Бесплатный автореферат и диссертация по биологии на тему
Фаговый дисплей как универсальный метод исследования белковых взаимодействий
ВАК РФ 03.00.03, Молекулярная биология
Автореферат диссертации по теме "Фаговый дисплей как универсальный метод исследования белковых взаимодействий"
На прааах рукописи
003064561
Минепкова Ольга Олеговна
ФАГОВЫЙ ДИСПЛЕЙ КАК УНИВЕРСАЛЬНЫЙ МЕТОД ИССЛЕДОВАНИЯ БЕЛКОВЫХ ВЗАИМОДЕЙСТВИЙ
03.00.03 - молекулярная биология
АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора биологических наук
2 3 АВГ 2007
Кольцове - 2007
003064561
Работа выполнена в Государственном научном центре вирусологии и биотехнологии «Вектор» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Минздравсоцразвития России и в лаборатории Общества с ограниченной ответственностью «Кентон» при фармацевтической компании «Сигма-Тау», Помеция, Рим, Италия (Kenton, S.г.)., с/о Sigma-Tau, Pomezia (RM), Italy).
Научный консультант
доктор биологических наук, профессор А.А.Илькчев Официальные оппоненты
член-корреспондент РАМН, доктор медицинских наук, профессор М.И.Воевода доктор химических наук, профессор Г. Г. Карпова доктор биологических наук, профессор С.Н.Щелкунов
Ведущая организация
Институт цитологии и генетики СО РАН, г. Новосибирск
Защита состоится « 02 » ноября 2007 года в_ сов на заседании диссертационного
совета Д.208.020.01 при Государственном научном центре вирусологии и биотехнологии «Вектор» по адресу: ФГУН ГНЦ ВБ «Вектор» Роспотребнадзора, Кольцове Новосибирской области, 630559, тел.(383)336-74-28.
С диссертацией можно ознакомиться в библиотеке ГНЦ ВБ «Вектор».
Ученый секретарь диссертационного совета
Малыгин Э.Г.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность темы
Нитчатый бактериофаг М13 и умеренный литический фаг лямбда сыграли существенную роль в становлении и развитии методологии рекомбинантной ДНК. Широкое применение бактериофага М13 в экспериментальной практике молекулярно-биологических исследований (секвенирование ДНК, получение меченых проб для гибридизации, сайт-локализованный мутагенез), а также центральная роль бактериофага лямбда для развития современной концепции регуляции генов и разработка на его основе векторных систем, используемых для построения библиотек природных репертуаров (геномная ДНК, кДНК, белки), связаны с небольшими размерами фаговых геномов и детальным знанием биологии этих бактериофагов. За последние 15 лет интерес к нитчатым бактериофагам особенно вырос в связи с развитием одного из направлений генной инженерии, получившего название "фаговый дисплей". Эта технология основана на встраивании чужеродных нуклеотидных последовательностей в один из генов, кодирующих оболочечные белки бактериофага. При этом производится гетерогенная смесь фаговых частиц, каждая из которых экспонирует па поверхности свой пептид, закодированный встроенным фрагментом ДНК. Физическая связь менаду экспонированным пептидом и генетической информацией о нем делает возможным селекцию специфического фага из больших библиотек и определение первичной последовательности пептида, ответственного за связывание. Более 3 тысяч работ, опубликованных к настоящему времени, описывают способы применения фагового дисплея для решения различных генно-инженерных задач.
Близкородственные одноцепочечные ДНК-содержащие нитчатые фаги М13, fl и fd, а также разработанные на их основе фагмиды, размножаются на мужских клетках Е. coli, несущих F-фактор, определяющий наличие половых ворсинок, которые необходимы для прикрепления нитчатого фага при инфицировании бактерий. Фаговый капсид построен из 5-ти различных оболочечных белков: pVIII, pill, pVI, pVII и pIX. В первых экспериментах по фаговому дисплею для экспонирования чужеродных полипептидов использовался минорный белок рШ, представленный в капсиде всего пятью копиями (Smith, 1985). Малая копийность этого белка ограничивает возможности по получению эффективных иммуногенов и селекции низкоаффинных лигандов. Поэтому важно было исследовать возможность использования для фагового дисплея основного белка оболочки pVIII, представленного почти треки тысячами молекул на вирион. Решение этой задачи давало бы возможность получения иммуногенных частиц значительных размеров и с высокой плотностью целевых эпитопов, полезных для создания искусственных иммуногенов на основе нитчатого фага.
Следует отметить, что фаговые частицы, экспонирующие многие копии пептидов, являются также эффективными антигенами, которые могут использоваться для определения антител в сыворотке крови. При вирусной инфекции организм человека реагирует наработкой большого количества разных антител против различных вирусных антигенных детерминант, присутствующих в сыворотке крови и способных вызывать иммунный ответ в данном организме. Расшифровка и определение последовательностей, которые связывают эти антитела, эквивалентна получению иммунологического изображения данного вируса. Пептидные фаговые библиотеки являются эффективным средством идентификации лигандов для противовирусных антител. При этом, для данного метода не нужна никакая другая информация о болезнетворном агенте, также как и не нужно иметь в наличие сам натуральный антиген или же его фрагменты. Усовершенствование техники фагового дисплея и применение новых стратегий селекции необходимо для разработки новых диагностических тест-систем по определению антител против вирусной инфекции в крови пациентов.
Отличительной чертой морфогенеза нитчатых фагов является сборка калсида, происходящая на внутренней мембране бактерии. Поэтому в библиотеках, основанных на нитчатом фаге, реально представлены только такие белки и пептиды, которые могут транспортироваться через внутреннюю мембрану, сохраняя свою нативную структуру в окисляющей среде периплазматического пространства. В этой связи использование для фагового дисплея литического фага лямбда, который собирается в цитоплазме и освобождается при помощи лизиса бактериальной клетки, позволяет преодолевать проблемы, связанные с жизненным циклом нитчатых фагов. Развитие фагового дисплея на основе бактериофага лямбда дает импульс новым приложениям техники дисплея, одним из которых является широкомасштабный скрининг больших библиотек на основе природных репертуаров. При этом трудоемкая процедура прямого скрининга огромных фаговых библиотек сводится к аффинной селекции, выполняемой в пробирке, и последующему иммуноскринингу небольших фаговых пулов, обогащенных специфическими клонами. Применение подобной техники для скрининга библиотек кДНК, полученных из человеческих опухолей, с помощью сывороток онкологических пациентов дает возможность открытия новых опухолевых антигенов, представляющих собой потенциальные мишени для диагностики и терапии онкологических заболеваний.
Наконец, техника фагового дисплея предлагает удачную альтернативу технологии мышиных моноклональных антител. Библиотеки фаговых рекомбинантных антител обеспечивают возможность селекции человеческих антител, не вызывающих иммунный ответ у пациентов и применимых в клинической практике. При этом можно улучшать
имеющиеся антитела, конструируя библиотеки созревания, дающие клоны с более высокой аффинностью.
Однако при работе по улучшению аффинности одноцепочечного антитела анти-СЕА, исследователи столкнулись с тем, что канонические векторы для дисплея антител далеки от совершенства (Pavoni, Flego et al., 2006). Селекция библиотеки созревания привела к отбору фаговых клонов с возросшей реактивностью, но содержащих TAG или TGA кодоны, которые препятствуют эффективной наработке белка. Накопление супрессированных стоп-кодонов во время селекции указывало на то, что существует сильное селективное давление в бактериях против наработки антитела анти-СЕА, которое, по-видимому, было токсичным для бактерии. Экспрессия токсичных белков — это хорошо изученная проблема, которая может быть решена несколькими способами, такими как использование регулируемого промотора или уменьшение числа копий плазмиды (Khlebnikov et al., 2002; Bovver et al., 2004). Однако дисплей рекомбинантных антител никогда не рассматривался с точки зрения возможного воздействия экспрессии антител на жизнеспособность бактерий. В этой связи, разработка нового вектора для дисплея рекомбинантных антител на нитчатом фаге, который обеспечивал бы высоко эффективный дисплей и селекцию целевых антител и уменьшал селективное давление при дисплее токсичных антител, являлось актуальной задачей.
Цель II задачи исследования
Основной целью настоящей работы являлось: 1) создание новых векторных систем для дисплея пептидов и белков на основе бактериофагов М13 и лямбда; 2) разработка диагностикумов вирусных заболеваний на основе пептидов, селектированных из пептидных фаговых библиотек; 3) идентификация новых опухолеспецифических маркеров для терапии, диагноза и прогноза раковых заболеваний; 4) получение человеческих опухолеспецифических одноцепочечных антител для терапии и ранней диагностики онкологических заболеваний.
Для достижения поставленной цели необходимо было решить следующие основные задачи:
- исследовать возможность модификации основного белка оболочки pVIII нитчатого фага М13 и создания на его основе иммуногенных частиц;
- исследовать пределы модификации белка pVIII нитчатого фага путем мутагенеза или встроек нуклеотидных последовательностей случайного состава и различной длины в ген белка pVIII;
получить расширенную коллекцию пептидов, имитирующих антигенные детерминанты вируса гепатита С (мимотопов), для эффективного выявления противовирусных антител в сыворотке крови;
- разработать векторную систему для дисплея библиотек кДНК, полученных из раковых клеточных линий или образцов опухоли молочной железы, взятой от онкологических пациентов;
- провести поиск новых опухолевых антигенов путем скрининга библиотек кДНК сыворотками крови онкологических пациентов;
- провести расширенный серологический анализ идентифицированных антигенов и статистическую обработку данных, подтверждающую ассоциацию между присутствием в крови специфических антител и наличием опухоли молочной железы;
- разработать новый вектор для дисплея антител, пригодный как для конструирования новых библиотек, так и для аффинного созревания антител;
осуществить селекцию опухолеспецифических антител из библиотек рекомбинантных антител, берущих начало от лимфоцитов В, инфильтрованных в опухоль.
Научная новизна и практическая значимость работы
Впервые экспериментально доказана возможность использования основного белка оболочки нитчатого бактериофага для задач фагового дисплея. Получены жизнеспособные варианты фага М13 со встройкой чужеродных пептидов в основной белок оболочки. Продемонстрировано, что встроенные пептиды экспонированы на поверхности фаговой частицы и доступны для взаимодействия с антителами.
Впервые экспериментально доказано, что в системе дисплея с высокой плотностью экспонированных пептидов основным лимитирующим фактором, влияющим на жизнеспособность фаговых частиц, является длина встроенного пептида. Было показано, что пептидная библиотека с высокой плотностью дисплея может быть использована для селекции специфических фагов, связывающих как моноклональные антитела, так и небольшие органические молекулы.
Получена обширная коллекция мимотопов вируса гепатита С, послужившая базой для создания нового пептидного диагностикума этого заболевания. Диагностикум на основе селектированных пептидов позволяет классифицировать сыворотки, получившие статус "неопределенных" при использовании коммерческих тест-систем в формате ELISA или SIA (strip immunoblot assay).
Разработана новая техника скрининга библиотек кДНК из злокачественных опухолей с помощью сывороток пациентов в формате фагового дисплея. Для эффективного дисплея
библиотек кДНК разработана новая векторная система, в которой преимущественно экспонируются природные белки с правильной рамкой считывания. Идентифицированы опухолевые антигены, вызывающие статистически достоверный иммунный ответ у пациентов с опухолью молочной железы.
Разработана новая векторная система дисплея рекомбинантных антител, облегчающая селекцию токсичных антител и обладающая более высокой эффективностью отбора целевых молекул. Новый вектор был использован для конструирования библиотек рекомбинантных антител, берущих начало от лимфоцитов, инфильтрированных в опухоль, и селекции опухолеспецифических антител. Продемонстрирована высокая эффективность нового метода по сравнению методами, опубликованными в литературе.
Положения, выносимые на защиту:
• Капсид нитчатого фага может быть модифицирован без нарушения его жизнеспособности. При этом увеличение длины пептидной встройки в основной белок оболочки, введение непарного числа цистеиновых остатков и увеличение положительного заряда аминоконцевого района белка рУШ негативно сказывается на жизнеспособности фага. Пептиды, встроенные между 4-м и 5-м а.о. зрелой формы основного белка оболочки, экспонированы в раствор и доступны для взаимодействия с антителами.
• Пептидная библиотека, полученная при встройке случайных пептидов длиной 8 а.о. во все копии основного белка оболочки нитчатого фага, является достаточно представительной для селекции лигандов для различных рецепторов.
• Мимотопы, имитирующие натуральные вирусные антигены, могут быть выделены из фаговых пептидных библиотек с помощью сывороток больных пациентов, даже не имея информации о болезнетворном агенте. Селектированные пептиды могут использоваться как эффективный заменитель вирусных белков в диагностических тест-системах.
• Новые векторы на основе фага лямбда, Х.КМ4 и ХКМ8, предназначенные для встройки фрагментов ДНК в 5'-конец гена ¿рО, обеспечивают эффективный дисплей белковых доменов в составе белка О на поверхности фага лямбда. Библиотеки кДНК эукариотических клеток, полученные при использовании этих векторов, экспонируют белковые домены преимущественно с натуральной рамкой считывания.
• Селекция опухоль-ассоциированных антигенов с помощью сывороток онкологических пациентов приводит к идентификации преимущественно цитоплазматических шгтигенов.
s
• Спонтанный иммунный ответ на антиген D7-1 при раке молочной железы растет с развитием стадии заболевания.
• Понижение уровня экспрессии рекомбинантных антител за счет введения amber-кодона приводит к повышению эффективности селекции целевых антител.
• Лимфоциты В, инфильтрированные в опухоль, могут служить источником рекомбинантных антител потенциально полезных для терапии и диагностики рака.
Апробация работы
Представленные в диссертации результаты были доложены на различных конференциях и симпозиумах: Международном симпозиуме "Proceeding of seventh international symposium on metabolism and enzymology of nucleic acids including gene and protein engineering" (Bratislava, Czechoslovakia, 1990), Международной конференции "Medical biotechnology immunization and AIDS" (Ленинград, 1991), Всесоюзной конференции "Новые направления биотехнологии" (Пущино 1992), Международной конференции "Phage display" (Cold Spring Harbor Laboratory, Long Island, New York, 1992), Международной конференции "Molecular genetics of bacteria and phages" (Cold Spring Harbor Laboratory, Long Island, New York, 1993), Международной конференции "EMBO workshop on Molecular repertoires and mehtods of selection" (Perugia, Italy, 1993), конференции Итальянской Ассоциации Генетиков AGI (Associazione Genetica Italiana) (Senigallia, Italy, 1993), Международной конференции "EMBO-FEMS meeting on Bacterial Viruses, Molecular Biology and Biotechnology" (Gargnano, Lake Garda, Italy, 1994), Конференциях Итальянской Федерации FISV (Federazione Italiana Scienze della Vita) (Riva del Garda, 1999, 2000, 2001, 2002), Международном семинаре "Basic Science in ISTC Activities" (Academgorodok, Novosibirsk, 2001), Международном Симпозиуме "7th International Symposium on Predictive Oncology & Intervention Strategies" (Nice, France, 2004), Международном семинаре "Monoclonal Antibodies: Research, Development and Applications" (Rome, Italy, 2005), Международной конференции "2nd IFOM'IEO Campus Meeting on Cancer" (Milan, Italy, 2006), Международном конгрессе "25th Congress of the International Association for Breast Cancer Research" (Montreal, Canada, 2006).
Публикации
По материалам диссертации получено 5 международных патентов и опубликовано 28
статей.
Структура и объем диссертации
Диссертационная работа состоит из семи разделов: "Введение", "Обзор литературы", "Материалы и методы", "Результаты", "Обсуждение", "Выводы" и "Список литературы".
Работа изложена на 230 страницах машинописного текста и включает 72 рисунка, 11 таблиц и список литературы, содержащий 501 ссылку.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Первая часть данной работы, Глава 3.1. "Получение жизнеспособных вариантов фага М13, экспонирующих на своей поверхности чужеродные пептиды в составе основного белка оболочки pVIir", посвящена исследованию возможности использования основного белка оболочки нитчатого фага М13 для дисплея пептидов с высокой плотностью, при котором все копии белка pVIII модифицированы и несут встройку чужеродного пептида. В настоящей работе впервые было показано, что встройка пептидов в амино-конец основного белка оболочки pVIII, составляющих 10% от исходной длины белка, не препятствует образованию жизнеспособных фаговых частиц, способных инфицировать бактериальные клетки и
формировать фаговые бляшки на газоне бактерий, Рис. 1.
KL3BOM1
1 2 3 4 5 6 7
А Е G E D Q A S G D P A
5 '...GCT GAS GGT GAG GAT cas GCA TCA GGT GAT CCC GCA. . . 3
М13ВОМ2
1 2 3 4 5 6 7
А Е G E G q A S G D P A
5 ' ...GCT GAG GGT GAG GGT CAG GCA TCA GGT GAT CCC GCA. . . 3
M.3BOL1
1 2 3 4 5 6 7
А Е G E D H L M P D P A
5•...GCT GAG GGT GAG GAT CAС CTG ATG CCT GAT CCC GCA. . . 3
11 19
р!7 .. . G Е L D R W Е К I...
M13BOL2
1234 56789
AEGEDRWMPDPAKA... 5 ' . . . GCT GAG GGT GAG GAT CGC TGG ATG CCT GAT CCC GCA AAA GCG. . . 3 '
Рис. 1. При клонировании синтетического олигонуклеотидного дуплекса в составе гена VIII бактериофага М13В1 были получены бактериофаги М13ВОМ1, М13ВОМ2 и M13BOL1. Два а.о. (аминокислотных остатка) были заменены сайт-локалгоованным мутагенезом в последовательности фага M13BOL1 и получен бактериофаг M13BOL2, несущий неполную антигенную детерминанту gag-белка р17 вируса ВИЧ-1 (обозначена серым фоном).
Детальное исследование инфекционности первых рекомбинантных фагов с модифицированными поверхностными белками выявило, что лишь у одного из них наблюдается заметное снижение инфекционности. Однако наличие в фаговом геноме гена устойчивости к ампициллину позволяет нарабатывать такие фаги на среде с антибиотиком. Анализ контурной длины рекомбинантных фагов показал, что вириопы со встройками в N-
конец белка р\'Ш имеют такую же плотность упаковки оболочечного белка, как и фаг дикого тина.
Определение М-концсвой аминокислотной последовательности белка р\'Ш в рекомбинантных фагах путем химической деградации по Эдману выявило, что рекомбинантный белок рУШ в фаге М13ВОЫ во время процессинга и сборки теряет не только лидерную последовательность, но и первые 5 а.о. зрелого белка, сохраняя при этом встроенный пептид. Таким образом, встройка, достаточно удаленная от сайга процессинга, может менять место разрезания белка-предшественника клеточной лидерной пептидазой. Электрофорез нативных вирионов показал, что суммарный заряд белка рУШ влияет на скорость движения фаговых частиц в агарозном геле. Это косвенно указывает на то, что встроенные пептиды, которые дают вклад в изменение заряда рекомбинантных белков, экспонированы в растворитель. Дальнейшие доказательства этого были получены при исследовании рекомбинантного фага М13ВОЬ2, несущего неполный эпитоп белка р17 вируса ВИЧ-1. После иммунизации кроликов этим фагом, сыворотки животных узнавали вирусный белок р17, иммобилизованный на нитроцеллюлозных стрипах, Рис. 2. Таким образом, мы впервые показали, что нитчатый бактериофаг, несущий чужеродные пептиды, встроенные в основной белок оболочки, экспонирует эти пептиды в растворитель. При этом такая модифицированная фаговая частица является превосходным иммуногеном, вызывающим наработку специфических антител против встроенного пептида. Полученные результаты свидетельствуют о перспективности исследований нитчатых фагов для создания антигенных и иммуногенных фаговых частиц с высокой плотностью встроенных эпитопов.
