tanner,W. (1993). Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-P-l,3-glucanase. J. Bacteriol. 175, 2102-2106.

154. Muniz,M. and Riezman,H. (2000). Intracellular transport of GPI-anchored proteins. EMBO J. 19, 10-15.

155. Munro,S. (2001). What can yeast tell us about TV-linked glycosylation in the Golgi apparatus? FEBS Lett. 498, 223-227.

156. Myers,A.M., Tzagoloff,A., Kinney,D.M., and Lusty,C.J. (1986). Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45,299-310.

157. Naik,R.R. and Jones,E.W. (1998). The PBN1 gene of Saccharomyces cerevisiae: an essential gene that is required for the post-translational processing of the protease B precursor. Genetics 149, 1277-1292.

158. Nakayama,K., Feng,Y., Tanaka,A., and Jigami,Y. (1998). The involvement oimnn4 and mnn6 mutations in mannosylphosphorylation of 0-linked oligosaccharide in yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1425, 255-262.

159. Nakayama,K., Nagasu,T., Shimma,Y., Kuromitsu,J., and Jigami,Y. (1992). OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J. 77, 2511-2519.

160. Nehlin.J.O., Carlberg,M., and Ronne,H. (1992). Yeast SKOl gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res. 20, 5271-5278.

161. Ng,D.T., Spear,E.D., and Walter,P. (2000). The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J. Cell Biol. 150, 77-88.

162. Nishikawa,S.I., Fewell,S.W., Kato,Y., Brodsky,J.L., and Endo,T. (2001). Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J. Cell Biol. 153,1061-1070.

163. Nojima,H., Leem,S.H., Araki,H., Sakai.A., Nakashima,N., Kanaoka,Y., and Ono,Y. (1994). Hacl: a novel yeast bZIP protein binding to the CRE motif is a multicopy suppressor for cdclO mutant of Schizosaccharomyces pombe. Nucleic Acids Res. 22, 5279-5288.

164. Nordlund,M.E., Johansson,!O., von Pawel-Rammingen,U., and Bystrom,A.S. (2000). Identification of the TRM2 gene encoding the tRNA(m5U54)methyltransferase of Saccharomyces cerevisiae. RNA. 6, 844-860.

165. Normington,K., Kohno,K., Kozutsumi,Y., Gething,M.J., and SambrookJ. (1989). S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57, 1223-1236.

166. Novotna,D., Flegelova,H., and Janderova,B. (2004). Different action of killer toxins K1 and K2 on the plasma membrane and the cell wall of Saccharomyces cerevisiae. FEMS Yeast Res. 4, 803-813.

167. Nuoffer,C., Jeno,P., Conzelmann,A., and Riezman,H. (1991). Determinants for glycophospholipid anchoring of the Saccharomyces cerevisiae Gasl protein to the plasma membrane. Mol. Cell Biol. 11,27-37.

168. Oda,Y., Hosokawa,N., Wada,I., and Nagata,K. (2003). EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299,1394-1397.

169. Odani,T., Shimma,Y., Tanaka,A., and Jigami,Y. (1996). Cloning and analysis of the MNN4 gene required for phosphorylation of AMinked oligosaccharides in Saccharomyces cerevisiae. Glycobiology 6, 805-810.

170. Ogawa,N. and Mori,K. (2004). Autoregulation of the HAC1 gene is required for sustained activation of the yeast unfolded protein response. Genes Cells 9, 95-104.

171. Ohishi,K., Inoue,N., and Kinoshita,T. (2001). PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J. 20,4088-4098.

172. Ohishi,K., Inoue,N., Maeda,Y., Takeda,J., Riezman,H., and Kinoshita,T. (2000). Gaalp and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol. Biol. Cell 11,1523-1533.

173. Okorokov,L.A. and Lehle,L. (1998). Ca2+-ATPases of Saccharomyces cerevisiae: diversity and possible role in protein sorting. FEMS Microbiol. Lett. 162, 83-91.