В нашей работе мы столкнулись с фактом, что не все встроенные пептиды переносятся нитчатым фагом, т. е. некоторые изменения химической характеристики фагового капсида оказываются несовместимыми с образованием жизнеспособных фаговых частиц. Поэтому наши исследования были сосредоточены на структурных ограничениях на возможную модификацию капсида, накладываемых процессами морфогенеза фагов, такими как сборка и секреция фаговых вирионов.
Мы показали, что ни один из первых пяти а.о. не является жизненно важным для морфогенеза фага, т. к. любой из них, по отдельности, может быть изменен без потери фаговой инфекционности. Однако более существенная модификация такая, как делеция трех а. о. (01уЗАвр4А5р5), позволяет фагу производить лишь небольшое количество трансдуцирующих частиц без формирования видимых фаговых бляшек. Данная делеция приводит к потере двух отрицательно заряженных а.о. в аминоконцевой части белка. Данные о пониженной жизнеспособности такого фага хорошо согласуются с тем фактом, что
изменения в оеже рУШ нарушают ждакеспособкоегь фшш щзи возрастают поверхностного заряда кале гада.
А Е С
ИМ 6 о
ем*
РЭ1
р-ч
('не. 2. Раакгквноствирусных О&жов с а.'г :нммуНггдоОуитламн А ■ обработка мембрапи ВЙЧ-1-доложп-телыюА екгвороткой человека в разве депюг ¡.'((М; В - гиш!-М13п1р10 сывороткой в разведении 1:100; С -Вдти-М иВОЬЗ «щороткей в разведении 1:100
Было показано, что Пепгцдпые встройкя определимой длины могут вводится и амиио-конец белка рУШ При этом большинство гексапептидов переносятся фагом, нез;щисимо от аммкяошисшсто состава пептида, в то же время процент жизнеспособных фатов со встройками данной 10 а.о. и 16 а.о. падает, соответственно, до 20% и \%, Рис. 3. Это наблюдение поднимает вопрос о том, какой фактор определяет переносимость встроенных пептидов.
Мутации в гене рУШ, блокирующие формирование дафекщкаикх фаговых частиц, могут оказывать воздействие на любой этап Жизненного цнжла фаса, начиная е синтеза белка рV И1 на рибосомах бактерии-хозяина и до встройки этого же белка в мембрану новой хозяйской кл(лкн после фаговой инфекции.
Независимо от этапа, на котором блокировалась сборка фага, можно сказать, что основной причиной инакшващтн фага было удлините аминоконцевого района основного белка оболочки, а специфический аминокислотный состав варшки уже играл роль "настройки", влияющей на взаимодействие добавленного пептида с остальной структурой калсида. Мы предполагаем, хотя для этого не было получено прямых доказательств, что дефективные гибридные белки рУШ блокируются, скорее всего, на этане мембранной встройки или проиеесинга. Известно, что многие пептидные встройки, фатально влияющие на
жизнеспособность нитчатого фага, можно экспонировать при жгшпьзйаднии фагмидной системы (8+8), при которой ретамбинанткый белок перемежается с белком дикого типа (РеЕс! е1а1„ 1991; Стеег№оо<3 еЩ., 1991).
Однако при этом нельзя исключай., что некоторые г» таких пептидных встроен: могут снижать эффективность мембранной сборки и процессиига рисомбинантти: белков, ограничивая, таким образом, количество зрелого белка pVIII, встроенного в мембрану щ доступного для образования инфекционных фаговых частиц. На основании этого же предположения можно исключить гипотезу о том, что бло игрок ал не формировал и 1я фаговых частиц происходит на этапе полимеризации тру сообразной структуры кшсида, формируемой при поэтапном добавлении новых субъедншщ белка pVIII. Это утверждение согласуется с имеющейся информацией о структуре фагового надсада, полученной с помощью дифракции рештеновских лучей на волокнах, приготовленных из ориентированных фаговых частиц (Banner е< aL, 1981; Marvin et al, 1994; Glncksman et al., 1992) и экспериментов с использованием ЯМР (Mambudnpad et al., 1991). Анатп результатов этих работ дает основание утверждать, что нет никаких очевидных ограничений на размер и последовательность пептида, который может быть добавлен к амино-концу белка pVlll.
С другой стороны, проблема может возникать на начальной стадии сборки, во вргмя которой pVIII участвует в формировании инициального комплекса белков или взаимодействует с ним перед началом формирования полнмеразной реакции. Вероятно, этот тип взаимодействий не должен быть очень чувствительным к химическим свойствам амнно-когща белка pVIII, так как фаг пегао перекосит как зшещедае первых 5-ти а.о., гак и встройку пептидов разной дгпены я состава в алшно-конец основного белка оболочки.
С
устойчивость. Темные столбики представляют фракцию встроек дал ной длины. не содаржатцую нонсенс колонов.
транс дуцнровап,
Рис. 3. Процент случайных толерантных пеягидных в строек в амнно-конец Селка. pVHI, как фулкшиг даилы встройки. R экспериментах с каждой группой фнгоп было протестировано гго 100 таганов. фракция, сп ос оЙная производить фаговые частицы, Выла отгредеяетга по их способности
способности тстращпоп гт [овутс
Наконец, продукция инфекционных фаговых частиц может быть блокирована на этапе выхода фаговой частицы из клетки при прохождении через наружную мембрану. Однако и в этом случае мы предполагаем, что на процесс влияет не специфический контакт между поверхностью фаговой частицы и секреторным аппаратом клетки, а скорее свойства встройки, влияющие на размер основного белка оболочки. Мембранная пора, расположенная в наружной клеточной мембране и построенная из 10-12 копий фагового белка pIV, служит для секреции фаговых частиц (Kazmierczak et al., 1994; Marciano et al., 1999). Исследования структуры белка pIV методом криоэлеюронной микроскопии показали, что внешний и внутренний домен белка формируют диаметр поры соответственно 6.0 и 8.8 нм. При этом центральные части белковых субъединиц образуют канал заметно меньшего размера (ворота поры). Для прохождения фаговой частицы необходима структурная перестройка белка, в результате которой происходит открывание мембранной поры (Opalka et al., 2003). С другой стороны, проведенные в лаборатории Ли Маковского (США) исследования структуры фатов с пентапептидными встройками (в частности фага М13ВОМ2, несущего встройку GQASG, полученного в нашей работе) показали, что экспонируемые пептиды формируют удлиненную структуру на амино-конце белка pVHI, которая располагается в свободном углублении на поверхности фага между двумя a-спиралями соседних субъединиц этого белка (Kishchenko et а., 1994). Это углубление достаточно протяженное для размещения пептида длиной до 8 а.о. Если расположение встройки в данном углублении является необходимым условием сборки фаговой частицы, то такая модель согласуется с нашими экспериментальными данными. Мы наблюдали, что 40% встроек длиной 8 а.о. совместимы с фаговой сборкой, в то время как только 20% встроек длиной 10 а.о. обладали этим же свойством. Таким образом, в результате проделанной работы экспериментально были установлены некоторые ограничения по модификации поверхности нитчатого фата, экспонированной в растворитель. Основываясь на этих результатах, нами была сконструирована пептидная библиотека, в которой каждая копия основного белка оболочки несла запланированную встройку, формируя полностью модифицированную цилиндрическую поверхность фага. В такой библиотеке достигается высокая плотность экспонированных пептидов одинаковая для любой последовательности в отличие от фагмидных библиотек, в которых концентрация рекомбинантного белка в вирионе варьируется от нескольких копий на фаговую частицу до 50% от общего количества белка. Такая библиотека, являясь неполной в связи с ограничениями, описанными выше, дает новые технические возможности для селекции низкоаффинных лигандов. Для изучения потенциальных возможностей новой библиотеки нами была проведена селекция
специфических лигандов для различных рецепторных молекул. Как правило, одного-двух раундов селекции с последующим иммуноскринингом было достаточно, чтобы отобрать специфические фаги, связывающиеся с МКА, использованными для селекции, Рис. 4. Кроме того, было показано, что библиотека с высокой плотностью экспонированных пептидов хорошо работает при селекции фага на "маленьких" органических молекулах, таких как цибакрон синий.
МКА АКГИ- МКА АНТИ- МКА АНТИ- ЦИБАКРОН
ИНТЕРЛЕЙКИН ысг (Х-1)11) НОЕ1 (4С8) синий
10 ЧОАЗНСВ. ИТЬСРТР ОСЕКАЕ
ЮТЗТА1Р КТЬЗГГР згсгтяю
гшрнър УЯЩИИ! МТР0Р1Р КЙУОРЮ
СШЫРГР [«ВЮТОЬ РТЬрРУР РНАХЕРЕ
ЕШЖТР КОЗЫЮР РТЯ2Р1Р ЕПГУЗЭЕ
ЫШТА1Р шкиргаэтт ЕТЬОУУР ЛРгАРПА
ЫШЗУЪР ЪРАРНВТ^ ргьеАУР таяотое
ВКЛЭРГР РТЯПШЬ РЗЬ<2Р1Р такгюу
гювАгр ЬСРТНПУ РНРОАУР ЯХЯРРОТ
8ЮИТ1,Р ЬРАРИЛЛ гтьрртр таотмгхз
8ШСА1Р гахдрур ХКПСЗТЕ
гюгегр
тгшду
Рис. 4. Последовательности пептидных встроек в фаговых клонах, селектированных при помощи МКА против интерлейкина 1Р1ез-171 и МОЯ Жирным шрифтом выделены консенсусные последовательности. Подчеркнут дипептид, состоящий из гидрофобного а.о. и пролина. В крайнем правом столбце перечислены пептидные встройки в фагах, селектированных при помощи цибакрона синего. Жирным шрифтом выделены положительно заряженные а.о., подчеркнуты отрицательно заряженные, серым цветом выделены ароматические остатки.
При изучении консенсусных последовательностей пептидов, определяющих связывание с МКА, было замечено, что консенсусы для двух разных антител содержат дипептид, состоящий из гидрофобного а.о. и пролина на карбоксильном конце встроенного пептида. Отметим, что консенсусная последовательность для антитела анти-интерлейкин iPl63.ni. ранее определенная в другой работе, не включала такой дипептид. В связи с этими наблюдениями мы предположили, что такой дипептид, присутствующий во встройке, дает фагам некоторые ростовые преимущества. Последующие эксперименты по амплификации библиотеки без селективного давления выявили выраженную консенсусную последовательность для встроенного пептида, богатую пролинами, которая отсутствовала в исходной библиотеке, Рис. 5. Возвращаясь к структуре фаговой частицы, можно предположить, что октапептид, соответствующий селектированной консенсусной последовательности, по-видимому, идеально упаковывается в углубление между двумя а-спиралями соседних субъсдиниц белка рУШ на поверхности фага. Такой пептид, вероятно,
формирует полииролиновую спираль второго типа, образуя предпочтительные контакты между боковыми цепями и фаговой поверхностью. В результате компактная структура дает преимущество в процессе секреции и, соответственно, фаговой продукции и скорости роста. Если последовательность, богатая пролннами, совместима со связыванием рецепторной молекулы, используемой для селекции, то изолированные фаги несут мотив, богатый пролинами, в котором также находятся а.о., обеспечивающие связывание с лигандом. Однако эффективность селекции специфических фагов в результате биопаннинга превосходит эффективность размножения фагов с полипролиновыми встройками, обладающих заметными преимуществами роста на стадии амплификации фаговых пулов. В результате, в случаях, когда соответствующий лиганд не может быть найден в суб-библиотеке пептидов богатых пролинами, происходит селекция других пептидов, не содержащих пролиновые остатки, как, например, при селекции с использованием МКА Х-Р11 и цибакрона синего, Рис. 4.
Проводя селекцию с использованием подобной библиотеки, описанной в работе Петренко (Ре^епко й а1., 1996), после повторных раундов селекции по отбору фагов устойчивых к хлороформу, были отобраны клоны, экспонирующие встройки, содержащие на С-конце консенсус А1аРЬеРго, как и в нашем эксперименте по эволюции библиотеки. Поскольку одинаковые последовательности были изолированы в независимых экспериментах, это означает, что фаги с такими встроенными пептидами обладают капсидом, который является наилучшим компромиссом между высоко продуктивным жизненным циклом и устойчивостью к хлороформу.
В нашей работе мы не использовали возможность комбинирования фаговой пептидной библиотеки с фагмидной. В таком случае фаговые частицы могли бы нести два независимых пептидных репертуара, происходящих из фагмидной библиотеки, перемежающихся с рекомбинантными белками фаговой библиотеки, использованной в качестве фага-помощника. С помощью моделирования было показано, что антитела способны реагировать одновременно с двумя соседними амино-концами белка р\Ш1, поэтому использование двойной библиотеки соответствовало бы увеличению сложности пептидной библиотеки. Или же при селекции лиганда из фагмидной библиотеки, можно было бы использовать фаговую библиотеку для суперинфекции данного клона. Селекция нового белкового контекста для данного фагмидного пептида могла бы влиять на аффинность его взаимодействия с рецептором.
БЫ 1-Й РАУНД 2-ой РАУНД
АКСШИФИКАЦИИ: ЙИЯЯИФИКАЦ^И: ДМПЛШ'ИКЫЗИИ
JSSWÍTSM АЯКРАЪР NTPHALP
GHGNLK5 P5LNPAP LSCAPLP
DLASVTR SPKHS FP TPGMALP
STYALYT KGGSPLP ÍJA.MPGFP
LFAGSTT KS1EPIP GGÍAÍSFP
TVPWAL3 PMSTSLP ЗТРРАЗР
VRYNtTHQ NGLNALP NPSTPFP
ARCRJ [LP GGTTALP MG1.IAIP
QRGAPHS «SFATP EWF3MP
SAPSGFK GHGNSIF MPSTGF-P
" —i" ~ X.SNSAI Р HPHGPFP
VRSAYMP HNTHSF?
NTWGSA!1 CATAALF
GHHASLP GKTSGPP
H5GSTIP gtiaégm
PVRS ГКТ TGRRALP
STQPALP blMSGS FP
LSSHIML
RFTA5LP
EA3KILP
HLQHGMR
КОНСКНСУСКАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ
1 Z 3 А « i 1
РАУНД
О х X X X К Н(0Л! К
1 N(S,<1) XXX .1) I (S. Л Р (13. Л )
К1 -ОНИ .0) S(3.Í)М(4,0)
2 н (S. б) 3.4 Jй{:3 А(3.4.S) Р{13,, 3) Р (3U , 6}
Р(3.4)1(3.4Í
Рис. 5. Представлены псиггдние последовательное™ tscrpoeK д N р\'Ш случайных фаговые клонов, ото5раннЬ1\ сразу послу трансформации библиотеки и hocjil- однолэ н двух раундов амплификации без селективного давления. Ваизу выведена консеЕгсусная последовательность для трех [рупп пептидов. И скобках дано отнонкние на&.ТЕо-дае.мий встречаемости данного а.и. в рассматриваемоч к. ожидаемой часто!*-" при случайном уд-Д" tetULU Спучан, когда :го
отношение выше трех.::;.K'ii.i: 1 : i на рисунке.
Ьторап часть работы. Глаяа 3.2. "Новая концепция для разработки теста на наличие I! сыворотке крови антител против вируса гепатита С:>. посвящена разработке но do го диагност кума вируса гепатита С. основанного на фаговых пептидах, селектированных с ПОМОЩЬЮ скрининга пептидных библиотек сыворотками крови пациентов, носителей вируса кдашта, С (HCV){Alter, 1995).
При контакте ортанизма позвоночных с чужеродными антигенами, рецепторы, находящиеся на зрелых R клетках, связывают антигенные детерминанты, тем самым,
активируя размножение выборочного репертуара В клеток и продукцию соответствующих антител, циркулирующих в крови. В результате этого процесса отпечаток антигена, представленный иммунным ответом, складывается из композиции эпитопов, узнаваемых хозяйскими антителами. Если антитела, связывающие эпитопы вируса представляют негативное изображение этого вируса, то молекулы, связывающие эти антитела, отображают сам вирус. В рамках данной концепции получается, что исходный антиген может быть достаточно точно воспроизведен лигавдами, связывающими специфические антитела. Определение таких лигандов дает возможность выявления иммунного ответа на антиген, не зависимо от того, известен или нет этот натуральный антиген и имеется ли он в наличии. Данная концепция была применена для разработки диагностического теста для детекции антител, ассоциированных с наличием инфекции вируса HCV у людей. Сыворотки пациентов, инфицированных вирусом HCV, были использованы для скрининга пептидных библиотек на нитчатом фате и идентификации лигандов, способных связывать антитела, специфические для данного вируса. Биопаннинг фаговых библиотек при помощи сывороток приводит к селекции больших фаговых пулов, содержащих фаги, способные связывать тысячи различных антител сыворотки. Поэтому мы применяли стратегию селекции и перекрестной селекции, направленную на идентификацию пептидов, специфически связывающих сыворотки крови пациентов, инфицированных вирусом HCV. Полученный набор лигандов затем уточняли путем тестирования большого числа положительных и отрицательных сывороток для определения лучшего набора пептидов, экспонированных на фаге и связывающих антитела к вирусу HCV. Соответствие между последовательностью отобранных пептидов и аминокислотной последовательностью вируса показано на Рис. 6.
Пептиды, экспонированные на фаге, представляются идеальным реагентом для развития серологической диагностики. Использование непосредственно фаговых частиц имеет ряд преимуществ. Во-первых, каждый такой фаг экспонирует множественные копии пептидов, тем самым существенно повышая чувствительность детекции антител. Во-вторых, продукция фага в относительно небольших количествах для таких иммунологических методов как ELISA, это легкая и дешевая процедура. В-третьих, замещение вирусных рекомбинантных антигенов на короткие пептиды, специфически связывающие антитела к HCV, исключает из реакции неспецифические взаимодействия с неиммуногенными частями вирусного белка или белка-носителя. Несмотря на эти преимущества, большой размер фаговых частиц ограничивает концентрацию пептидных молекул, которые могут быть использованы в тесте, и, кроме того, фаг-носитель может давать фоновый сигнал из-за присутствия в крови пациентов антител, связывающих фаговые белки. Наконец, наработка
больших количеств фага, как и любого другого биологического реагента, сопровождается проблемами возможного микробиологического загрязнения, воспроизводимости, контроля качества, очистки и, соответственно, повышает цену производства.
IT BilenMOIVSi а Г TlLtll>r«»TH*K»I9]lrvtKte
IS I F 4!0 ШЯ ti i:si
k ' ~ ¿^л^Г^Гё и в r t T л в ГТУг L У P t, iVa Kj
infiiiTLigirDIMIicttlLpfyig а ик l » * & rliKgflrtrnirftiitii
1693 11 I i?:7 i
< Г УГу'1 f j: у j. л *"tt С E f A iT] j mSii
Рис. 6. Последовательность а.о. изолированных тетаидов и соответствующая последовательность вируса HCV. А.о., гомологичные вирусной последовательности, выделены серым фоном.
Синтетические пептиды, воспроизводящие последовательности, экспонированные на фаге, не теряют ни чувствительности, ни специфичности при детекции антител сыворотки. Основываясь на идее, что дисплей множественных копий пептидов может быть необходимым элементом для связывания антител и для повышения авидности взаимодействия, мы использовали MAP (multiple antigenic peptide). В этом случае восемь одинаковых пептидных цепей имеют общий С-конец ([AEGEF-neirrra-DPAKJa-IQ-Ki-IC-G). При этом сохраняется уровень специфичности, сравнимый с фаговыми пептидами.. Таким образом, удаляя фаг из реакции, мы убрали фоновую реактивность аити-фаговых антител и получили более высокую концентрацию лиганда, иммобилизованного на твердом носителе. Наконец, крупномасштабный синтез пептидов - это хорошо контролируемый процесс.
Процедура анализа ELISA, основанная на использовании синтетических пептидов, была модифицирована для получения хорошо воспроизводимого теста, сравнимого по чувствительности и затратам времени на анаши с коммерческими диагностическими тест-системами. Согласно разработанному протоколу, анализ ELISA, основанный на синтетических пептидах, обладал 100% чувствительностью и 100% специфичностью на используемых панелях сывороток, Рис. 7. Хотя в данном исследовании мы не наблюдали
ложно-положительных сигналов, не исключено, что при белее масштабном тестировании такая проблема может возникнуть. На исключена также, что некоторые пациенты теоретически могут дапагь ложноотрнцателькый результат и не будут определены как носители НСУ из-за того, что их гуморальный ответ на инфешига НСТ выбывает наработку антител не против иммунодоминанткых эпитетов, а только против других антигенных Детерминант вируса. Однако в этом «гучае, в противоположность тестам, основанным на рекоыйпналтных. белках, набор пептидов может быть легко изменен включением новых пептидов в смесь, используемую .для анализа.
о ¥ lû
К)
СГрН^ЙТЫЩные л ,~> CbEDpCTKhi
Я
n--s?
ctffli^»crTJCH ï1 кц
Рис. 7. Реактивность смеси m 22 пептидов в форме MAP, протестированных с использование^ коллекции сывороток института МопекулярШЙ Еаолопи (iftSM, Poniezia) (А) л сцверокж. полученных на Итальянского Красного Креста (CRI) (В). Фоновый сигнал дм палит А был равен СО = 0.231 л рассчитывался но формуле СО = N f 5а, где N и а - это среднее Значение д стандартное отклонение для сига ала. Полученного Д11Я отрицательных сывороток. На графике В. фоновый сигнал СО - 0.252. рассчитывался таким тке образом. Результаты представлена как отношение ыеткду измеренным и фоновым сигналом (5/СО) На графиках указано число протеста роиаппых сывороток N.
Важно отметил,, что антитела, узнающие пгпервариабепьный район обопочечного белка Е2 (E2-1$VR1X являются важным элементом иммунного ответа нй квфекцню HCV (Pimtoriero etui,, 1998; Lesmewski el al., 1995; Fourmilier-Jacob et al., 1996; Ilattcri et al., 1998), который итерируется Ъолъшннрто&м коммерческих диагностикумов. Это происходит из-за высокой вариабельности района E2-HVR1 и технически трудностей при наработке вирусного обопочечного бешйа. Напротив, наша смесь скнтгпгаеских пептидов включает посяедователъпосш, способные эффективно связывать антитела пропив многих варианте®
района E2-HVR1 (Puntoriero et al., 1998), давая важный вклад в определение иммунного ответа пациентов.
Набор пептидов HCV включает, в том числе, и те пептиды, которые необходимы для детекции антител против вирусного белка NS3. NS3 вместе с белком кора (core protein) известны, как наиболее важные для диагностики вируса HCV антигены. В нашей работе впервые описан пептид, имитирующий иммунодоминантный антиген белка NS3. Пептидное сканирование белка NS3 выявило короткие аминокислотные последовательности, которые реагировали только с редкими положительными сыворотками (Khudyakov et al., 1995). В то же время, скрининг фаговых библиотек кДНК привел к идентификации II домена NS3, как белкового фрагмента, сохраняющего антигенные свойства всего белка (Santini et al., 1998; Pereboeva et al., 2000). Мы продемонстрировали, что антитела, связывающие мимотопы белка NS3, взаимодействуют с 1-м доменом этого белка (а.о. 1182-1354; Yao et al., 1997), выполняющим функцию геликазы. Рис. 6 показывает сходство последовательностей найденных мимотопов и 1-го домена белка NS3. Любопытно, что синтетический пептид, соответствующий натуральной последовательности NS3 и включающий данный эпитоп, не проявлял специфической активности с положительными сыворотками, в то время как пептиды, идентифицированные в данной работе, связывали до 64% положительных сывороток.
Необходимо отметить, что используемые в настоящее время коммерческие диагностические системы, направленные на подтверждение наличия антител в сыворотках против HCV, основаны на 4 или 5 рекомбинантных белках HCV, иммобилизованных в виде отдельных полос на стрипах нитроцеллюлозной мембраны (Alter, 1992; Van der Poel et al., 1991). Для положительного диагноза требуется узнавание сывороткой пациента, по крайней мере, двух рекомбинантных антигенов. Поэтому невозможно дать заключительный диагноз для существенной части тестируемых сывороток, узнающих единственный антиген. Набор синтетических пептидов, предложенных нами, включает мимотопы нескольких иммунодоминангных эпитопов каждого антигенно-значимого вирусного белка и, тем самым, обеспечивает высокоразрешающий анализ, который существенно уменьшает частоту неопределенного диагноза. При этом тест может быть легко выполнен согласно установленной процедуре на стрипах с иммобилизованными синтетическими пептидами, Рис. 8.
Третья часть настоящей работы, Глава 3.3. "Идентификация опухолевых антигенов путем скрининга библиотек кДНК, экспонированных на поверхности фага лямбда, с
помощью сывороток пациентов", похищена разработке Новей техники Яш дисплея и скрининга библиотек кДШС с цепью поиска новых опухолевых антигенов.
■НДШ4П il li.ir -: ^ : - ч
. I [I и H ^
I ? Л
I1.1IJJC СЫ&Чр«П1чИ
г £ J
% ;
1>ис. 8. Стрнп-пммулеолот из синтетических пептидах з форме MAP. На кайлопоной мембране иммейшшзоввва следующие пептиды. разделенные на 1С групп, согласно Щ специфичности: (A): nil909.2 и m 1913.2; (it): in 19(11.31. 1113323.3 н m3362.3; (C): П11977Л; (D): raJJSl Д (Ej; 3566.3; (F): mS5H, mK7S и mH.1; (G): mAlZ.l. mA12.2 я m A12.13; (H): mBU,17; (I); m.G21.2; (J): Ш1929А3.1. m]939C3.4. и ml 929.31 Доюмвшгазвяа! лпниа содержит очнигешгыс человеческие иинундглобулшш в качестве внутреннего нс&ожителъного контроля.
й £ а 2 а s ,."1 5
щ тг.
_
- - - - — - -
Лунная методология является вариантом широко используемой техники SERI;X (СЭед 2000), которая эа последтт нескодъхо лет существенно расширила современные знания об опухолевых антигенах, вызывающих. естественный иммунный ответ у пациентов с онкологическими заболеваниями. 8 отличие от метода SERKX, при котором производится прямой скрининг экспрессионных библиотек к ДНК, полученных из человеческих опухолей, fianr подход основан на конструировании библиотек т ¡сплел и, соответственно, их аффинной селекции при помощи ctiifeoporoK пациентов и последующей идентификации ТАА (tumor-associated antigens).
Первое существенное преимущество навито метода заключается ь том, что для селекции библиотеки и С1фининга обогащенного фагового пула требуется незначительное количество человеческой сыворотки, которая является лимитирующим фактором скрининга библиотек кД[[К. Второе преимущество это возможность скрининга библиотек в 10-100 раз превосходящих по своим размерам библиотеки, обычно используемые в экспериментах
SEREX. Технология рекомбинантной ДНК дает возможность конструировать такие библиотеки, однако прямой скрининг больших библиотек достаточно трудоемкий процесс. Использование библиотек большего размера, увеличивает вероятность идентификации антигенов, имеющих пониженный уровень экспрессии. Несколько таких антигенов описаны в литературе (Scanlan, Gout et al., 2001). Третье преимущество заключается в возможности селекции антигенов с перекрестной реактивностью, узнаваемых многими сыворотками, путем селекции с использованием сывороток разных пациентов или их смесей.
cDNA
рКМ4(4,7Ы>)
Amp* CoIEl lad« Pire
SPD
Spei Notl
ЛКМ4 (47.9kb)
I
amb (DamlS)
imm21 nini
Xbal Xbal (24508)
Сайт клонирования (белок gpD)
Met Gly Hit Ser... Dprotein
TAA ACC ATO GGT ACT AGT TTT AAA TGCOGCCGCACG AQ Ncol Spei Noli
Рис. 9. Генетическая карта фага ÂKM1 со встройкой кДНК.
В данной работе развита новая концепция вектора для дисплея белков, кодируемых кДНК и экспрессируемых в виде сшивки с амино-концом белка gpD (ХКМ4), Рис. 9. Средний размер клонируемых фрагментов ДНК в библиотеке, сконструированной на основе вектора ХКМ4, составляет 200-300 п.о., что представляется достаточным дая клонирования отдельных белковых доменов. Так как 3 да 64-х кодонов генетического кода вызывают остановку трансляции, то большая часть фрагментов указанной длины с большой вероятностью содержит хотя бы один стоп-кодон в случае неправильной рамки считывания и, следовательно, не экспрессируется и не участвует в селекции. В таких случаях фаговый капсид содержит только gpD дикого типа, который кодируется геномной копией гена gpD. Обычно библиотеки экспрессии кДНК конструируются в виде карбоксильной концевой сшивки с белком носителем. Если проводить селекцию такой библиотеки при помощи сывороток, то присутствие сложной смеси рецепторкых молекул дает коротким
последовательностям (результат ошибочной рамки считывания) более высокую вероятность быть отобранными. Это происходит потому, что короткие пептиды более эффективно экспонируются на фаговом капсиде и такие фаги испытывают меньшее селективное давление, чем фаги, экспонирующие крупные полипептиды. Система >1-концевого дисплея существенно уменьшает встречаемость ненатуральных пептидов по сравнению с С-концевым дисплеем на фаге лямбда (валИт е1 а1., 1998). Тем не менее, небольшая фракция коротких пептидов или редкие длинные последовательности с ошибочной рамкой считывания, но не содержащие стоп кодонов, все еще присутствуют в библиотеке и действуют как источник случайных пептидных последовательностей, не встречающихся в природных белках.
Работа по получению векторов >.КМ8 и А.КМ10 была направлена па облегчение сборки рекомбинантных фагов, экспонирующих полипептидные последовательности, за счет введения гибких пептидных линкерных последовательностей между чужеродным востренным белком и §рО. Кроме того, новая методика прайминга синтеза кДНК непосредственно на матрице РНК, а не на последующей двухцепочечной кДНК, обеспечивала направленную встройку фрагментов ДНК в библиотеке, тем самым, способствуя дальнейшему увеличению присутствия натуральных белковых последовательностей в библиотеке. Кроме того, некоторые клоны, изолированные из первых библиотек, были результатом сшивки двух и более генов, образованных в процессе повторного прайминга на матрице двухцепочечной кДНК, согласно методу описанному ранее (Бап^ш е1 а1., 1998). Наш подход значительно уменьшает концентрацию таких клонов в библиотеке.
Получив две аналогичные библиотеки Т5 и Тб, экспонирующие белки клеток \1CF7 и МОА-МВ-468 в виде М-концевой или С-концевой сшивки, мы подтвердили преимущества М-концевой сшивки для библиотеки белковых доменов. Так при паннинге Библиотеки Т6 (С-концевая сшивка) нами было выделено большое количество ложно-положительных клонов с перекрестной реактивностью, содержащих стоп кодоны поблизости от сайта сшивки и кодирующих короткие пептиды с ненатуральной рамкой считывания. При этом было найдено только 4 клона с опухолеспецифической реактивностью, 3 из них соответствовали натуральным белкам. Однако С-концевая сшивка обеспечивала более эффективный дисплей и селекцию С-концевых белковых доменов. Действительно, С-концевой домен фукозилтрансферазы (клон Т6-7) был изолирован из библиотеки Т6.
В настоящем исследовании мы идентифицировали несколько опухоль-ассоциированных антигенов, проявляющих предпочтительную реактивность с сыворотками
пациентов, имеющих опухоль молочной железы, Табл. 1. Некоторые их этих антигенов ранее были выявлены методом SEREX, а некоторые впервые были идентифицированы в нашей работе. Анализ последовательностей выявил группу антигенов, имеющих ядерную локализацию в клетке: топоизомераза-П-бета (ТОРИ), топоизомераза I-связывающий белок (topors) и гипотетический белок ZNF258, кодирующий повторы, содержащие Zn-связывающий мотив (Smedley et al., 1999). Если ZNF258 вместе со структурной гомологией разделяет с белками цинк-фингер их биологические свойства, т. е. взаимодействует с ДНК, то этот белок тоже должен иметь ядерную локализацию. Кроме того, мы изолировали несколько известных цитоплазматических белков. Белки АКАР450 и Sosl, соответствующие клонам Т5-8 и T3-13, это внутриклеточные компоненты пути передачи сигнала. Sosl - это хорошо изученный обменный фактор нуклеотида гуанина для онкогена Ras (Chardin et al., 1993). У трансгенных мышей, экспрессирующих доминантную форму Sosl в базальных кератиноцитах, развиваются кожные папилломы со 100% прорастанием в более глубокие ткани (Sibilia et al., 2000). Кроме того, мутации Sosl, связанные с потерей 4-х функционально значимых районов, богатых пролинами (связывающие SH3), приводят к развитию фиброматоза десен (Hart et al., 2002). Белок АКАР450 — член семейства якорных белков, типа киназы А. Он локализуется на центросоме (Witczak et al., 1999) и действует как сайт инициации образования микротрубок (Takahashi et al., 2002), а также как поддерживающая основа для белков, участвующих в митозе (Sillibourne et al., 2002).
Присутствие в нашем списке антигенов, имеющих внутриклеточную локализацию, согласуется с исследованиями других авторов (Somers et al., 2002; Sahin, Tureci et al., 1997). Развитие иммунного ответа на внутриклеточные антигены вероятно связано с процессами апоптоза и некроза опухолевых тканей, ассоциированных с ростом опухоли, в результате которых ядерные и цитоплазматические белки, а также фрагменты белков, экспонирующие криптические эпитопы, попадают в кровоток.
Среди найденных антигенов, 4 клона (Т5-9, Т9-21, Т9-27, Т11-7) имеют от 55 до 91% последовательности, совпадающей с белком, гомологом обратной транскриптазы. Вирусные антигены, соответствующие человеческим эндогетплм ретровирусам, были ранее выявлены при помощи SEREX из библиотек кДНК опухоли почки и меланомы (Chen, 2000). Интересно отметить, что эти 4 антигена, найденные при помощи скрининга сыворотками пациентов, несущих опухоли молочной железы, были выделены из библиотек, полученных из разных источников, включая клеточную линию (Т5), образец карциномы (Т9) и тестикулы (Т11).
Таблица 1.
Фаговые клоны, идентифицированные при селекции библиотек кДНК с помощью сывороток пациентов с раком молочной железы.
Клоны Длина (а. о.) Соответствующий ген (accession number) Классификация Частота реактивности фагового клона
Пол сыв Огр. сыв. Р
1 Т1-17 41 ДНК-топоизомераза П р АГ зл. мезотелномы [Robinson et al, 2000] 1/10 -
2 Т1-52 44 Топогаомераза 1-связывающнй белок Не известен как опухолевый АГ 7/41 0/20 0.0495
3 Т5-2 35 ДНК человеческого генома (AL589935) - 1/15 0/15 0.31
4 Т5-8 83 Белок АКАР (NP_671700) Не известен как опухолевый АГ 1/30 0/32 0.313
5 Т5-9 26 Гомолог обратной транскрнптазы (Р08547) Опухолевый АГ [Chen, 2001] 4/35 1/38 0.138
6 Т5-13 132 Sosl (NP_005624) Не известен как опухолевый АГ 2/60 0/52 0.184
7 Т5-15 100 KIAA1735 Не известен как опухолевый АГ 7/60 1/43 0.081
8 Т5-18 56 Онкоген myc (альтер, рамка ечнт.) (NM_002467) Не известен как опухолевый АГ 2/12 0/12 0.14
9 Т5-19 24 EST (AI903226) Не известен как опухолевый АГ 8/37 4/38 0.19
10 Т5-20 130 VRKl(vaccinia-related kinase 1) (NP_003375) Не известен как опухолевый АГ 3/40 0/24 0.169
11 Т6-1 64 Протеин ншаза С-связывающий белок (Q9ULU4) АГ лимфомы [Eichmuller et al., 2001] 6/36 0/12 0.131
12 Т6-2 15 Не найден - 16/36 4/24 0.026
13 Т6-6 40 Иденпнен белку MGC9515 (ХР_351049) Не известен как опухолевый АГ 1/11 0/11 0.306
14 Т6-7 29 Альфа 1,6 фукозилтрансфераза (NP_835370) Не нзвестен как опухолевый АГ 7/28 1/24 0.025
15 Т7-1 75 KIAA1288/NEP (AAQ24172) Не нзвестен как опухолевый АГ 18/40 4/24 0.021
16 Т9-21 73 Гомолог обратной транскртптгазы (Р08547) Опухолевый АГ [Chen, 2001] 6/16 0/14 0.011
17 Т9-27 82 Гомолог обратной транскриптазы (Р08547) Опухолевый AT [Chen, 2001] 6/31 0/32 0.009
18 ТИ-З 71 Trap ankyrin repeat/ NY-BR-16 (NP_115593) Опухолевый АГ [Scanlan et al., 2001] 2/25 0/12 0.314
19 Т11-5 71 MGC4170 (NP_077288) Не известен как опухолевый АГ 1/18 0/20 0.285
20 Т11-6 96 Zinc finger 258 (NP_009098) Не известен как опухолевый АГ 1/20 0/20 0.311
21 Т11-7 22 Гомолог обратной транскрнптазы (P08547) Опухолевый АГ [Chen, 2001] 1/20 0/20 0.302
22 Т11-9 82 Гипотетический человеческий белок (AF225417) Не швестен как опухолевый АГ 1/11 0/9 0.353
23 Т11-13 81 Белок температурного шока apg-2 (Р34932) Опухолевый АГ [Nakatsura et al., 2001; 1/15 0/14 0.326
Scanlan el al., 1998]
Название каждого клона включает название библиотеки (Т1, Т2 и т. д.) и порядковый номер клона.
При этом остается необъяснимым факт транскрипции гена обратной транскриптазы в ткани нормальных тестикул.
Восемь белков в Таблице 1 - это гипотетические белки с неизвестными функциями (Т5-2, Т5-15. Т5-19, Т6-2, Т6-6, Т7-1. Т11-5. Т11-9). Экспрессия 4-х подчеркнутых генных продуктов была изучена в опухолях и нормальной ткани молочной железы. Уровень экспрессии анализировали при помощи ПЦР с матрицы кДНК, полученной методом SMART в 10 образцах опухоли, лимфатическом узле с метастазами и нормальных тканях молочной железы, тестикул и лимфоцитах периферической крови здоровых доноров. Два гена из этих 4-х (Т11-9 и Т7-1) и Т11-3, ранее идентифицированный в экспериментах SEREX, экспрессировались на повышенном уровне в большинстве исследуемых опухолей, по сравнению с нормальной молочной железой. Особый интерес представляет собой клон Т7-1, кодирующий последовательность, имеющую 100% совпадение с последовательностью KIAA1288 из банка данных. Повышенная экспрессия этого белка в опухолях вместе с хорошим иммунным ответом у пациентов, выдвигает его как перспективный антиген, потенциально полезный для диагноза рака.