174. Orlean,P. (1990). Dolichol phosphate mannose synthase is required in vivo for glycosylphosphatidylinositol membrane anchoring, (3-mannosylation, and JV-glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 5796-5805.

175. Orlean,P. (1997). Biogenesis of yeast cell wall and surface components. In The Molecular and Cellular Biology of the Yeast Saccharomyces. Cell Cycle and Cell Biology, vol 3. Pringle,J.R.,

176. Broach,J.R., Jones,E.W., eds. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), 229-362.

177. Ozkaynak,E., Finley,D., Solomon,M.J., and Varshavsky,A. (1987). The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 6, 1429-1439.

178. Packeiser,A.N., Urakov,V.N., Polyakova,Y.A., Shimanova,N.I., Shcherbukhin,V.D., Smirnov,V.N., and Ter-Avanesyan,M.D. (1999). A novel vacuolar protein encoded by SSU2J / MCD4 is involved in cell wall integrity in yeast. Yeast 15,1485-1501.

179. Pammer,M., Briza,P., Ellinger,A., Schuster,T., Stucka,R., Feldmann,H., and Breitenbach,M. (1992). DIT101 (CSD2, CAL1), a cell cycle-regulated yeast gene required for synthesis of chitin in cell walls and chitosan in spore walls. Yeast 8,1089-1099.

180. Pan,X. and Heitman,J. (1999). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 4874-4887.

181. Parekh,A.B. and Putney,J.W., Jr. (2005). Store-operated calcium channels. Physiol Rev. 85, 757-810.

182. Parker,C.G., Fessler,L.I., Nelson,R.E., and Fessler,J.H. (1995). Drosophila UDP-glucose:glycoprotein glucosyltransferase: sequence and characterization of an enzyme that distinguishes between denatured and native proteins. EMBO J. 14,1294-1303.

183. Parodi,A.J. (1999). Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochim. Biophys. Acta 1426, 287-295.

184. Patil,C. and Walter,P. (2001). Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349-356.

185. Patil,C.K., Li,H., and Walter,P. (2004). Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. PLoS. Biol. 2, E246.

186. Pilon,M., Schekman,R., and Romisch,K. (1997). Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540-4548.

187. Plemper,R.K., Bohmler,S., Bordallo,J., Sommer,T., and Wolf,D.H. (1997). Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388, 891895.

188. Plemper,R.K. and Wolf,D.H. (1999). Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24,266-270.

189. Popolo,L., Gilardelli,D., Bonfante,P., and Vai,M. (1997). Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggplA mutant of Saccharomyces cerevisiae. J. Bacterid. 179,463-469.

190. Popolo,L. and Vai,M. (1999). The Gasl glycoprotein, a putative wall polymer cross-linker. Biochim. Biophys. Acta 1426,385-400.

191. Pro ft, M. and Struhl,K. (2002). Hogl kinase converts the Skol-Cyc8-Tupl repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol. Cell 9,13071317.

192. Qadota,H., Python,C.P., Inoue,S.B., Arisawa,M., Anraku,Y., Zheng,Y., Watanabe,T., Levin,D.E., and Ohya,Y. (1996). Identification of yeast Rholp GTPase as a regulatory subunit of 1,3-p-glucan synthase. Science 272, 279-281.

193. Ram,A.F., Brekelmans,S.S., Oehlen,L.J., and Klis,F.M. (1995). Identification of two cell cycle regulated genes affecting the P-l,3-glucan content of cell walls in Saccharomyces cerevisiae. FEBS Lett. 358,165-170.

194. Rayner,J.C. and Munro,S. (1998). Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae. J. Biol. Chem. 273, 26836-26843.

195. Reggiori,F., Canivenc-Gansel,E., and Conzelmann,A. (1997). Lipid remodeling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO J. 16, 3506-3518.

196. Reggiori,F. and Conzelmann,A. (1998). Biosynthesis of inositol phosphoceramides and remodeling of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae are mediated by different enzymes. J. Biol. Chem. 273, 30550-30559.