Напротив, несколько найденных антигенов, таких как Т5-13, Т5-15 и Т11-5, как оказалось, экспрессируются на пониженном уровне в 50-90% опухолей. Каким образом иммунная система может отвечать наработкой специфических антител на подобные антигены не вполне понятно. Однако серия подобных антигенов описана в литературе. Например, такие белки как LU12 (Gure et al., 1998), REN-9 и REN-10 (Scanlan, Gordan et al., 1999), BR-41 (Scanlan, Gout et al., 2001) представляют группу опухоль-ассоциированных антигенов, которые делегированы или экспрессируются на низком уровне. Гены LU12, REN-9 и REN-10 картируются внутри генного локуса, ответственного за супрессию опухоли на участке хромосомы 3р21.3, районе, который часто делегирован при мелкоклеточном раке легких, на долю которого приходится 20% от числа всех опухолей легких, и раке почки. Антиген BR-41 или SNT-1, адапторный белок, ассоциированный с мембраной и взаимодействующий с Sosl (Scanlan, Gout et al., 2001), имеет пониженный уровень экспрессии в опухолях молочной железы. В данной работе мы показали, что и Sosl (Т5-13) также имеет пониженный уровень экспрессии в половине образцов таких опухолей. Однако в нашем случае антигены Т5-13, Т5-15 и Т11-5 не узнаются сыворотками пациентов В81-В96, опухоли которых подвергались исследованию по экспрессии мРНК. Кроме того, мы не имели в своем распоряжении биопсии пациентов, имеющих заметный уровень антител против этих антигенов. Поэтому трудно с определенностью сказать, какой уровень
экспрессии антигенов Т5-13, Т5-15 и Т11-5, нормальный или пониженный, был у пациентов, имеющих заметный иммунный ответ на соответствующие антигены.
Поиск гомологии последовательностей Т11-5 и Т5-15 в банке данных выявил соответствие между этими клонами и гипотетическими белками MGC4170 и KIAA1735. Мы вывели последовательность а.о. для соответствующих открытых рамок считывания этих генов и предсказали структуру целых белков, используя программу SMART (bltp://siriart. ernbl-heidelberg.de/) (Schultz et al., 1998; Letunic et al., 2002). Так, последовательность MGC4170 кодирует белок, содержащий два домена NL, a KIAA1735 кодирует белок длиной 389 а.о., несущий домен DIX на своем карбоксильном конце. Наличие таких структурных фрагментов в обоих гипотетических белках, которые, как мы выяснили, синтезируются на пониженном уровне, говорит о том, что оба белка могут быть вовлечены в механизм передачи клеточного сигнала.
Следует отметить, что ни один из перспективных антигенов, изолированных из библиотеки, экспонирующей белки, кодируемые тестикул, а также других библиотек, не был классифицирован нами как специфический тестикулярный раковый СТ-антиген (testis/'cancer antigen). Например, антигены Т11-9 и Т7-1 слабо экспрессируются в тестикулах, а Т11- 3 синтезируется не только в тестикулах, но и в лимфоцитах.
Панель полученных антигенов была проанализирована при помощи обширной коллекции сывороток крови пациентов с опухолью молочной железы. Расширенный серологический анализ показал, что присутствие в сыворотке антител против 4-х антитегов (D4-11, D4-19, D7-1 и Т9-27) имеет значимую ассоциацию с раком молочной железы, согласно критерию Фишера (Fisher's exact test). Антитела против двух антигенов, D4-19 и D7-1, наблюдались с наибольшей частотой - 18.28% (34 из 186) и 17.74% (33 из 186), соответственно. Часто встречающийся иммунный ответ на эти антигены позволил провести анализ его развития в зависимости от стадии рака. Мы не наблюдали значимой ассоциации между присутствием ain-ител против D4-19 и развитием рака от I до IV стадии или при сравнении начальных стадий I-III с продвинутой IV стадией. Анализ проводили, используя тест Мантеля-Хенцеля. Результат становился значимым только при включении в анализ контрольной группы (Р=0.002). Это говорит о том, что присутствие в крови пациентов циркулирующих антител против D4-19 ассоциировано с раком молочной железы, но не коррелирует со стадией болезни.
Что касается антител против D7-1, то встречаемость спонтанного иммунного ответа на этот антиген растет с развитием болезни, от I до IV стадии, и составляет 13.2%, 13.5%, 18.2% и 27% соответственно. Значимость корреляции встречаемости антител в зависимости
от стадии заболевания подтверждали методом Мантеля-Хенцеля, выполненным для 4-х стадий отдельно (/>=0.049) и при сравнении начальных стадий I-III с терминальной IV (Р=0.042). Включение в анализ контрольной группы дает уровень значимости Р=0.0001. Это говорит о том, что присутствие антител против D7-1 ассоциировано с раком и коррелирует со стадией заболевания.
Антиген D7-1, длиной 75 а.о. относится к гену MTUS1, известному также под названиями ATIP, MTSG1, KIAA1288, NEP. Этот ген при альтернативном сплайсинге дает начало 14 разным транскриптам, теоретически кодирующим 14 белковых изоформ, согласно AceView NCBI fl)ttp://w\vw.ncbi.nih.gov/IEB/Researcli/Acemb^ndex.htmf>. Три наиболее протяженных гипотетических белка, размером 1270, 1216 и 770 а.о., содержат фрагмент D7-
I. Все три белка, с вероятностью 65-69%, локализуются в ядре, согласно PSORT II анализу (httn: "psort.hgc.jp) (Nakai & Horton, 1999). Поэтому D7-1, скорее всего, не поверхностный, а внутриклеточный белок, подобно большинству антигенов, идентифицированных как нами, так и другими группами при помощи метода SEREX. Роль повышенной экспрессии D7-1 в тканях опухоли молочной железы к настоящему моменту не известна. В нашей работе мы показали наличие значимого гуморального ответа на этот антиген, а также на антигены D4-
II, D4-19 и Т9-27. О подобном [уморальном ответе на ряд хорошо изученных опухолевых антигенов, таких как HER/neu (Disis et al., 1997; Disis et al., 2000), другие члены рецепторной фамилии ErbB (Bei et al., 1999), MUC1 (Hamanaka et al., 2003), p53 (Shimada et al., 2003) и p76 (Tominaga et al., 2001), NY-ESO-1 (Jager et al., 2006), сообщалось в литературе. Наличие у пациентов антител против этих антигенов указывает на их возможное использование в качестве мишени для терапии и диагностики опухолевых заболеваний. Однако многие опухоли имеют различные молекулярные характеристики и не всегда отличаются повышенной экспрессией упомянутых антигенов. По этой причине накопление данных об ассоциации рака с наличием заметного уровня антител против новых опухолевых антигенов может послужить основой для разработки новых методов диагностики/прогноза или предоставить важные данные для развития новых подходов в иммунотерапии рака.
Последняя часть работы, Глава 3.4. "Новые векторы для дисплея рекомбипаптных антител на основе нитчатого фага", посвящена усовершенствованию системы дисплея рекомбинантных антител. В работе получен новый фагмидный вектор рКМ19 для дисплея антител в формате scFv, Рис. 10. Данный вектор характеризуется несколькими отличиями от канонической системы дисплея.
Во-первых, классические фагмиды содержат amber-кодон между генами scFv и gpIII (отсутствующий в рКМ19), что вызывает синтез свободных scFv и рекомбинантных scFv-pIII
в супрессорных штаммах бактерий, таких как TG1 или DHaF', или XLl-Blue, обычно используемых для наработки фагов. Все эти штаммы несут мутацию supE, т. е. являются глутамин-встраивающими супрессорами. При этом эффективность супрессии зависит от кодона, следующего за TAG (Miller & Albertini, 1983; Edelmann, 1987). Очевидно, что не использованный в сборке фага сшитый белок scFv-pIII встраивается в бактериальную мембрану, в то время как свободный scFv подтекает из периплазмы в культуральную среду. При стандартных методах очистки фага ПЕГом, свободные антитела scFv осаждаются вместе с фаговыми частицами. В результате концентрация свободных антител в фаговой суспензии может в 5-10 раз превышать концентрацию антител, экспонированных на фаговых частицах. Далее, при аффинной селекции избыток свободных антител конкурирует с фаговыми антителами за связывание с антигеном, и, тем самым, влияет на эффективность биопаннинга, замедляя процесс селекции. Такой негативный эффект особенно сильно может проявляться в последних раундах селекции, когда концентрация специфических фагов уже относительно высока; или в процессе аффинного созревания антител, когда библиотека созревания содержит множество родственных антител той же самой специфичности; или же в системах селекции, в которых концентрация целевого антигена лимитирована, например таких, как рецепторы живых эукариотических клеток.
Во-вторых, наличие другого атЬег-кодона, расположенного в последовательности, кодирующей лидерный пептид щелочной фосфатазы в рКМ19, приводит к относительно низкому уровню экспрессии антител в бакгерии-супрессоре, несущей эту плазмиду. Известно, что при индукции lac промотора при помощи IPTG при наработке фага, экспонирующего антитела, происходит понижение выхода конечного продукта (Kreízschmar & Geiser, 1995). Обычно, конститутивный синтез белка с lac промотора в отсутствии катаболического репрессора, глюкозы, является достаточным для эффективного дисплея при использовании классических плазмид. Дальнейшее уменьшение экспрессии scFv за счет атЬег-кодона в случае рКМ19, приводит к уменьшению токсичности экспрессируемых антител, не влияя на эффективность дисплея, так как мы наблюдали одну и ту же степень дисплея для плазмвды рКМ18, не несущей атЬег-кодона, и рКМ19. Возможным объяснением наблюдаемого эффекта может быть то, что уровень экспрессии рекомбинантного белка scFv-ДрШ, уменьшенный из-за наличия атЬег-кодона, уже соответствует максимальному количеству белка, которое может переноситься бактериальной клеткой и собираться на фаговых частицах. В библиотеках, созданных на основе рКМ19, производство антител не достаточно высоко, чтобы влиять на фаговую популяцию и давать сильные ростовые преимущества фаговым клонам, несущим разнообразные мутации,
уменьшающие уровень экспрессии (сдвиг рамки считывание стоп-кодоны, делецин), что приюдило бы к уменьшению представительности вновь сконструированной библиотеки. В целом, плазмида рКМ19 облегчает селекцию "вредных" антител, влияющих на жизненные функции бактерий. При использовании этой плазмнды "вредные" антитела менее токсичны, Благодаря их более низкой экспрессии. Таким образом, мы продемонстрировали: 1) уровень экспрессии антител в случае рКМ19 является достаточным дня производства высоко реактивных фаговых антител; 2) специфические антитела могут быть легко получены уже после второго раунда селекции из библиотеки, сконструированной из периферических лимфоцитов крови пациента, имеющего в крови заметный уровень антител; узнающих белок-мишень.
ЯюЛII *Ы . ЕсоК ВатНI
1асР
\/
RBS PhoAleider FLAG £рШ(210- 4С6 а.о)
«tiiber
рКМ19 (3770 п.о. )
ColEl ori AmpR
fl ori
Вес. 10. Генепгеская парта плазмнды рКМ19. Данная плазмида прегктаиыет оэбой фагмидный Гектор на оенэге плазмнды pUC, предхшнзченкык для дисплея ангател iq пшерхяссти нитчатого фага. Уникальные сайты клонированиями к служат для Естрокхк гена антитела, при этом к клонированному антнтелу с амино-конца добавляется пкдерный пептид н дае перше амннокгслоты Бактериального пергатазттггесхого фермента £ coli, щелочной фосфатазы (PhoA), а с карбоксильного конца—пептид FLA.G к С- концевая ^опть белка рШ.
В-третьих, при использмании плазмиды рКМ19, реkoi,пикантные антитепа синтезируются в виде сшивки с делетироЕзнным белком pill. Этот белок длиной 406 а.о., имеет два функциональных домена (Crissman et al, 1924). N-гонцевой домен необходим для заражения бактерии, а С-концевой - инкорпорирован в фаговую частицу и утаствувт в морфогенезе. Дефект карбоксильного конца белга pill приводит к образованию полифага -длинной фаговой частицы, содержащей в одном белковом капенде несколько MoneKjax ДНК. Широко используемые плазмнды для mrciineHscFv основаны на встройке в фаговую частицу целого белка pill, сшитого с одноцепочечным антителом. Однако, в ппазмиде рСотЬЗ, предназначенной для дисплея фрагментов Fab, антитела синтезируются в виде сшибки с карбоксильной конвдвой частью pIII (Ba&as et al, 1991). Инфекционные фаговые частицы такого типа получают при размножении фага, так так используемый дпясупвринфекции фаг-
помощник поставляет натпвный белок рШ. Согласно представленным данным, сшивка одноцепочечных антител с С-концевой частью рШ улучшает продукцию фага и повышает эффективность дисплея, по сравнению с использованием целого белка, что согласуется с данными, полученными Крейцманом (Kretzschmar & Geiser, 1995). Повышенная эффективность дисплея, вместе с исключением свободных scFv из инкубационной смеси, облегчает аффинную селекцию и приводит к более быстрому обогащению фагового пула специфическими клонами. Это также может давать положительный вклад в уменьшение присутствия стоп кодонов в селектированных клонах за счет того, что для завершения селекции требуется меньшее число раундов селекции/амплнфикации. Поэтому быстрорастущие клоны имеют меньше шансов быть изолированными.
Наконец, в бактериях, несущих плазмиду рКМ19, после синтеза рекомбинантного белка лидерный пептид щелочной фосфатазы отщепляется при транслокации через мембрану и рекомбинантный белок scFv-ДрШ встраивается в фаговую частицу. Использование лидерной последовательности и двух первых а.о. щелочной фосфатазы, натурального периплазматического белка Е. coli, гарантирует эффективный и правильный процессинг, и сборку антител в бактериях. Предложенная векторная система для получения растворимых антител нуждается в субклонировании гена, кодирующего антнтело, в подходящей плазмвде. На этой стадии два дополнительных а.о. могут быть сохранены или удалены, согласно желанию экспериментатора.
Комбинация относительно низкой экспрессии антител из-за введения агаЬег-кодона с улучшенной эффективностью дисплея делает нашу плазмиду полезной, как для селекции рекомбинантных антител против заданных целевых белков из больших библиотек, так и для их аффинного созревания. Плазмида гарантирует эффективный дисплей и уменьшает влияние селективного давления, направленного против "трудных" антител во время селекции. Кроме того, новый вектор особенно полезен для созревания антител, так как высокий уровень экспрессии может увеличивать авидность фаговых частиц, экспонирующих антитела, приводя к селекции антител только с умеренной аффинностью.
Новый вектор применяли для конструирования библиотек рекомбинантных антител, берущих свое начало от В лимфоцитов, инфильтрированных в опухоль. По сравнению с В лимфоцитами периферической крови, клональность которых не регистрируется методами прямого секвенирования клонов (<1/20000), В клетки, происходящие из лимфатических узлов, лежащих поблизости от опухоли или инфильтрированные в опухоль, представляют намного более ограниченный репертуар антител (Corenella-Wood et al, 2003). Около 7% лимфоцитов лимфатических узлов и 18-68% лимфоцитов, инфильтрированных в опухоль,
принадлежат клональным группам, указывая на те и на другие, как на перспективный источник опухолеспецифических антител. Действительно, об идентификации таких антител из лимфатических узлов при помощи фагового дисплея сообщалось в литературе (Clark et al., 1997; Rothe et al., 2004; Xu et al., 2004). Однако мы столкнулись с трудностями при получении свежего оперативного материала, содержащего лимфатические узлы, от пациентов с раком молочной железы. Дело в том, что согласно современной медицинской практике, хирург не удаляет пациентам десятки лимфатических узлов, лежащих поблизости от опухоли, а только "сигнальный" лимфатический узел или небольшой кластер узлов ("сигнальный" и ближайшие к нему), производя, тем самым, как можно более щадящее хирургическое вмешательство. После этого тонкие срезы практически всего лимфатического узла изучаются на предмет присутствия микрометастаз и отдельных раковых клеток. В результате такой материал становится недоступен для экстракции мРНК и приготовления библиотек.
Культивирование В клеток, происходящих от лимфоцитов, инфильтрированных в опухоль и создание коротко живущих гибридом (Sicora et al., 1982; Sicora et al., 1983), эксперименты по экспансии В-клеток, происходящих из биопсий человеческих опухолей (Punt et al., 1994, Zhang et al., 1995); а также в работы по трансплантации фрагментов ткани человеческой опухоли легких иммунодефицитным мышам, продолжающей производить специфические антитела за счет присутствия инфильтрированных лимфоцитов в опухолевую ткань (Imahayashi et al., 2000; Yasuda et al., 2002) подтверждали идею о том, что такие В лимфоциты производят антитела, способные распознавать раковые клетки. Однако, несмотря на все вышеизложенные свидетельства того, что опухолевые ткани содержат инфильтрированные активированные В клетки, которые могут служить источником специфических антител против опухолевых антигенов, несколько исследовательских групп потерпели неудачу при попытке селекции опухолеспецифических антител из подобных библиотек (Coronelía et al., 2001; Roovers et al., 2001; Hansen et al., 2001). При проведении биопаннинга на очищенных опухолевых антигенах, живых опухолевых клетках или срезах замороженной опухолевой ткани были выделены антитела, узнающие актин или другие цитоплазматические белки и не способные различать опухолевые и нормальные клетки. Только в последующих работах двум группам удалось выделить из подобных библиотек специфические антитела, узнающие опухолевые клетки (Coronelía et al., 2002; Kotlan et al., 2005).
В то же самое время, альтернативный подход, свободный от ограничений, связанных с техникой фагового дисплея и основанный па прямом скрининге экспрессионной библиотеки
реяэмбкдакгнЕК актятел, происходящих fît TIL, позвонки Ву с соавторами СШ el ai , 2<Х>2) выделить обпшрную панель олухолеспецифических антител. Полученные результаты указывали на то, что возникающие трудности при селекции антител е помощью фагового дисплея из библиотек с ограниченным разнообразием алтнзеп, тпяюхся р2зуяъттш несовершенства векторов, используемых длядигашея.
3
:'I|■-. П. Анализ олпгок.юнальноетЕ1 антител, происходящих лз TIL. (А) кДНК, происходящее ira 1 1 различных карцином молонйой железы (пациенты ES-1, В 85, В 87, 889. В 90, В91, В92. ВЭЗ. В95, В9б), нормальной молочной железы, нормальных тестгасул я шмфотоггов периферической крови от 4-х здоровых доноров (Ll. L2, L3, L4). были Яслользовшы в качестве матриц для амшшфикацш V(D)J сегмента генов, ОДщруьощих тяжелую цепь антитела. Ранен гена акшгела, соответствующий гштерварнайельлому фрагменту V(Q)J, амплифицйравадн, используя в качестве матрицы кДПК, полученную из образцов оиуколп и сайз ' праймеры. как оппсано р*шсе ; : " апвел et al .
200 У). О&рзщы кДНК были норыпянзоввны ¡qui помощи {^-зкгинх Sec фрагменты
V(D)J были хорошо амплифнкированы и давали полосу ожидаемой да........ около 100 п.о„ за
исключением образна кДНК нормальных теетнкул. (В) 'Ге же самые фрагмента ДНК былп фракщюннротаны при помощи 10% ПАГЭ. дающего [»исокоразрепгаощее разделение полос.
В нашей работе мы исследовали клон ал ьи ость антител в первичных опухолях молочной железы и показали, что 7 образцов из 10 (70%) могут служить источником опухолескецифкческнх антител, Рис. 11.
Библиотеки рскомСинантных антител, сконструированные при помощи вектора [)КМ19, были подвергнуты селекции на очищенных, опухолевых антителах, а также ни иитаеткых клетках карциномы. В том п в другом случае поставленная задача была решена. Интересно отметить, что при селекции на живых клетках мы не использовали
предварительную селекцию библиотеки на клетках нормального эпителия, направленную на обеднение фагового пула и освобождение от не специфических антител, связывающихся г клетками неспецифическим образом, как описано во многий работах (Ridgway et al., 1999, Topping et al.,2000; Shadidi el al., 2001, Rothe et al , 2004, Xu et al., 20Q4)
A
Рис. 12. (А) Флуоресцентное Окрашивание клеток карциномы молочной железы МСР7, 5сВгЗ, зкспрессируюгцих эпигошальный муцин МУС!, я клеток нормального эпителия МСРЙ}-2А, нсполь.^д фаговое антитело анти-МиС1 МЕ5 (слева). Справа показаны результаты анализа высокоэффективной проточной цитометрни с использованием фага, зкспрессирующего антитело МВ5 Не^дсгвекное антнтеяа актк-йР"! ишсльзгаали в качестве га£5ЩИьдьйВгс контроля. (Е) ОкаахлиЕанле клеток аденокарщлюмьг толстой кишки LoVo, экспресснрующн.Ч СЕА, с помощью фагового клопа СБ37 (слеЕа) Связывание фагового антитела СВ37 с ЬоУо при помощи анализа проточной цигометрнн (справа)
Это указывает на то, что наши библиотеки антител содержат очень ограниченный натуральный репертуар опухолевых антител, а не широкий спектр антител с новой специфичностью, полученный при рекомбинации легких и тяжелых цепей
иммуноглобулинов. Кроме того, нами было показано, что библиотеки, берущие свое начало от лимфоцитов, инфильтрированных в опухоль, функционируют более эффективно, чем библиотека из лимфоцитов периферической крови, при селекции на клетках.
Таким образом, на основании проведенного исследования было показано, что образцы опухоли, размером не более 0.2 г, полученные в результате мастэктомии, могут служить источником для конструирования библиотек рекомбинантных антител, обогащенных опухолеспецифическими антителами. Нами была получена панель опухолеспецифических антител, охарактеризованных по их способности связывать поверхность раковых клеток методами ELISA, флуоресцентного окрашивания клеток и проточной цигометрии, Рис. 12. Селекция специфических антител, как против очищенных белков, так и против живых клеток карциномы, указывает на то, что данный метод перспективен для получения человеческих рекомбинантных антител, которые можно использовать для терапии и диагностики опухоли молочной железы и других видов рака. Кроме того, исследование локального иммунного ответа у пациентов на опухолевые антигены может иметь значение для прогноза болезни, а также служить источником открытия новых антигенов.
ВЫВОДЫ
1. Впервые экспериментально показано, что существенная модификация основного белка оболочки нитчатого бактериофага pVIII незначительно влияет на функции этого белка и не нарушает образование жизнеспособных фаговых частиц. При этом толерантность фага к пептидным встройкам зависит от длины встроенного пептида.
2. Сконструирована серия векторов на основе фагов М13, fl и fdtet, обеспечивающая высокую плотность встроенных эпитопов, экспонированных на поверхности фага в составе белка pVIII.
3. Продемонстрирована высокая эффективность новой пептидной фаговой библиотеки с высокой плотностью экспонированных пептидов при селекции специфических лигандов на примере моноклональных антител и органических молекул.
4. Разработан системтлй подход для детекции иммунного ответа на вирусную инфекцию в отсутствии натурального антигена. В результате скрининга пептидных библиотек на нитчатом фаге разработана эффективная тест-система для обнаружения противовирусных антител в крови пациентов, инфицированных вирусом гепатита С. В рамках исследования показано, что:
а) тест-система, основанная на синтетических пептидах в форме MAP (multiple antigenic peptide) позволяет со 100% чувствительностью и 100% специфичностью выявлять пациентов, инфицированных вирусом гепатита С;
б) предложенный набор пептидов обеспечивает высокоразрешающий серологический анализ в формате ELISA и SIA, существенно уменьшающий частоту неопределенного диагноза по сравнению с существующими коммерческими тест-системами.
5. Разработана новая методология модифицированного варианта техники SEREX на основе бактериофага лямбда для идентификации опухолевых антигенов при помощи скрининга библиотек сыворотками онкологических пациентов. В рамках исследования:
а), сконструирована оригинальная серия векторов для дисплея кДНК на основе белка gpD фага лямбда, обеспечивающих преимущественный дисплей натуральных белковых последовательностей;
б), идентифицирована панель антигенов, вызывающих естественный иммунный ответ у пациентов с опухолью молочной железы;
в), обнаружена повышенная экспрессия антигенов Т11-9, Т11-3 и Т7-1 в тканях опухоли, по сравнению с нормальной молочной железой;
г), показано, что присутствие в сыворотке пациентов антител против 4-х антигенов (D4-11, D4-19, D7-1 и Т9-27) имеет значимую ассоциацию с раком молочной железы;
д). выявлена корреляция между стадией развития опухоли молочной железы и встречаемостью антител против опухоль-ассоциированного антигена D7-1, впервые идентифицированного в нашей работе.
6. Разработан новый вектор рКМ19 для дисплея рекомбинантных антител в формате scFv, превосходящий существующие векторные системы и разрешающий селекцию антител, токсичных для бактериальной клетки. Эффективность нового вектора была продемонстрирована при конструировании и селекции библиотек рекомбинантных антител, берущих свое начало от лимфоцитов, инфильтрированных в опухоль молочной железы.
7. Селектирована панель опухолеспецифических антител, потенциально полезных для разработки новых терапевтических препаратов и диагностики онкологических заболеваний.
Слисок научных статей, опублпковашплх по материалам диссертации:
1. Ильичев АА, Miuiei пеона ОО, Татьков СИ, Карпышев НН, Ерошкин AM, Петренко ВА, Сандахчиев JIC. Получение жизнеспособного варианта фага М13 со встроенным
чужеродным пептидом в основной белок оболочки. Доклады Академии Наук, 1989; 307: 481-483.
2. Petrenko VA, Ilyichev АА, Minenkova ОО, Tat'kov SI, Sandakhchiev LS. Study of M13 bacteriophage as a possible carrier of infective agent antigenic epitopes. Proceeding of seventh international symposium on metabolism and enzymology of nucleic acids including gene and proteing engineering Bratislava, Czechoslovakia (November, 1990), p.97-103.
3. Ильичев АА, Minieiirama ОО, Татьков СИ, Карпышев HH, Ерошкин АЛ1,Офицеров ВИ, Акименко ЗА, Петренко ВА, Сандахчиев JIC. Использование нитчатого бактериофага М13 в белковой инженерии. Молекулярная биология 1990; 24: 530-535.
4. Кищенко ГП, Мш1енкова ОО, Ильичев АА, Груздев ФД, Петренко ВА. Изучение структуры вирионов фага M13, содержащих молекулы химерных В-белков. Молекулярная биология 1991; 25/6: 1497-1503.
5. Ilyichev АА, Minenkova ОО, Kishchenko GP, Tat'kov SI, Karpishev NN, Eroshkin AM, Ofitzerov VI, Akimenko ZA, Petrenko VA, Sandakhchiev LS. Inserting foreign peptides into the major coat protein of bacteriophage M13. FEBS Lett. 1992; 301(3): 322-4.
6. Ерошкин AM, MimeiiKOBa ОО, Фомин ВИ, Иванисенко ВА, Ильичев АА. Анализ встроек пептидных фрагментов в основной белок оболочки бактериофагов М13, fl и fd. Молекулярная биология 1993; 27/6: 1345-1355.
7. Мшгенкова ОО, Ильичев АА, Кищенко ГР, Ильичева ТН, Хрипин ЮЛ, Орешкова СФ, Петренко ВА. Получение специфического иммуногена на основе бактериофага М13. Молекулярная биология 1993; 27/3: 561-568.
8. Minenkova ОО, Ilyichev АА, Kishchenko GP, Petrenko VA. Design of specific immunogens using filamentous phage as the carrier. Gene. 1993; 128(1): 85-8.
9. Iannolo G, Minenkova O, Petruzzelli R, Cesareni G. Modifying filamentous phage capsid: Limits in the size of the major coat protein. J Mol.Biol.1995; 248: 835-844.
10. Cesareni G, Minenkova O, Dente L, Iannolo G, Zucconi A, Helmer Citterich M, Lanfracotti A, Castagnoli L, Vetriani C. Structural and functional constraints in the display of peptides on filamentous phage capsids. in Molecular Repertoires, Chapter 6, (1995), edit. Cortese R. , Walter de Gruyter & Co, p.835-844
11. Iannolo G, Minenkova O, Gonfloni S, Castagnoli L, Cesareni G. Construction, exploitation and evolution of a new peptide library displayed at high density by fusion to the major coat protein of filamentous phage. BiolChem. 1997; 378(6): 517-21.
12. Salcini AI,Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pelicci PG, Di Fiore PP. Binding specificity and in vivo targets of the EH domain, a novel proteinprotein interaction module. Genes and development, 1997, 11(17), 2239-2249.
13. Cestra G, Castagnoli L, Dente L, Minenkova O, Petrelli A, Migone N, Hoffmuller U, Schneider-Mergener J, Cesareni G. The SH3 domains of endorphilin and amphiphysin bind to the proline rich region of synaptojanin 1 at distinnct sites that display an unconventional binding specifity. J. Biol. Chem., 1999, 274(45), 32001-7.
14. Minenkova O, De Tomassi A, Fortugno P, Gargano N, Felici F, Monaci P. Colony assay for phage-displayed libraries. Anal. Biochem. 2000, 284(2), 412-425.
15. Zhu Z, Minenkova O, Bellintani F, De Tomassi A, Urbanelli L, Felici F, Monaci P. In vitro evolution of ligands for HCV-specific serum antibodies. Biol. Chem. 2000, 381(3), 245-254.
16. Beghetto E, Pucci A, Minenkova O, Spadoni A, Bruno L, Buffolano W, Soldati D, Felici F, Gargano N./ Identification of a human immunodominant B-cell epitope within the GRA1 antigen of Toxoplasma gondii by phage display of cDNA libraries. Int J Parasitol. 2001 Dec;31(14): 1659-68.
17. Minenkova O, Gargano N, De Tomassi A, Bellintani F, Pucci A, Fortugno P, Fuscaldi E, Pessi A, Rapicetta M, Miceli M, Iudicone P, Cortese R, Felici F, Monaci P. ADAM-HCV, a new-concept diagnostic assay for antibodies to hepatitis C virus in serum. Eur J Biochem. 2001; 268(17): 4758-68.
18. Beghetto E, Buffolano W, Spadoni A, Del Pezzo M, Di Cristina M, Minenkova O, Petersen E, Felici F, Gargano N. Use of an Immunoglobulin G Avidity Assay Based on Recombinant Antigens for Diagnosis of Primary Toxoplasma gondii Infection during Pregnancy. J Clin Microbiol. 2003 Dec;41(12):5414-5418.
19. Minenkova O, Pucci A, Pavoni E, De Tomassi A, Fortugno P, Gargano N, Cianfriglia M, Barca S, De Placido S, Martignetti A, Felici F, Cortese R, Monaci P. Identification of tumor-associated antigens by screening phage-displayed human cDNA libraries with sera from tumor patients. Int J Cancer. 2003 Sep 10;106(4):534-44.
20. Beghetto E, Spadoni A, Buffolano W, Del Pezzo M, Minenkova O, Pavoni E, Pucci A, Cortese R, Felici F, Gargano N. Molecular dissection of the human B-cell response against Toxoplasma gondii infection by lambda display of cDNA libraries. Int J Parasitol. 2003 Feb;33(2): 163-73.
21. Pavoni E, Vaccaro P, Pucci A, Monteriu G, Beghetto E, Barca S, Dupuis ML, De Pasquale Ceratti A, Lugini A, Cianfriglia M, Cortesi E, Felici F, Minenkova O. Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage. BMC Cancer. 2004 Nov 12;4:78.
22. Garufi G, Minenkova O, Passo CL, Pernice I, Felici F. Display libraries on bacteriophage lambda capsid. Biotechnol Annu Rev. 2005;11:153-90.
23. Minenkova O, Gargano N, Vaccaro P, Garufi G, Felici F. Bacteriophage lambda surface display: Recent results open wide application perspectives/ Chapter 5 in Frontiers in DNA Research, Ed. Corey R. Woods, 2006 Nova Science Publishers, inc., New York, p.81-113.
24. Pavoni E, Flego M, Dupuis ML, Barca S, Petronzelli F, Anastasi AM, D'Alessio V, Pelliccia A, Vaccaro P, Monteriu G, Ascione A, De Santis R, Felici F, Cianfriglia M, Minenkova O. Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein. BMC Cancer 2006, 6:41
25. Vaccaro P, Pavoni E, Monteriu G, Andrea P, Felici F, Minenkova O. Efficient display of scFv antibodies on bacteriophage lambda. J Immunol Methods. 2006; 310(1-2): 149-58.
26. Beilofiore P, Petronzelli F, De Martino T, Minenkova O, Bombardi V, Anastasi AM, Lindstedt R, Felici F, De Santis R, Verdoliva A. Identification and refinement of a peptide affinity ligand with unique specificity for a monoclonal anti-tenascin-C antibody by screening of a phage display library .J Chromatogr A. 2006; 1107(1-2):182-91.
27. Pavoni E, Pucci A, Vaccaro P, Monteriu G, Ceratti Ade P, Lugini A, Virdis RA, Cortesi E, De Gaetano A, Panunzi S, Felici F, Minenkova O. A study of the humoral immune response of breast cancer patients to a panel of human tumor antigens identified by phage display. Cancer Detect Prev. 2006; 30(3): 248-56.
28. Pavoni E, Monteriu G, Cianfriglia M, Minenkova O. New display vector reduces biological bias for expression of antibodies in E. coli. Gene. 2007; 391(1-2): 120-9.
Патенты:
1. Method of improving the antibody selection capacity in phage-display library. Inventors: MINENKOVA OLGA (IT), PAVONI EMILIANO (IT)
Applicant: Sigma-Tau, SpA, Deposited 27 Dec 2005, EP05028501.4 presso L'EPO Publication: July 2007
2. Identification of specific tumour antigens by means of the selection of cDNA libraries with sera and the use of said antigens in diagnostic imaging techniques
Inventor: FELICI FRANCO (IT); MINENKOVA OLGA (IT) Applicant: KENTON S R L (IT) EC: C07K14/47A34; C12N15/10C1; (+1) IPC: C07KI4/47; C12N15/10; G01N33/574 (+6) Publication info: US2005084857 - 2005-04-21
3. Identification of specific tumor antigens by means of the selection of cDNA libraries with sera and the use of said antigena in the treatment of tumors
Inventor FELICI FRANCO (IT); MINENKOVA OLGA (IT)
Applicant: KENTON S R L (IT)
EC: C07K14/47A34; C12N15/10C1
IPC: C07K14/47; C12N15/10; A61K38/00 (+9)
Publication info: US2005069556 - 2005-03-31
4. Detection of infectious agents using antigen mimics Patent number: SK5362003, Publication date: 2003-09-11 Inventor: FELICI FRANCO (IT); GARGANO NICOLA (IT); MINENKOVA OLGA (IT), MONACI PAOLO (IT) Applicant: KENTON S R L (IT)
Classification:
- international:
C07K14/18; G01N33/576; A61K39/00; C07K14/005; G01N33/576; A61K39/00; (IPC1-7): G01N33/576; C07K7/08; C07K14/18; C12N15/10
- european:
C07K14/18F; C07K14/18F4; G01N33/576F Application number: SK20030000536 20001103 Priority number(s): W02000IT00442 20001103
5. Detection of infectious agents using antigen mimics Patent number: CZ20031044, Publication date: 2003-10-15 Inventor: FELICI FRANCO (IT); GARGANO NICOLA (IT); MINENKOVA OLGA (IT); MONACI PAOLO (IT) Applicant: KENTON S R L (IT)
Classification:
- international: C07K14/18; C12N15/10; G01N33/576; C07K14/005; C12N15/10; G01N33/576; (IPC1-7): G01N33/576; C07K14/18; C12N15/10
- european:
Application number: CZ20030001044 20001103
Priority numbers): CZ20030001044 20001103; W02000IT00442 20001103
Подписано к печати 17 июля 2007 г. Тираж 150 экз. Заказ № 598. Отпечатано "Документ-Сервис", 630090, Новосибирск, Институтская 4/1, тел. 335-66-00
Содержание диссертации, доктора биологических наук, Миненкова, Ольга Олеговна
писок принятых сокращений. ведение. лава 1. ОБЗОР ЛИТЕРАТУРЫ.
1.Технология фагового дисплея.
2. Структура и биология нитчатого фага.
3. Пептидные библиотеки.
4. Дисплей пептидов и белков в составе фаговых белков pill и pVIII.
5. Минорные фаговые белки pVI, pVII и pIX.
6. Модификация фага М13 для дисплея.
7. Фаговые библиотеки "несвободной" структуры.
8. Области применения фагового дисплея.
9. Ограничения дисплея, основанного на нитчатом фаге.
10. Система литических бактериофагов.
11. Бактериофаг Т4.
12. Бактериофаг Т7.
13. Бактериофаг лямбда.
14. Дисплей на основе белка gpV.
15. Дисплей на основе белка gpD.
16. Новый дизайн векторов для библиотек кДНК.
17. Применение фагового дисплея, основанного на бактериофаге лямбда.
Введение Диссертация по биологии, на тему "Фаговый дисплей как универсальный метод исследования белковых взаимодействий"
Нитчатый бактериофаг М13 и умеренный литический фаг лямбда сыграли цественную роль в становлении и развитии методологии рекомбинантной ДНК. Широкое именение бактериофага М13 в экспериментальной практике молекулярно-биологических сследований (секвенирование ДНК, получение меченых проб для гибридизации, сайт-кализованный мутагенез), а также центральная роль бактериофага лямбда для развития временной концепции регуляции генов и разработка на его основе векторных систем, спользуемых для построения библиотек природных репертуаров (геномная ДНК, кДНК, елки), связаны с небольшими размерами фаговых геномов и детальным знанием биологии их бактериофагов. За последние 15 лет интерес к нитчатым бактериофагам особенно вырос связи с развитием одного из направлений генной инженерии, получившего название аговый дисплей". Эта технология основана на встраивании чужеродных нуклеотидных оследовательностей в один из генов, кодирующих оболочечные белки бактериофага. При ом производится гетерогенная смесь фаговых частиц, каждая из которых экспонирует на оверхности свой пептид, закодированный встроенным фрагментом ДНК. Физическая связь ежду экспонированным пептидом и генетической информацией о нем делает возможным лекцию специфического фага из больших библиотек и определение первичной оследовательности пептида, ответственного за связывание. Более 3 тысяч работ, убликованных к настоящему времени, описывают способы применения фагового дисплея 1 решения различных генно-инженерных задач.
Близкородственные одноцепочечные ДНК-содержащие нитчатые фаги М13, fl и fd, а кже разработанные на их основе фагмиды, размножаются на мужских клетках Е. coli, есущих F-фактор, определяющий наличие половых ворсинок, которые необходимы для , икрепления нитчатого фага при инфицировании бактерий. Фаговый капсид построен из 5-различных оболочечных белков: pVIII, pill, pVI, pVII и pIX. Чаще всего для дисплея ептидов используется основной белок оболочки нитчатого фага pVIII, представленный 2700 пиями на фаговый капсид, а также минорный белок pill, менее чувствительный к размеру тройки, но представленный только 5 копиями. Отличительной чертой морфогенеза тчатых фагов является сборка капсида, происходящая на внутренней мембране бактерии, оэтому в библиотеках, основанных на нитчатом фаге, реально представлены только такие лки и пептиды, которые могут транспортироваться через внутреннюю мембрану, сохраняя ою нативную структуру в окисляющей среде периплазматического пространства. В этой язи, использование для фагового дисплея литического фага лямбда, который собирается в топлазме и освобождается при помощи лизиса бактериальной клетки, позволяет реододевать проблемы, связанные с жизненным циклом нитчатых фагов. Развитие фагового исплея на основе бактериофага лямбда дает импульс новым приложениям техники дисплея, дним из которых является широкомасштабный скрининг больших библиотек на основе риродных репертуаров.