197. Reiss,G., te Heesen,S., Zimmerman,J., Robbins,P.W., and Aebi,M. (1996). Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the TV-linked glycosylation pathway. Glycobiology 6,493-498.

198. Rine,J., Hansen, W., Hardeman,E., and Davis,R.W. (1983). Targeted selection of recombinant clones through gene dosage effects. Proc. Natl. Acad. Sci. U. S. A 80, 6750-6754.

199. Roemer,T. and Bussey,H. (1991). Yeast p-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc. Natl. Acad. Sci. U. S. A 88,11295-11299.

200. Roemer,T. and Bussey,H. (1995). Yeast Krelp is a cell surface O-glycoprotein. Mol. Gen. Genet. 249, 209-216.

201. Roemer,T., Delaney,S., and Bussey,H. (1993). SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in p-glucan synthesis. Mol. Cell Biol. 13, 4039-4048.

202. Romero,P.A., Dijkgraaf,GJ., Shahinian.S., Herscovics.A., and Bussey,H. (1997a). The yeast CWH41 gene encodes glucosidase I. Glycobiology 7, 997-1004.

203. Romisch,K. (1999). Surfing the Sec61 channel: bidirectional protein translocation across the ER membrane. J. Cell Sci. 112 (Pt 23), 4185-4191.

204. Roncero,C. (2002). The genetic complexity of chitin synthesis in fungi. Curr. Genet. 41, 367378.

205. Rose,M.D., Misra,L.M., and VogelJ.P. (1989). KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell J 7,1211-1221.

206. Rose,M.D., Novick,P., Thomas,J.H., Botstein,D., and Fink,G.R. (1987). A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60, 237243.

207. Rudolph,H.K., Antebi,A., Fink,G.R., Buckley,C.M., Dorman,T.E., LeVitre,J., Davidow,L.S., Mao,J.L, and Moir,D.T. (1989). The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell 58, 133-145.

208. Ruegsegger,U., Leber,J.H., and Walter,P. (2001). Block ofHACl mRNA translation by longrange base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107, 103-114.

209. Runge,K.W., Huffaker,T.C., and Robbins,P.W. (1984). Two yeast mutations in glucosylation steps of the asparagine glycosylation pathway. J. Biol. Chem. 259,412-417.

210. Sacher,M., Barrowman,J., Schieltz,D., Yates,J.R., 3rd, and Ferro-Novick,S. (2000). Identification and characterization of five new subunits of TRAPP. Eur. J. Cell Biol. 79, 71-80.

211. Sacher,M., Barrowman,J., Wang,W., Horecka,J., Zhang,Y., Pypaert,M., and Ferro-Novick,S. (2001). TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol. Cell 7, 433-442.

212. Sambrook,J., Fritsch,E.E., and Maniatis,T. (1989). Molecular Cloning: A Laboratory Manual. 2nd ed. (NY: Cold Spring Harbor Laboratory Press).

213. Santos,B. and Snyder,M. (1997). Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J. Cell Biol. 136, 95-110.

214. Sanz,M., Trilla,J.A., Duran,A., and Roncero,C. (2002). Control of chitin synthesis through Shclp, a functional homologue of Chs4p specifically induced during sporulation. Mol. Microbiol. 43, 1183-1195.

215. Schmidt,M. (2004). Survival and cytokinesis of Saccharomyces cerevisiae in the absence of chitin . Microbiology 150, 3253-3260.

216. Schonbachler,M., Horvath,A., Fassler,J., and Riezman,H. (1995). The yeast sptl4 gene is homologous to the human PIG-A gene and is required for GPI anchor synthesis. EMBO J. 14, 16371645.

217. Schroder,M., Clark,R., and Kaufman,R.J. (2003). ÎRE1- and HAC1-independent transcriptional regulation in the unfolded protein response of yeast. Mol. Microbiol. 49, 591-606.