Настоящая работа обобщает исследования автора, выполненные в интервале времени, ответствующему периоду существования фагового дисплея. Эти исследования начинались создания первых векторных систем, основанных на основном белке оболочки нитчатого ara pVIII, и изучения пределов пептидного дисплея высокой плотности, при котором аждая молекула основного белка оболочки несет встроенный пептид. Используя пептидные иблиотеки на основе фагмиды, в данной работе была разработана универсальная стратегия зучения гуморального ответа организма на вирусную инфекцию, позволяющая получать ммунологическое изображение вируса, не имея в наличии натурального антигена. Кроме го, в данной работе описана новая векторная система на основе фага лямбда, аптированная для дисплея библиотек кДНК, н векторная система на основе минорного елка pill нитчатого фага, предназначенная для дисплея антител. Эти векторы, позволяющие ешать новые прикладные задачи молекулярной биологии, превосходят векторные системы, писанные в литературе до настоящего времени.
Цель и задачи исследования
Основной целью настоящей работы являлось: 1) создание новых векторных систем ля дисплея пептидов и белков на основе бактериофагов М13 н лямбда; 2) разработка иагностикумов вирусных заболеваний на основе пептидов, селектированных из пептидных аговых библиотек; 3) идентификация новых опухолеспецифических маркеров для терапии, иагноза и прогноза раковых заболеваний; 4) получение человеческих пухолеспецифических одноцепочечных антител для терапии и ранней диагностики нкологических заболеваний.
Для достижения поставленной цели необходимо было решить следующие основные дачи:
- исследовать возможность модификации основного белка оболочки pVIII нитчатого ara М13 и создания на его основе иммуногенных частиц;
- исследовать пределы модификации белка pVIII нитчатого фага путем мутагенеза или строек нуклеотидных последовательностей случайного состава и различной длины в ген елка р VIII;
- получить расширенную коллекцию пептидов, имитирующих антигенные етерминанты вируса гепатита С (мимотопов), для эффективного выявления ротивовирусных антител в сыворотке крови;
- разработать векторную систему для дисплея библиотек кДНК, полученных из аковых клеточных линий или образцов опухоли молочной железы, взятой от нкологических пациентов;
- провести поиск новых опухолевых антигенов путем скрининга библиотек кДНК шоротками крови онкологических пациентов;
- провести расширенный серологический анализ идентифицированных антигенов и атистическую обработку данных, подтверждающую ассоциацию между присутствием в рови специфических антител и наличием опухоли молочной железы;
- разработать новый вектор для дисплея антител, пригодный для конструирования овых библиотек, так и для аффинного созревания антител; осуществить селекцию опухолеспецифических антител из библиотек екомбинантных антител, берущих начало от лимфоцитов В, инфильтрированных в опухоль.
Научная новизна и практическая значимость работы
Впервые экспериментально доказана возможность использования основного белка болочки нитчатого бактериофага для задач фагового дисплея. Получены жизнеспособные арианты фага М13 со встройкой чужеродных пептидов в основной белок оболочки, родемонстрировано, что встроенные пептиды экспонированы на поверхности фаговой астицы и доступны для взаимодействия с антителами.
Впервые экспериментально доказано, что в системе дисплея с высокой плотностью спонированных пептидов длина встроенного пептида является основным лимитирующим актором, влияющим на жизнеспособность фаговых частиц. Было показано, что пептидная иблиотека с высокой плотностью дисплея может быть использована для селекции ецифических фагов, связывающих как моноклональные антитела, так и небольшие рганические молекулы.
Получена обширная коллекция мимотопов вируса гепатита С, послужившая базой для здания нового пептидного диагностикума этого заболевания. Диагностикум на основе лектированных пептидов позволяет классифицировать сыворотки, получившие статус еопределенных" при использовании коммерческих тест-систем в формате ELISA или SIA trip immunoblot assay).
Разработана новая техника скрининга библиотек кДНК из злокачественных опухолей помощью сывороток пациентов в формате фагового дисплея. Для эффективного дисплея блиотек кДНК разработана новая векторная система, в которой преимущественно спонируются природные белки с правильной рамкой считывания. Идентифицированы ухолевые антигены, вызывающие статистически достоверный иммунный ответ у ациентов с опухолью молочной железы.
Разработана новая векторная система дисплея рекомбинантных антител, облегчающая лекцию токсичных антител и обладающая более высокой эффективностью отбора целевых олекул. Новый вектор был использован для конструирования библиотек рекомбинантных тител, берущих начало от лимфоцитов, инфильтрированных в опухоль, и селекции ухолеспецифических антител. Продемонстрирована высокая эффективность нового метода о сравнению методами, опубликованными в литературе.
Положения, выносимые на защиту:
• Капсид нитчатого фага может быть модифицирован без нарушения его жизнеспособности. При этом увеличение длины пептидной встройки в основной белок оболочки, введение непарного числа цистеиновых остатков и увеличение положительного заряда аминоконцевого района белка рУШ негативно сказывается на жизнеспособности фага. Пептиды, встроенные между 4-м и 5-м а.о. зрелой формы основного белка оболочки, экспонированы в раствор и доступны для взаимодействия с антителами.
• Пептидная библиотека, полученная при встройке случайных пептидов длиной 8 а.о. во все копии основного белка оболочки нитчатого фага, является достаточно представительной для селекции лигандов для различных рецепторов.
• Мимотопы, имитирующие натуральные вирусные антигены, могут быть выделены из фаговых пептидных библиотек с помощью сывороток больных пациентов, даже не имея информации о болезнетворном агенте. Селектированные пептиды могут использоваться как эффективный заменитель вирусных белков в диагностических тест-системах.
• Новые векторы на основе фага лямбда, АКМ4 и ХКМ8, предназначенные для встройки фрагментов ДНК в 5 '-конец гена gpD, обеспечивают эффективный дисплей белковых доменов в составе белка Б на поверхности фага лямбда. Библиотеки кДНК эукариотических клеток, полученные при использовании этих векторов, экспонируют белковые домены преимущественно с натуральной рамкой считывания.
• Селекция опухоль-ассоциированных антигенов с помощью сывороток онкологических пациентов приводит к идентификации преимущественно цитоплазматических антигенов.
• Спонтанный иммунный ответ на антиген D7-1 при раке молочной железы растет с развитием стадии заболевания.
• Понижение уровня экспрессии рекомбинантных антител за счет введения amber-кодона приводит к повышению эффективности селекции целевых антител.
• Лимфоциты В, инфильтрированные в опухоль, могут служить источником рекомбинантных антител потенциально полезных для терапии и диагностики рака.
Публикации и апробация работы Представленные в диссертации результаты были доложены на различных нференциях и симпозиумах: Международном симпозиуме "Proceeding of seventh ternational symposium on metabolism and enzymology of nucleic acids including gene and otein engineering" (Bratislava, Czechoslovakia, 1990), Международной конференции "Medical 'otechnology immunization and AIDS" (Ленинград, 1991), Всесоюзной конференции "Новые аправления биотехнологии" (Пущино 1992), Международной конференции "Phage display" old Spring Harbor Laboratory, Long Island, New York, 1992), Международной конференции Molecular genetics of bacteria and phages" (Cold Spring Harbor Laboratory, Long Island, New ork, 1993), Международной конференции "EMBO workshop on Molecular repertoires and ehtods of selection" (Perugia, Italy, 1993), конференции Итальянской Ассоциации Генетиков GI (Associazione Genetica Italiana) (Senigallia, Italy, 1993), Международной конференции MBO-FEMS meeting on Bacterial Viruses, Molecular Biology and Biotechnology" (Gargnano, ake Garda, Italy, 1994), Конференциях Итальянской Федерации FISV (Federazione Italiana cienze della Vita) (Riva del Garda, 1999, 2000, 2001, 2002), Международном семинаре "Basic cience in ISTC Activities" (Academgorodok, Novosibirsk, 2001), Международном импозиуме "7th International Symposium on Predictive Oncology & Intervention Strategies" ice, France, 2004), Международном семинаре "Monoclonal Antibodies: Research, evelopment and Applications" (Rome, Italy, 2005), Международной конференции "2nd OM'IEO Campus Meeting on Cancer" (Milan, Italy, 2006), Международном конгрессе "25th ongress of the Interanational Association for Breast Cancer Research" (Montreal, Canada, 2006).
Представленная работа выполнена в 1988-1992 в НПО "Вектор", в 1992-1996 в боратории Молекулярной Генетики 2-го Римского университета "Tor Vergata" (Rome, aly) и в 1996-2006 в Лабораториях "Кентон" при Сигма-Тау (Pomezia, Italy).
По материалам диссертации получено 5 международных патентов и опубликовано 29 атей. и
Заключение Диссертация по теме "Молекулярная биология", Миненкова, Ольга Олеговна
ВЫВОДЫ Впервые экспериментально показано, что существенная модификация основного белка оболочки нитчатого бактериофага рУШ незначительно влияет на функции этого белка и не нарушает образование жизнеспособных фаговых частиц. При этом толерантность фага к пептидным встройкам зависит от длины встроенного пептида. . Сконструирована серия векторов на основе фагов М13, fl и fdtet, обеспечивающая высокую плотность встроенных эпитопов, экспонированных на поверхности фага в составе белка pVIII. Продемонстрирована высокая эффективность новой пептидной фаговой библиотеки с высокой плотностью экспонированных пептидов при селекции специфических лигандов на примере моноклональных антител и органических молекул. . Разработан системный подход для детекции иммунного ответа на вирусную инфекцию в отсутствии натурального антигена. В результате скрининга пептидных библиотек на нитчатом фаге разработана эффективная тест-система для обнаружения противовирусных антител в крови пациентов, инфицированных вирусом гепатита С. В рамках исследования показано, что: тест-система, основанная на синтетических пептидах в форме MAP (multiple antigenic eptide) позволяет со 100% чувствительностью и 100% специфичностью выявлять пациентов, нфицированных вирусом гепатита С; предложенный набор пептидов обеспечивает высокоразрешающий серологический нализ в формате ELISA и SIA, существенно уменьшающий частоту неопределенного иагноза по сравнению с существующими коммерческими тест-системами. . Разработана новая методология модифицированного варианта техники SEREX на основе бактериофага лямбда для идентификации опухолевых антигенов при помощи скрининга библиотек сыворотками онкологических пациентов. В рамках исследования: ). сконструирована оригинальная серия векторов для дисплея кДНК на основе белка gpD ara лямбда, обеспечивающих преимущественный дисплей натуральных белковых оследовательностей; идентифицирована панель антигенов, вызывающих естественный иммунный ответ у ациентов с опухолью молочной железы; обнаружена повышенная экспрессия антигенов Т11-9, Г11-3 и Т7-1 в тканях опухоли, по равнению с нормальной молочной железой; показано, что присутствие в сыворотке пациентов антител против 4-х антигенов (D4-11, 4-19, D7-1 и Т9-27) имеет значимую ассоциацию с раком молочной железы; ). выявлена корреляция между стадией развития опухоли молочной железы и стречаемостью антител против опухоль-ассоциированного антигена D7-1, впервые дентифицированного в нашей работе.
Разработан новый вектор рКМ19 для дисплея рекомбинантных антител в формате scFv, превосходящий существующие векторные системы и разрешающий селекцию антител, токсичных для бактериальной клетки. Эффективность нового вектора была продемонстрирована при конструировании и селекции библиотек рекомбинантных антител, берущих свое начало от лимфоцитов, инфильтрированных в опухоль молочной железы.
Селектирована панель опухолеспецифических антител, потенциально полезных для разработки новых терапевтических препаратов и диагностики онкологических заболеваний.
Список научных статей, опубликованных по материалам диссертации:
Ильичев АА, Миненкова ОО, Татьков СИ, Карпышев НН, Ерошкин AM, Петренко ВА, Сандахчиев JIC. Получение жизнеспособного варианта фага М13 со встроенным чужеродным пептидом в основной белок оболочки.Доклады Академии Наук, 1989; 307: 481-483.
Petrenko VA, Ilyichev АА, Minenkova ОО, Tat'kov SI, Sandakhchiev LS. Study of M13 bacteriophage as a possible carrier of infective agent antigenic epitopes. Proceeding of seventh international symposium on metabolism and enzymology of nucleic acids including gene and proteing engineering Bratislava, Czechoslovakia (November, 1990), p.97-103.
Ильичев АА, Миненкова ОО, Татьков СИ, Карпышев НН, Ерошкин AM, Офицеров ВИ,
Акименко ЗА, Петренко ВА, Сандахчиев JIC. Использование нитчатого бактериофага
М13 в белковой инженерии. Молекулярная биология 1990; 24: 530-535.
Кищенко ГП, Миненкова ОО, Ильичев АА, Груздев ФД, Петренко ВА. Изучение структуры вирионов фага М13, содержащих молекулы химерных В-белков.
Молекулярная биология 1991; 25/6: 1497-1503.
Ilyichev АА, Minenkova ОО, Kishchenko GP, Tat'kov SI, Karpishev NN, Eroshkin AM, Ofitzerov VI, Akimenko ZA, Petrenko VA, Sandakhchiev LS. Inserting foreign peptides into the major coat protein of bacteriophage M13. FEBS Lett. 1992; 301(3): 322-4. Ерошкин AM, Миненкова ОО, Фомин ВИ, Иванисенко ВА, Ильичев АА. Анализ встроек пептидных фрагментов в основной белок оболочки бактериофагов М13, fl и fd. Молекулярная биология 1993; 27/6: 1345-1355.
Миненкова ОО, Ильичев АА, Кищенко ГР, Ильичева ТН, Хрипин ЮЛ, Орешкова СФ, Петренко ВА. Получение специфического иммуногена на основе бактериофага М13. Молекулярная биология 1993; 27/3: 561-568.
Minenkova OO, Ilyichev AA, Kishchenko GP, Petrenko VA. Design of specific immunogens using filamentous phage as the carrier. Gene. 1993; 128(1): 85-8.
Iannolo G, Minenkova O, Petruzzelli R, Cesareni G. Modifying filamentous phage capsid: Limits in the size of the major coat protein. J Mol.Biol.1995; 248: 835-844. Cesareni G, Minenkova O, Dente L, Iannolo G, Zucconi A, Helmer Citterich M, Lanfracotti A, Castagnoli L, Vetriani C. Structural and functional constraints in the display of peptides on filamentous phage capsids. in Molecular Repertoires, Chapter 6, (1995), edit. Cortese R. , Walter de Gruyter & Co, p.835-844 Iannolo G, Minenkova O, Gonfloni S, Castagnoli L, Cesareni G. Construction, exploitation and evolution of a new peptide library displayed at high density by fusion to the major coat protein of filamentous phage. Biol Chem. 1997; 378(6): 517-21. Salcini AI,Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pelicci PG, Di Fiore PP. Binding specificity and in vivo targets of the EH domain, a novel proteinprotein interaction module. Genes and development, 1997, 11(17), 2239-2249. Cestra G, Castagnoli L, Dente L, Minenkova O, Petrelli A, Migone N, Hoffmuller U, Schneider-Mergener J, Cesareni G. The SH3 domains of endorphilin and amphiphysin bind to the proline rich region of synaptojanin 1 at distinnct sites that display an unconventional binding specifity. J. Biol. Chem., 1999, 274(45), 32001-7. Minenkova O, De Tomassi A, Fortugno P, Gargano N, Felici F, Monaci P. Colony assay for phage-displayed libraries. Anal. Biochem. 2000, 284(2), 412-425. Zhu Z, Minenkova O, Bellintani F, De Tomassi A, Urbanelli L, Felici F, Monaci P. In vitro evolution of ligands for HCV-specific serum antibodies. Biol. Chem. 2000, 381(3), 245-254. Beghetto E, Pucci A, Minenkova O, Spadoni A, Bruno L, Buffolano W, Soldati D, Felici F, Gargano N./ Identification of a human immunodominant B-cell epitope within the GRA1 antigen of Toxoplasma gondii by phage display of cDNA libraries. Int J Parasitol. 2001; 31(14):1659-68. Minenkova O, Gargano N, De Tomassi A, Bellintani F, Pucci A, Fortugno P, Fuscaldi E, Pessi A, Rapicetta M, Miceli M, Iudicone P, Cortese R, Felici F, Monaci P. ADAM-HCV, a new-concept diagnostic assay for antibodies to hepatitis C virus in serum. Eur J Biochem. 2001; 268(17): 4758-68. v. Beghetto E, Buffolano W, Spadoni A, Del Pezzo M, Di Cristina M, Minenkova O, Petersen E, Felici F, Gargano N. Use of an Immunoglobulin G Avidity Assay Based on Recombinant Antigens for Diagnosis of Primary Toxoplasma gondii Infection during Pregnancy. J Clin Microbiol. 2003;41 (12): 5414-5418. Minenkova O, Pucci A, Pavoni E, De Tomassi A, Fortugno P, Gargano N, Cianfiiglia M, Barca S, De Placido S, Martignetti A, Felici F, Cortese R, Monaci P. Identification of tumor-associated antigens by screening pliage-displayed human cDNA libraries with sera from tumor patients. Int J Cancer. 2003; 106(4): 5 34-44. Beghetto E, Spadoni A, Buffolano W, Del Pezzo M, Minenkova O, Pavoni E, Pucci A, Cortese R, Felici F, Gargano N. Molecular dissection of the human B-cell response against Toxoplasma gondii infection by lambda display of cDNA libraries. Int J Parasitol. 2003;33(2): 163-73. Pavoni E, Vaccaro P, Pucci A, Monteriu G, Beghetto E, Barca S, Dupuis ML, De Pasquale Ceratti A, Lugini A, Cianfriglia M, Cortesi E, Felici F, Minenkova O. Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage. BMC Cancer. 2004;4:78. Garufi G, Minenkova O, Passo CL, Pernice I, Felici F. Display libraries on bacteriophage lambda capsid. Biotechnol Annu Rev. 2005;11:153-90. Minenkova O, Gargano N, Vaccaro P, Garufi G, Felici F. Bacteriophage lambda surface display: Recent results open wide application perspectives/ Chapter 5 in Frontiers in DNA Research, Ed. Corey R. Woods, 2006 Nova Science Publishers, inc., New York, p.81-113. Pavoni E, Flego M, Dupuis ML, Barca S, Petronzelli F, Anastasi AM, D'Alessio V, Pelliccia A, Vaccaro P, Monteriu G, Ascione A, De Santis R, Felici F, Cianfriglia M, Minenkova O. Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein. BMC Cancer 2006, 6:41 Vaccaro P, Pavoni E, Monteriu G, Andrea P, Felici F, Minenkova O. Efficient display of scFv antibodies on bacteriophage lambda. J Immunol Methods. 2006; 310(1-2): 149-58. Bellofiore P, Petronzelli F, De Martino T, Minenkova O, Bombardi V, Anastasi AM, Lindstedt R, Felici F, De Santis R, Verdoliva A. Identification and refinement of a peptide affinity ligand with unique specificity for a monoclonal anti-tenascin-C antibody by screening of a phage display library.J Chromatogr A. 2006; 1107(1-2): 182-91. Pavoni E, Pucci A, Vaccaro P, Monteriu G, Ceratti Ade P, Lugini A, Virdis RA, Cortesi E, De Gaetano A, Panunzi S, Felici F, Minenkova O. A study of the humoral immune response of breast cancer patients to a panel of human tumor antigens identified by phage display. Cancer Detect Prev. 2006; 30(3): 248-56. Pavoni E, Monteriu G, Cianfriglia M, Minenkova O. New display vector reduces biological bias for expression of antibodies inE. coli. Gene. 2007; 391(1-2): 120-9. Pavoni E, Monteriu G, Santapaola D, Petronzelli F, Anastasi AM, Pellicia A, De Santis R, Minenkova O. Tumor-infiltrating В lymphocytes as efficient source of highly specific immunoglobulins recognizing tumor cells. Submitted
Патенты:
Method of improving the antibody selection capacity in phage-display library. Inventors: MINENKOVA OLGA (IT), PAVONI EMILIANO (IT) Applicant: Sigma-Tau, SpA, Deposited 27 Dec 2005, EP05028501.4 presso L'EPO Publication: July 2007
Identification of specific tumour antigens by means of the selection of cDNA libraries with sera and the use of said antigens in diagnostic imaging techniques
Inventor: FELICI FRANCO (IT); MINENKOVA OLGA (IT)
Applicant: KENTON S R L (IT)
EC: C07K14/47A34; C12N15/10C1; (+1)
IPC: C07K14/47; C12N15/10; G01N33/574 (+6)
Publication info: US2005084857 - 2005-04-21
Identification of specific tumor antigens by means of the selection of cDNA libraries with sera and the use of said antigena in the treatment of tumors Inventor: FELICI FRANCO (IT); MINENKOVA OLGA (IT) Applicant: KENTON S R L (IT) EC: C07K14/47A34; C12N15/10C1 IPC: C07K14/47; C12N15/10; A61K38/00 (+9) Publication info: US2005069556 - 2005-03-31 Detection of infectious agents using antigen mimics Patent number: SK5362003, Publication date: 2003-09-11 Inventor: FELICI FRANCO (IT); GARGANO NICOLA (IT); MINENKOVA OLGA (IT), MONACI PAOLO (IT) Applicant: KENTON S R L (IT) Classification: - international:
C07K14/18; G01N33/576; A61K39/00; C07K14/005; G01N33/576; A61K39/00; (IPC1-7): G01N33/576; C07K7/08; C07K14/18; C12N15/10 -european:
БЛАГОДАРНОСТИ
Автор искренне благодарит ближайших коллег и соавторов исследовательских работ, исанных в представленной диссертации. В работе, выполненной в Государственном учном центре вирусологии и биотехнологии "Вектор", принимали участие академик РАН офессор J1.C. Сандахчиев, д.б.н. профессор В.А. Петренко, Г.П. Кищенко, А.М. Ерошкин, Н. Жукова, С.И. Татьков, Н.Н. Карпышев, В.И. Офицеров, З.А. Акименко, В.А. анисенко, Т.Н. Ильичева, Ю.Л. Хрипин и С.Ф. Орешкова.
Особую признательность автор выражает д.б.н. профессору А.А. Ильичеву, который ш инициатором исследования по фаговому дисплею в нашей стране и благодаря которому боты, выполненные центре вирусологии и биотехнологии "Вектор", хорошо известны за бежом.
Автор тепло благодарит профессора Второго Римского университета (II-Università di ma "Тог Vergata") Дж. Чезарени и своих коллег из лаборатории Молекулярной Генетики оаккино Янноло, Луизу Костаньоли и Лучану Денте.
Автор признательна за совместную плодотворную работу сотрудникам лаборатории нтон (Kenton, S.r.l., Pomezia (RM)) - профессору Франко Феличи, Эмильяно Павони, едео Де Томасси, Франческе Беллинтани, Джордже Монтерю, Паоле Ваккаро, Андреа 1чи, Николе Гаргано, Даниеле Сантапаола, Елизе Бегетто; сотрудникам отдела мунологии Сигма-Тау (Sigma-Tau, S.p.a., Pomezia (RM)) - Рите Де Сантис и Фьорелле тронцелли; Директору Института Молекулярной Биологии (IRBM, Pomezia) - профессору ккардо Кортезе и Паоло Моначи, а также профессору Высшего Института равоохранения (Istituto Superiore di Sanità, Roma) Маурицио Чанфрилья.
Отдельная благодарность выражается Миненкову Георгию за техническую помощь и подготовке текста и Миненкову Юрию за критическое прочтение манускрипта.
Диссертация посвящается памяти бывших коллег Сергею Головину, Льву Мамаеву и дрею Бедристову.
Библиография Диссертация по биологии, доктора биологических наук, Миненкова, Ольга Олеговна, Кольцово
1. Ильичев АА, Миненкова ОО, Татьков СИ, Карпышев НН, Ерошкин AM, Петренко ВА, Сандахчиев JIC. Получение жизнеспособного варианта фага М13 со встроенным чужеродным пептидом в основной белок оболочки. Докл. АН СССР 1989;307: 481-483.
2. Кищенко ГП, Миненкова ОО, Ильичев АА, Груздев АД, Петренко ВА. Изучение структуры вирионов фага М13, содержащих молекулы химерных В-белков. Мол Биол. 1991;25:1497-1503.
3. Корнберг А. Репликация ДНК вирусов., в: Синтез ДНК. М., Мир. 1977,227-239.
4. Фримель Г. ( ред.) Иммунологические методы. М., Медицина. 1987, 392-393.
5. AJCC Cancer Staging Manual. American Joint Committee on Cancer. 6th ed. Philadelphia: Lippincott-Raven; 2002.
6. Alter HJ. New kit on the block: evaluation of second-generation assays for detection of antibody to the hepatitis С virus. Hepatology. 1992 Feb;15(2):350-3.
7. Alter HJ. To С or not to C: these are the questions. Blood. 1995;85(7): 1681 -95.
8. Amit AG, Mariuzza RA, Phillips SE, Poljak RJ. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science 1986;233:747-753.
9. Ansuini H, Cicchini C, Nicosia A, Tripodi M, Córtese R, Luzzago A. Biotin-tagged cDNA expression libraries displayed on lambda phage: a new tool for the selection of natural protein ligands. Nucleic Acids Res 2002;30:e78.
10. Arber W, Wauters-Willems D. Host specificity of DNA produced by Escherichia coli. XII. The two restriction and modification systems of strain 15T-. Mol Gen Genet. 1970;108(3):203-17.
11. Athappilly FK, Hendrickson WA. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure 1995;3:1407-1419.
12. Austin CA, Marsh KL. Eukaryotic DNA topoisomerase II beta. Bioessays. 1998;20(3):215-26.
13. Bai Y, Feng H. Selection of stably folded proteins by phage-display with proteolysis. Eur J Biochem. 2004;271(9):1609-14.
14. Ballinger MD, Jones JT, Lofgren JA, Fairbrother WJ, Akita RW, Sliwkowski MX, Wells JA. Selection of heregulin variants having higher affinity for the ErbB3 receptor by monovalent phage display. J Biol Chem. 1998;273(19):11675-84.
15. Banner DW, Nave C, Marvin DA. Structure of the protein and DNA in fd filamentous bacterial virus. Nature. 1981 ;289(5800): 814-6.
16. Barbas CF 3rd, Burton DR. Monoclonal antibodies from combinatorial libraries. Cold Spring Harbor Laboratory Course Manual. 1994:31-34.
17. Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 1991;88(18), 79787982.
18. Bartel PL, Chien CT, Sternglanz R, Fields S. Using the two-hybrid system to detect proteinprotein interactions. In Cellular Interactions. In: Hartley DA (Ed.) Development: A Practical Approach. IRL Press, Oxford; 1993;153-179.
19. Bartoli F, Nuzzo M, Urbanelli L, Bellintani F, Prezzi C, Cortese R, Monaci P. DNA-based selection and screening of peptide ligands. Nat Biotechnol. 1998;16(11):1068-73.
20. Bayer R, Feigenson GW. Reconstitution of M13 bacteriophage coat protein. A new strategy to analyze configuration of the protein in the membrane. Biochim Biophys Acta. 1985;815(3):369-79.
21. Beekwilder J, Rakonjac J, Jongsma M, Bosch D. A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins. Gene. 1999;228(l-2):23-31.
22. Beghetto E, Gargano N, Ricci S, Garufi G, Peppoloni S, Montagnani F, Oggioni M, Pozzi G, Felici F. Discovery of novel Streptococcus pneumoniae antigens by screening a whole-genome lambda-display library. FEMS Microbiol Lett. 2006; 262(1): 14-21.
23. Bei R, Masuelli L, Moriconi E, Visco V, Moretti A, Kraus MH, et al. Immune responses to all ErbB family receptors detectable in serum of cancer patients. Oncogene 1999; 18:1267-1275.
24. Berkowitz SA, Day LA. Mass, length, composition and structure of the filamentous bacterial virus fd. J Mol Biol. 1976; 102(3): 531-47.
25. Bianchi E, Folgori A, Wallace A, Nicotra M, Acali S, Phalipon A, Barbato G, Bazzo R, Cortese R, Felici F, et al. A conformationally homogeneous combinatorial peptide library. J Mol Biol. 1995; 247(2): 154-60.
26. Birkenmeier G, Osman AA, Kopperschlager G, Mothes T. Epitope mapping by screening of phage display libraries of a monoclonal antibody directed against the receptor binding domain of human alpha2-macroglobulin. FEBS Lett. 1997; 416(2): 193-6.
27. Black LW, Showe MK, Steven AC. Morphogenesis of the T4 head. In: Karam JD (ed.), Molecular Biology of Bacteriophage T4. ASM Press, Washington, DC 1994; 218-258.
28. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997; 15: 553-557.
29. Boeke JD, Russel M, Model P. Processing of filamentous phage pre-coat protein. Effect of sequence variations near the signal peptidase cleavage site. J Mol Biol. 1980; 144(2): 103-16.
30. Bonnycastle LL, Mehroke JS, Rashed M, Gong X, Scott JK. Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage. J Mol Biol. 1996;258(5):747-62.
31. Botti C, Seregni E, Lombardo C, Massaron S, Bombardieri E. Effects of steroid-free fetal serum and steroid supplementation on MUC1 gene expression in human breast cancer cell line MCF7. Anticancer Res. 1997;17(lA):205-8.
32. Bowers LM, Lapoint K, Anthony L, Pluciermik A, Filutowicz M. Bacterial expression system with tightly regulated gene expression and piasmid copy number. Gene. 2004;340(1):11-8.
33. Braisted AC, Wells JA. Minimizing a binding domain from protein A. Proc Natl Acad Sci U S A. 1996;93(12):5688-92.
34. Braren I, Greunke K, Umland O, Deckers S, Bredehorst R, Spillner E. Comparative expression of different antibody formats in mammalian cells and Pichia pastoris. Biotechnol Appl Biochem. 2007 Mar 21; Epub ahead of print.
35. Bremnes T, Lauvrak V, Lindqvist B, Bakke O. Selection of phage displayed peptides from a random 10-mer library recognising a peptide target. Immunotechnology. 1998;4(l):21-8.
36. Buchwald M, Murialdo H, Siminovitch L. The morphogenesis of bacteriophage lambda. II. Identification of the principal structural proteins. Virology 1970; 42(2), 390-400.
37. Bussolati B, Grange C, Tei L, Deregibus MC, Ercolani M, Aime S, Camussi G.Targeting of human renal tumor-derived endothelial cells with peptides obtained by phage display. J Mol Med. 2007 Mar 24; Epub ahead of print.,
38. Cao J, Gao T, Giuliano AE, Irie RF. Recognition of an epitope of a breast cancer antigen by human antibody. Breast Cancer Res Treat. 1999;53(3):279-90.
39. Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H, Burton DR, Wilson IA. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity. 2005;22(2): 163-73.
40. Casjens SR, Hendrix RW. Locations and amounts of major structural proteins in bacteriophage lambda. J Mol Biol. 1974; 88(2), 535-545.
41. Castagnoli L, Zucconi A, Quondam M, Rossi M, Vaccaro P, Panni S, Paoluzi S, Santonico E, Dente L, Cesareni G. Alternative bacteriophage display systems. Comb Chem High Throughput Screen. 2001;4:121-133.
42. Castagnoli L, Zucconi A, Quondam M, Rossi M, Vaccaro P, Panni S, Paoluzi S, Santonico E, Dente L, Cesareni G. Alternative bacteriophage display systems. Comb Chem High Throughput Screen. 2001;4:121-133.
43. Catalano CE, Cue D, Feiss M. Virus DNA packaging: the strategy used by phage lambda. Mol Microbiol 1995;16:1075-1086.
44. Catalano CE. The terminase enzyme from bacteriophage lambda: a DNA-packaging machine. Cell Mol Life Sci 2000;57:128-148.
45. Cattaneo A, Biocca S. The selection of intracellular antibodies. Trends Biotechnol. 1999; 17(3): 115-21.
46. Cerritelli ME, Cheng N, Rosenberg AH, McPherson CE, Booy FP, Steven AC. Encapsidated conformation of bacteriophage T7 DNA. Cell 1997;91:271-80.
47. Cesareni G, Castagnoli L, Cestra G. Phage displayed peptide libraries. Comb Chem High Throughput Screen. 1999;2(1): 1-17.
48. Cesareni G, Minenkova O, Dente L, Iannolo G, Zucconi A, Helmer Citterich M, Lanfrancotti A, Castagnoli L, Vetriani C. (ed. CorteseR) 111-126 (Walter de Gruyter, Berlin, 1996).
49. Chamarthy SP, Jia L, Kovacs JR, Anderson ICR, Shen H, Firestine SM, Meng WS. Gene delivery to dendritic cells facilitated by a tumor necrosis factor alpha-competing peptide. Mol Immunol. 2004;41(8):741-9.
50. Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D: Human Sosl : a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 1993; 260(5112): 1338-1343.
51. Chen YT. Cancer vaccine: identification of human tumor antigens by SEREX. Cancer J. 2000;6 Suppl3:S208-17.
52. Chen YT. Identification of human tumor antigens by serological expression cloning: an online review on SEREX. Cancer Immun updated 2004 Mar 10; cited 2004 Apr 1. Available from URL: http://www.cancerimmunity.org/SEREX/
53. Chen EI, Kridel SJ, Howard EW, Li W, Godzik A, Smith JW. A unique substrate recognition profile for matrix metalloproteinase-2. J Biol Chem. 2002;277(6):4485-91.
54. Childs JD. Effect of hoc protein on the electrophoretic mobility of intact bacteriophage T4D particles in Polyacrylamide gel electrophoresis. J Mol Biol 1980;141:163-173.
55. Cicchini C, Ansuini H, Amicone L, Alonzi T, Nicosia A, Cortese R, Tripodi M, Luzzago A. Searching for DNA-protein interactions by lambda phage display. J Mol Biol 2002;322:697-706.
56. Clackson T, Hoogenboom HR, Griffiths AD, Winter G. Making antibody fragments using phage display libraries. Nature. 1991;352(6336):624-8.
57. Clark MA, Hawkins NJ, Papaioannou A, Fiddes RJ, Ward RL. Isolation of human anti-c-erbB-2 Fabs from a lymph node-derived phage display library. Clin Exp Immunol 1997;109(1): 166-74.
58. Cloutier SM, Chagas JR, Mach JP, Gygi CM, Leisinger HJ, Deperthes D. Substrate specificity of human kallikrein 2 (hK2) as determined by phage display technology. Eur J Biochem. 2002;269(11):2747-54.
59. Condron BG, Atkins JF, Gesteland RF. Frameshiflting in gene 10 of bacteriophage T7. J Bacteriol 1991;173:6998-7003.
60. Copin MC, Buisine MP, Leteurtre E, Marquette CH, Porte H, Aubert JP, Gosselin B, Porchet N. Mucinous bronchioloalveolar carcinomas display a specific pattern of mucin gene expression among primary lung adenocarcinomas. Hum Pathol. 2001 ;32(3):274-81.
61. Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S, Junghans RP. Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res 2001;61(21):7889-99.
62. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar H, Hersh EM. Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 2002;169(4):1829-36.
63. Coronella-Wood JA, Hersh EM. Naturally occurring B-cell responses to breast cancer. Cancer Immunol Immunother. 2003;52(12):715-38.
64. Córtese I, Capone S, Tafi R, Grimaldi LM, Nicosia A, Córtese R. Identification of peptides binding to IgG in the CSF of multiple sclerosis patients. Mult Scler. 1998;4(l):31-6.
65. Córtese R, Felici F, Galfre G, Luzzago A, Monaci P, Nicosia A. Epitope discovery using peptide libraries displayed on phage. Trends Biotechnol. 1994;12(7):262-7.
66. Córtese R, Monaci P, Nicosia A, Luzzago A, Felici F, Galfre G, Pessi A, Tramontano A, Sollazzo M. Identification of biologically active peptides using random libraries displayed on phage. Curr Opin Biotechnol. 1995;6(l):73-80.
67. Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P, Muyldermans S, Revets H. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 2004;64(8):2853-7.
68. Crissman JW, Smith GP. Gene-III protein of filamentous phages: evidence for a carboxyl-terminal domain with a role in morphogenesis. Virology 1984;132(2), 445-455.
69. Cull MG, Miller JF, Schatz PJ. Screening for receptor ligands using largelibraries of peptides linked to the C terminus of the lac repressor. Proc Natl Acad Sci USA 1992;89:1865-1869.
70. Cwirla SE, Peters EA, Barrett RW, Dower WJ. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA. 1990; 87(16): 6378-82.
71. Dalby PA, Hoess RH, DeGrado WF. Evolution of binding affinity in a WW domain probed by phage display. Protein Sci. 2000; 9(12): 2366-76.
72. Davies DR, Cohen GH. Interactions of protein antigens with antibodies. Proc Natl Acad Sci USA 1996; 93: 7-12.
73. Davis, CA; Benzer, S. Generation of cDNA expression libraries enriched for in-frame sequences. P N A S USA. 1997; 94(6), 2128-2132.
74. De Genst E, Handelberg F, Van Meirhaeghe A, Vynck S, Loris R, Wyns L, Muyldermans S. Chemical basis for the affinity maturation of a camel single domain antibody. J Biol Chem. 2004; 279(51): 53593-601.
75. De Genst E, Silence K, Ghahroudi MA, Decanniere K, Loris R, Kinne J, Wyns L, Muyldermans S. Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J Biol Chem. 2005; 280(14): 14114-21.
76. De Leon-Rodriguez LM, Ortiz A, Werner AL, Zhang S, Kovacs Z, Kodadek T, Sherry AD. Magnetic resonance imaging detects a specific peptide-protein binding event. J Am Chem Soc. 2002;124(14): 3514-5.
77. Deng S, Xu Y, Liu R. Mimic epitope of aflatoxin B1 screened by phage display technique. Wei Sheng Yan Jiu. 2007; 36(1): 59-62.
78. Dente L, Cesareni G, Cortese R. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 1983 Mar 25;ll(6):1645-55.
79. Dente L, Cesareni G, Micheli G, Felici F, Folgori A, Luzzago A, Monaci P, Nicosia A, Delmastro P. Monoclonal antibodies that recognise filamentous phage: tools for phage display technology. Gene. 1994; 148(1 ):7-13.
80. Dente L, Vetriani C, Zucconi A, Pelicci G, Lanfrancone L, Pelicci PG, Cesareni G. Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J Mol Biol. 1997;269(5):694-703.
81. Deperthes D. Phage display substrate: a blind method for determining protease specificity. Biol Chem. 2002;383(7-8):l 107-12.
82. Deroo S, Muller CP. Antigenic and immunogenic phage displayed mimotopes as substitute antigens: applications and limitations. Comb Chem High Throughput Screen. 2001;4(1):75-110.
83. Desiderio A, Franconi R, Lopez M, Villani ME, Viti F, Chiaraluce R, Consalvi V, Neri D, Benvenuto E. A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold. J Mol Biol. 2001 ;310(3):603-15.