218. Sestak,S., Hagen,I., Tanner,W„ and Strahl,S. (2004). ScwlOp, a cell-wall glucanase/transglucosidase important for cell-wall stability in Saccharomyces cerevisiae. Microbiology 150, 3197-3208.

219. Shahinian,S. and Bussey,H. (2000). p-l,6-Glucan synthesis in Saccharomyces cerevisiae. Mol. Microbiol. 35, 477-489.

220. Shamu,C.E. and Walter,P. (1996). Oligomerization and phosphorylation of the Irelp kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15,30283039.

221. Sharma,C.B., Knauer,R., and Lehle,L. (2001). Biosynthesis of lipid-linked oligosaccharides in yeast: the ALG3 gene encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase. Biol. Chem. 382, 321-328.

222. Sharma,D.K., Vidugiriene,J., Bangs,J.D., and Menon,A.K. (1999). A cell-free assay for glycosylphosphatidylinositol anchoring in African trypanosomes. Demonstration of a transamidation reaction mechanism. J. Biol. Chem. 274, 16479-16486.

223. Shaw,J.A., Mol,P.C., Bowers,B., Silverman,S.J., Valdivieso,M.H., Duran,A., and Cabib,E. (1991). The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 114,111-123.

224. Sherman,F., Fink,G.R., and Hicks,J.B. (1986). Methods in Yeast Genetics. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).

225. Sidrauski,C., Cox,J.S., and Walter,P. (1996). tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87, 405-413.

226. Sidrauski,C. and Walter,P. (1997). The transmembrane kinase Irelp is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031-1039.

227. Sikorski,R.S. and Hieter,P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.

228. Silverman,S.J., Sburlati,A., Slater,M.L., and Cabib,E. (1988). Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A 85, 4735-4739.

229. Simon,J.R., Treger,J.M., and McEntee,K. (1999). Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae. Mol. Microbiol. 31, 823832.

230. Simons,J.F., Ebersold,M., and Helenius,A. (1998). Cell wall 1,6-p-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. EMBO J. 17, 396-405.

231. Sipos,G., Puoti,A., and Conzelmann,A. (1994). Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: absence of ceramides from complete precursor glycolipids. EMBO J. 13, 2789-2796.

232. Sipos,G., Reggiori,F., Vionnet,C., and Conzelmann,A. (1997). Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae. EMBO J. 16, 3494-3505.

233. Sobering,A.K., Romeo,M.J., Vay,H.A., and Levin,D.E. (2003). A novel Ras inhibitor, Eril, engages yeast Ras at the endoplasmic reticulum. Mol. Cell Biol. 23, 4983-4990.

234. Sobering,A.K., Watanabe,R., Romeo,M.J., Yan,B.C., Specht,C.A., Orlean,P., Riezman,H., and Levin,D.E. (2004). Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER. Cell 117,637-648.

235. Spear,E.D. and Ng,D.T. (2003). Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. Mol. Biol. Cell 14,2756-2767.

236. Spear,E.D. and Ng,D.T. (2005). Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation. J. Cell Biol. 169, 73-82.

237. Stagljar,I., te Heesen,S., and Aebi,M. (1994). New phenotype of mutations deficient in glucosylation of the lipid-linked oligosaccharide: cloning of theALG8 locus. Proc. Natl. Acad. Sci. U. S. A 91, 5977-5981.

238. Stansfield,L, Akhmaloka, and Tuite,M.F. (1995). A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr. Genet. 27, 417-426.

239. Strahl-Bolsinger,S., Gentzsch,M., and Tanner,W. (1999). Protein 0-mannosylation. Biochim. Biophys. Acta 1426,297-307.

240. Strayle,J., Pozzan,T., and Rudolph,H.K. (1999). Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 jiM and is mainly controlled by the secretory pathway pump Pmrl. EMBO J. 18, 4733-4743.

241. Suzuki,T., Park,H., Hollingsworth,N.M., Sternglanz,R., and Lennarz,W.J. (2000). PNG1, a yeast gene encoding a highly conserved peptide:iV-glycanase. J. Cell Biol. 149, 1039-1052.

242. Swanson,R., Locher,M., and Hochstrasser,M. (2001). A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Mata2 repressor degradation. Genes Dev. 15, 2660-2674.

243. Takasuka,T., Komiyama,T., Furuichi,Y., and Watanabe,T. (1995). Cell wall synthesis specific cytocidal effect of Hansenula mrakii toxin-1 on Saccharomyces cerevisiae. Cell Mol. Biol. Res. 41, 575-581.

244. Tanaka,S., Maeda,Y., Tashima,Y., and Kinoshita,T. (2004). Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bstlp. J. Biol. Chem. 279,14256-14263.

245. Taron,B.W., Colussi,P.A., Wiedman,J.M., Orlean,P., and Taron,C.H. (2004). Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J. Biol. Chem. 279, 36083-36092.

246. Taxis,C., Hitt,R., Park,S.H., Deak,P.M., Kostova,Z., and Wolf,D.H. (2003). Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J. Biol. Chem. 278, 35903-35913.

247. Teparic,R., Stuparevic,L, and Mrsa,V. (2004). Increased mortality of Saccharomyces cerevisiae cell wall protein mutants. Microbiology 150, 3145-3150.

248. Tiede,A., Bastisch,I., Schubert,J., Orlean,P., and Schmidt,R.E. (1999). Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol. Chem. 380, 503-523.

249. Toh-e A and Oguchi,T. (2002). Genetic characterization of genes encoding enzymes catalyzing addition of phosphoethanolamine to the glycosylphosphatidylinositol anchor in Saccharomyces cerevisiae. Genes Genet. Syst. 77, 309-322.

250. Toh-e, A. and Oguchi,T. (1998). Isolation and characterization of the yeast las21 mutants, which are sensitive to a local anestheticum, tetracaine. Genes Genet. Syst. 73, 365-375.

251. Toh-e,A. and Oguchi,T. (1999). Las21 participates in extracellular/cell surface phenomena in Saccharomyces cerevisiae. Genes Genet. Syst. 74, 241-256.

252. Tomishige,N., Noda,Y., Adachi,H., Shimoi,H., Takatsuki,A., and Yoda,K. (2003). Mutations that are synthetically lethal with a gaslA allele cause defects in the cell wall of Saccharomyces cerevisiae. Mol. Genet. Genomics 269, 562-573.

253. Ton,V.K. and Rao,R. (2004). Functional expression of heterologous proteins in yeast: insights into Ca2+ signaling and Ca2+-transporting ATPases. Am. J. Physiol Cell Physiol 287, C580-C589.

254. Travers,K.J., Patil,C.K., Wodicka,L., Lockhart,D.J., Weissman,J.S., and Walter,P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249-258.

255. Trilla,J.A., Cos,T., Duran,A., and Roncero,C. (1997). Characterization of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 13,795-807.

256. Trombetta,E.S., Simons,J.F., and Helenius,A. (1996). Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271,27509-27516.

257. Trotter,P.J., Pedretti,J., and Voelker,D.R. (1993). Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. J. Biol. Chem. 268,21416-21424.

258. Umemura,M., Okamoto,M., Nakayama,K., Sagane,K., Tsukahara,K., Hata,K., and Jigami,Y. (2003). GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J. Biol. Chem. 278,23639-23647.

259. Valdivia,R.H., Baggott,D., Chuang,J.S., and Schekman,R.W. (2002). The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev. Cell 2,283-294.

260. Valdivieso,M.H., Mol,P.C., Shaw,J.A., Cabib,E., and Duran,A. (1991). CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. J. Cell Biol. 114, 101-109.

261. Vashist,S., Kim,W., Belden,W.J., Spear,E.D., Barlowe,C., and Ng,D.T. (2001). Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155, 355-368.

262. Vashist,S. and Ng,D.T. (2004). Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41-52.

263. Verostek,M.F., Atkinson,P.H., and Trimble,R.B. (1991). Structure of Saccharomyces cerevisiae alg3, seel8 mutant oligosaccharides . J. Biol. Chem. 266, 5547-5551.

264. Vincent,A.C. and Struhl,K. (1992). Acrl, a yeast ATF/CREB repressor. Mol. Cell Biol. 12, 5394-5405.

265. Vink,E., Rodriguez-Suarez,R.J., Gerard-Vincent,M., Ribas,J.C., De Nobel,H., van den Ende,H., Duran,A., Klis,F.M., and Bussey,H. (2004). An in vitro assay for (1 --> 6)-P-D-glucan synthesis in Saccharomyces cerevisiae. Yeast 21, 1121-1131.

266. Vossen,J.H., Ram,A.F., and Klis,F.M. (1995). Identification of SPT14/CWH6 as the yeast homologue of hPIG-A, a gene involved in the biosynthesis of GPI anchors. Biochim. Biophys. Acta 1243, 549-551.

267. Walter,J., Urban,J., Volkwein,C., and Sommer,T. (2001). Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J. 20, 3124-3131.

268. Wang,X.H., Nakayama,K., Shimma,Y., Tanaka,A., and Jigami,Y. (1997). MNN6, a member of the KRE2/MNT1 family, is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae.

269. J. Biol. Chem. 272, 18117-18124.

270. Watanabe,R., Inoue,N., Westfall,B., Taron,C.H., Orlean,P., Takeda,J., and Kinoshita,T. (1998). The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 17, 877-885.

271. Watanabe,R., Murakami,Y., Marmor,M.D., Inoue,N., Maeda,Y., Hino,J., Kangawa,K., Julius,M., and Kinoshita,T. (2000). Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J. 19, 4402-4411.

272. Welihinda,A.A. and Kaufman,R.J. (1996). The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Irelp (Ernlp) are required for kinase activation. J. Biol. Chem. 271,18181-18187.

273. Welihinda,A.A., Tirasophon,W., Green,S.R., and Kaufman,R.J. (1998). Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Irelp kinase. Mol. Cell Biol. 18,1967-1977.

274. Werner,E.D., Brodsky,J.L., and McCracken,A.A. (1996). Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl. Acad. Sci. U. S. A 93, 13797-13801.

275. Wilier,T., Valero,M.C., Tanner,W., Cruces,J., and Strahl,S. (2003). 0-mannosyl glycans: from yeast to novel associations with human disease. Curr. Opin. Struct. Biol. 13, 621-630.

276. Yan,A. and Lennarz,W.J. (2005). Unraveling the mechanism of protein iV-glycosylation. J. Biol. Chem. 280, 3121-3124.

277. Yan,B.C., Westfall,B.A., and Orlean,P. (2001). Ynl038wp (Gpil5p) is the Saccharomyces cerevisiae homologue of human Pig-Hp and participates in the first step in glycosylphosphatidylinositol assembly. Yeast 18,1383-1389.

278. Yanisch-Perron,C., Vieira,J., and Messing,J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33,103-119.

279. Ye,Y„ Meyer,H.H., and Rapoport,T.A. (2001). The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652-656.

280. Zhao,C., Jung,U.S., Garrett-Engele,P., Roe,T., Cyert,M.S., and Levin,D.E. (1998). Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol. Cell Biol. 18, 1013-1022.

281. Zhong,X., Malhotra,R., and Guidotti,G. (2003). ATP uptake in the Golgi and extracellular release require Mcd4 protein and the vacuolar H+-ATPase. J. Biol. Chem. 278, 33436-33444.

282. Zhou,M. and Schekman,R. (1999). The engagement of Sec61p in the ER dislocation process. Mol. Cell 4, 925-934.

283. Ziman,M., Chuang,J.S., Tsung,M., Hamamoto,S., and Schekman,R. (1998). Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1565-1576.1. БЛАГОДАРНОСТИ

284. Выражаю благодарность моему научному руководителю М.Д. Тер-Аванесяну за терпеливое руководство и помощь в работе.