84. Devlin JJ, Panganiban LC, Devlin PE. Random peptide libraries: a source of specific protein binding molecules. Science. 1990;249(4967):404-6.
85. Diaz LK, Wiley EL, Morrow M. Expression of epithelial mucins Mucl, Muc2, and Muc3 in ductal carcinoma in situ of the breast. Breast J. 2001 ;7(l):40-5.
86. Dingwall C, Laskey RA. Nuclear targeting sequences—a consensus? Trends Biochem Sci. 1991;16(12):478-81.
87. Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 1997; 15:3363-3367.
88. Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG. Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res Treat 2000; 62:245-252.
89. Dokland T, Murialdo H. Structural transitions during maturation of bacteriophage lambda capsids. J Mol Biol 1993;233:682-694.
90. Donini M, Morea V, Desiderio A, Pashkoulov D, Villani ME, Tramontano A, Benvenuto E. Engineering stable cytoplasmic intrabodies with designed specificity. J Mol Biol. 2003;330(2):323-32.
91. Dooley H, Flajnik MF. Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymo stoma cirratum. Eur J Immunol. 2005;35(3):936-45.
92. Dore JM, Morard F, Vita N, Wijdenes J. Identification and location on syndecan-1 core protein of the epitopes of B-B2 and B-B4 monoclonal antibodies. FEBS Lett. 1998;426(1):67-70.
93. Dotto GP, Horiuchi K. Replication of a plasmid containing two origins of bacteriophage. J Mol Biol. 1981 Nov 25; 153(1): 169-76.
94. Drife JO, McClelland DB, Pryde A, Roberts MM, Smith II. Immunoglobulin synthesis in the "resting" breast. Br Med J 1976;2(6034):503-6.
95. Duerr DM, White SJ, Schluesener HJ. Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods. 2004; 116(2): 177-80.
96. Dunn IS. Assembly of functional bacteriophage lambda virions incorporating C terminal peptide or protein fusions with the major tail protein. J Mol Biol 1995;248:497-506.
97. Dunn IS. Total modification of the bacteriophage lambda tail tube major subunit protein with foreign peptides. Gene 1996;183:15-21.
98. Eckert DM, Malashkevich VN, Hong LH, Carr PA, Kim PS. Inhibiting HIY-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell. 1999;99(1): 10315.
99. Edelmann P, Martin R, Gallant J. Nonsense suppression context effects in Escherichia coli bacteriophage T4. Mol Gen Genet. 1987;207(2-3):517-8.
100. Edwards BM, Main SH, Cantone KL, Smith SD, Warford A, Yaughan TJ. Isolation and tissue profiles of a large panel of phage antibodies binding to the human adipocyte cell surface. J Immunol Methods. 2000;245(l-2):67-78.
101. Efimov VP, Nepluev IV, Mesyanzhinov VV. Bacteriophage T4 as a surface display vector. Virus Genes 1995;10:173-177.
102. Eichmuller S, Usener D, Dummer R, Stein A, Thiel D, Schadendorf D. Serological detection of cutaneous T-cell lymphoma-associated antigens. Proc Natl Acad Sei USA. 2001;98(2):629-34.
103. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346(6287):818-22.
104. Elzinga M. (ed.) Methods in protein sequence analisys. 1982, Brookhaven National Laboratory, New York.
105. Eroshkin AM, Fomin VI, Zhilkin PA, Kulichkov VA. Protein fragment variability analysis and some principles of protein engineering of vaccines. Protein Eng. 1990;3(5):425-31.
106. Etz H, Minh DB, Schellack C, Nagy E, Meinke A. Bacterial phage receptors, versatile tools for display of polypeptides on the cell surface. J Bacteriol 2001; 183:6924-693 5.
107. Felici F, Castagnoli L, Musacchio A, Jappelli R, Cesareni G. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol. 1991 ;222(2): 301-10.
108. Felici F, Galfre G, Luzzago A, Monaci P, Nicosia A, Cortese R. Phage-displayed peptides as tools for characterization of human sera. Methods Enzymol. 1996;267:116-29.
109. Felici F, Luzzago A, Monaci P, Nicosia A, Sollazzo M, Traboni C. Peptide and protein display on the surface of filamentous bacteriophage. In: Raafat El-Gewely M (ed.). Biotechnology Annual Review, Elsevier, Amsterdam, The Netherlands, 1995;1:149-183.
110. Fellouse FA, Wiesmann C, Sidhu SS. Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci USA. 2004; 101(34): 12467-72.
111. Fellouse FA, Barthelemy PA, Kelley RF, Sidhu SS. Tyrosine plays a dominant functional role in the paratope of a synthetic antibody derived from a four amino acid code. J Mol Biol. 2006; 357(1): 100-14.
112. Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, Chin J, Kelley M, Wakefield J, Hayward NJ, Molineaux SM. Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry. 1999;38(21):6791-800.
113. Finucane MD, Tuna M, Lees JH, Woolfson DN. Core-directed protein design. I. An experimental method for selecting stable proteins from combinatorial libraries. Biochemistry. 1999;38(36):11604-12.
114. Finucane MD, Woolfson DN. Core-directed protein design. II. Rescue of a multiply mutated and destabilized variant of ubiquitin. Biochemistry. 1999;38(36):11613-23.
115. Fischer N, Riechmann L, Winter G. A native-like artificial protein from antisense DNA. Protein Eng Des Sel. 2004; 17(1): 13-20.
116. Flynn CE, Mao C, Hayhurst A, Williams JL, Georgiou G, Iverson B, Belcher AM. Synthesis and organization of nanoscale II-VI semiconductor materials using evolved peptide specificity and viral capsid assembly J. Mater. Chexn., 2003, 13,2414-2421.
117. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science 1991;251:767-773.
118. Folgori A, Luzzago A, Monaci P, Nicosia A, Cortese R, Felici F. Identification of disease-specific epitopes. Methods Mol Biol. 1998;87:195-208.
119. Folgori A, Tafi R, Meola A, Felici F, Galfre G, Cortese R, Monaci P, Nicosia A. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J. 1994;13(9):2236-43.
120. Folmer RH, Nilges M, Folkers PJ, Konings RN, Hilbers CW. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J Mol Biol. 1994;240(4):341-57.
121. Fontana L, Nuzzo M, Urbanelli L, Monaci P. General strategy for broadening adenovirus tropism. J Virol 2003;77:11094-11104.
122. Forrer P, Jaussi R. High-level expression of soluble heterologous proteins in the cytoplasm of Escherichia coli by fusion to the bacteriophage lambda head protein D. Gene 1998;224:45-52.
123. Fournillier-Jacob A, Lunel F, Cahour A, Cresta P, Frangeul L, Perrin M, Girard M, Wychowski C. Antibody responses to hepatitis C envelope proteins in patients with acute or chronic hepatitis C. J Med Virol. 1996 Oct;50(2):159-67.
124. Frangioni JV, Neel BG. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem. 1993;210(1): 179-87.
125. Fritzler MJ, Lung CC, Hamel JC, Griffith KJ, Chan EK. Molecular characterization of Golgin-245, a novel Golgi complex protein containing a granin signature. J Biol Chem. 1995;270(52):31262-8.
126. Gallusser A, Kuhn A. Initial steps in protein membrane insertion. Bacteriophage M13 procoat protein binds to the membrane surface by electrostatic interaction. EMBO J 1990;9:2723-2729.
127. Gao C, Mao S, Kaufmann G, Wirsching P, Lerner RA, Janda KD. A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sei U S A. 2002;99(20): 12612-6
128. Gao C, Mao S, Lo CH, Wirsching P, Lerner RA, Janda KD. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sei U S A. 1999;96(ll):6025-30.
129. Garuffi G et al. (Manuscript in preparation).
130. Gaynor B, Putterman C, Valadon P, Spatz L, Scharff MD, Diamond B. Peptide inhibition of glomerular deposition of an anti-DNA antibody. Proc Natl Acad Sei USA. 1997;94(5): 195560.
131. Georgopoulos C, Tilly K,; Casjens S. Lambdoid phage head assembly. In: Hendrix RW, Roberts JW, Stahl FW, Weiberg RA editors. Lambda II. Cold Spring Harbor Laboratory. 1983; pp. 694.
132. Glennie MJ, van de Winkel JG. Renaissance of cancer therapeutic antibodies. Drug Discov Today. 2003;8(11):503-10.
133. Glucksman MJ, Bhattacharjee S, Makowski L. Three-dimensional structure of a cloning vector. X-ray diffraction studies of filamentous bacteriophage M13 at 7 A resolution. J Mol Biol. 1992;226(2) :455-70.
134. Goldsmith ME, Königsberg WH. Adsorption protein of the bacteriophage fd: isolation, molecular properties, and location in the virus. Biochemistry. 1977 Jun 14;16(12):2686-94.
135. Goodson RJ, Doyle MV, Kaufman SE, Rosenberg S. High-affinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sei USA. 1994;91(15):7129-33.
136. Greenwood J, Willis AE, Perham RN. Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J MolBiol. 1991 ;220(4) :821 -7.
137. Griffiths AD, Williams SC, Hartley O, Tornlinson IM, Waterhouse P, Crosby WL, Kontermann RE, Jones PT, Low NM, Allison TJ, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 1994;13(14):3245-60.
138. Guan Y, Zhang H, Wang AH. Electrostatic potential distribution of the gene V protein from Ff phage facilitates cooperative DNA binding: a model of the GVP-ssDNA complex. Protein Sci. 1995;4(2): 187-97.
139. Guesdon JL, Ternynck T, Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979;27(8):1131-9.
140. Guillemard V, Saragovi HU. Prodrug chernotherapeutics bypass p-glycoprotein resistance and kill tumors in vivo with high efficacy and target-dependent selectivity. Oncogene. 2004;23 (20): 3 613-21.
141. Gupta A, Onda M, Pastan I, Adhya S, Chaudhary VK. High-density functional display of proteins on bacteriophage lambda. J Mol Biol 2003;334:241-254.
142. Haluska P Jr, Saleem A, Rasheed Z, Ahmed F, Su EW, Liu LF, Rubin EH. Interaction between human topoisomerase I and a novel RING finger/arginine-serine protein. Nucleic Acids Res. 1999;27(12):2538-44.
143. Hamanaka Y, Suehiro Y, Fukui M, Shikichi K, Imai K, Hinoda Y. Circulating anti-MUCl IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int J Cancer. 2003;103(1):97-100.
144. Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 1999;9(2):67-81.
145. Hammer J, Takacs B, Sinigaglia F. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. J Exp Med. 1992; 176(4): 1007-13.
146. Hammer J, Valsasnini P, Tolba K, Bolin D, Higelin J, Takacs B, Sinigaglia F. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell. 1993;74(l):197-203.
147. Hansen MH, Nielsen H, Ditzel HJ. The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells. ProcNatl Acad Sci USA 2001;98(22): 12659-64.
148. Harlow E, Lane D. Antibody: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1988:341.
149. Harris JL, Peterson EP, Hudig D, Thornberry NA, Craik CS. Definition and redesign of the extended substrate specificity of granzyme B. J Biol Chem. 1998;273(42):27364-73.
150. Hart TC, Zhang Y, Gorry MC, Hart PS, Cooper M, Marazita ML, Marks JM, Cortelli JR, Pallos D: A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. Am J Hum Genet 2002; 70(4): 943-954.
151. Held HA, Sidhu SS. Comprehensive mutational analysis of the M13 major coat protein: improved scaffolds for C-terminal phage display. J Mol Biol. 2004;340(3):587-97.
152. Hendrix RW, Roberts JW, Stahl FW, Weisberg RA. Lambda II. Cold Spring Harbor Monograph Series #13, Cold Spring Harbor Laboratory, New York. 1983
153. Hoess R, Brinkmann U, Handel T, Pastan I. Identification of a peptide which binds to the carbohydrate-specific monoclonal antibody B3. Gene. 1993; 128(l):43-9.
154. Hoess RH, Ziese M, Sternberg N. PI site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 1982;79:3398-3402.
155. Hoess, RH. Bacteriophage lambda as a vehicle for peptide and protein display. Curr Pharm Biotechnol 2002;3:23-28.
156. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton
157. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126-1136.
158. Holliger P, Riechmann L. A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fd. Structure. 1997;5(2):265-75.
159. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991;19( 15):4133-7.
160. Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol. 2005 ;23(9): 1105-16.
161. Horiuchi K. Co-evolution of a filamentous bacteriophage and its defective interfering particles. J Mol Biol. 1983 Sep 15;169(2):389-407.
162. Houghten RA, Pinilla C, Appel JR, Blondelle SE, Dooley CT, Eichler J, Nefzi A, Ostresh JM. Mixture-based synthetic combinatorial libraries. J Med Chem 1999;42:3743-3778.
163. Huang D, Shusta EV. A yeast platform for the production of single-chain antibody-green fluorescent protein fusions. Appl Environ Microbiol. 2006; 72(12): 7748-59.
164. Hudson PJ, Souriau C. Engineered antibodies. Nat Med. 2003 Jan;9(l): 129-34. Review.
165. Hufton SE, Moerkerk PT, Meulemans EY, de Bruine A, Arends JW, Hoogenboom HR. Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods. 1999;231 (l-2):39-51.
166. Hung LW, Kohmura M, Ariyoshi Y, Kim SH. Structure of an enantiomeric protein, D-monellin at 1.8 A resolution. Acta Crystallogr D Biol Crystallogr. 1998;54(Pt 4):494-500.
167. Hunter GJ, Rowitch DH, Perham RN. Interactions between DNA and coat protein in the structure and assembly of filamentous bacteriophage fd. Nature. 1987;327(6119):252-4
168. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. 1989;246(4935): 1275-81.
169. Iannolo G, Minenkova O, Gonfloni S, Castagnoli L, Cesareni G. Construction, exploitation and evolution of a new peptide library displayed at high density by fusion to the major coat protein of filamentous phage. Biol Chem. 1997;378(6):517-21.
170. Imahayashi S, Ichiyoshi Y, Yoshino I, Eifuku R, Takenoyama M, Yasumoto K. Tumor-infiltrating B-cell-derived IgG recognizes tumor components in human lung cancer. Cancer Invest 2000;18(6):530-6.
171. Imoto T, Yamada H, Ueda T. Unfolding rates of globular proteins determined by kinetics of proteolysis. J Mol Biol. 1986; 190(4):647-9
172. Iwasaki K, Trus BL, Wingfield PT, Cheng N, Campusano G, Rao VB, Steven AC. Molecular architecture of bacteriophage T4 capsid: vertex structure and bimodal binding of the stabilizing accessory protein, Soc. Virology 2000;271:321-333.
173. Jamieson AC, Kim SH, Wells JA. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry. 1994;33(19):5689-95.
174. Jespers LS, Messens JH, De Keyser A, Eeckhout D, Van den Brande I, Gansemans YG, Lauwereys MJ, Vlasuk GP, Stanssens PE. Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Biotechnology (N Y). 1995;13(4):378-82.
175. Jiang J, Abu-Shilbayeh L, Rao VB. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect Immun 1997;65:4770-4777.
176. Jost PJ, Harbottle RP, Knight A, Miller AD, Coutelle C, Schneider H. A novel peptide, THALWHT, for the targeting of human airway epithelia. FEBS Lett. 2001 ;489(2-3):263-9.
177. Kadokura H, Katzen F, Beckwith J. Protein disulfide bond formation in prokaryotes. Annu RevBiochem 2003;72:111-135.
178. Kase D, Kulp JL 3rd, Yudasaka M, Evans JS, Iijima S, Shiba K. Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability. Langmuir. 2004;20(20):8939-41.
179. Katsura I. Structure and function of the major tail protein of bacteriophage lambda. Mutants having small major tail protein molecules in their virion. J Mol Biol. 1981; 146(4), 493-512.
180. Katsura I. Tail assembly and injection. In: Hendrix RW, Roberts JW, Stahl FW, Weiberg RA editors. Lambda II. Cold Spring Harbor Laboratory, 1983; pp. 694.
181. Kay BK, Adey NB, He YS, Manfredi JP, Mataragnon AH, Fowlkes DM. An M13 phage library displaying random 38-amino-acid peptides as a source of novel sequences with affinity to selected targets.Gene 1993;128:59-65.
182. Kazmierczak BI, Mielke DL, Russel M, Model P. pIV, a filamentous phage protein that mediates phage export across the bacterial cell envelope, forms a multimer. J Mol Biol. 1994 Apr 29;238(2): 187-98.
183. Kehoe JW, Kay BK. Filamentous phage display in the new millennium. Chem Rev. 2005 Nov;105(l l):4056-72.
184. Keller PM, Arnold BA, Shaw AR, Tolman RL, Van Middlesworth F, Bondy S, Rusiecki VK, Koenig S, Zolla-Pazner S, Conard P, et al. Identification of HIV vaccine candidate peptides by screening random phage epitope libraries. Virology. 1993; 193(2):709-16.
185. Khlebnikov A, Skaug T, Keasling JD. Modulation of gene expression from the arabinose-inducible araBAD promoter. J Ind Microbiol Biotechnol. 2002;29(l):34-7.
186. Khudyakov Yu E, Khudyakova NS, Jue DL, Lambert SB, Fang S, Fields HA. Linear B-cell epitopes of the NS3-NS4-NS5 proteins of the hepatitis C virus as modeled with synthetic peptides. Virology. 1995 Jan 10;206(1):666-72.
187. Kimura T, Kaburaki H, Miyamoto S, Katayama J, Watanabe Y. Discovery of a novel thrombopoietin mimic agonist peptide. J Biochem (Tokyo). 1997;122(5):1046-51.
188. Kinzler KW, Vogelstein B. Whole genome PCR: application to the identification of sequences bound by gene regulatory proteins. Nucleic Acids Res. 1989; 17(10):3645-53.
189. Kishchenko G, Batliwala H, Makovski L. Structure of a foreign peptide displayed on the surface of bacteriophage M13. J Mol Biol. 1994; 241(2):208-13.
190. Klimka A, Yu N, Shami EY. Construction of proteolysis resistant human interleukin-2 by fusion to its protective single chain antibody. Cytokine. 2003; 22(5): 134-41.
191. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517), 495-497.
192. Koide A, Bailey CW, Huang X, Koide S. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol. 1998; 284(4): 1141-51.
193. Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y). 1995; 13(3): 265-70.
194. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004; 10(6): 625-32.
195. Kotlan B, Simsa P, Gruel N, Foldi J, Fridman WH, Petranyi G, Teillaud JL. A scFv phage display mini library generated from the immunoglobulin repertoire of breast medullary carcinoma infiltrating B lymphocytes. Dis Markers 2000;16(l-2):25-7.
196. Kozlov IA, Mao S, Xu Y, Huang X, Lee L, Sears PS, Gao C, Coyle AR, Janda KD, Wong CH. Synthesis of solid-supported mirror-image sugars: a novel method for selecting receptors for cellular-surface carbohydrates. Chembiochem. 2001;2(10):741-6.
197. Kretzschmar T, Geiser M. Evaluation of antibodies fused to minor coat protein III and major coat protein VIII of bacteriophage Ml 3. Gene. 1995;155(l):61-5.
198. Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW. Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem. 2001;276(23):20572-8.
199. Kridel SJ, Chen E, Smith JW. A substrate phage enzyme-linked immunosorbent assay to profile panels of proteases. Anal Biochem. 2001 ;294(2): 176-84.
200. Kridel SJ, Sawai H, Ratnikov BI, Chen EI, Li W, Godzik A, Strongin AY, Smith JW. A unique substrate binding mode discriminates membrane type-1 matrix metalloproteinase from other matrix metalloproteinases. J Biol Chem. 2002;277(26):23788-93.
201. Kristensen P, Winter G. Proteolytic selection for protein folding using filamentous bacteriophages. FoldDes. 1998;3(5):321-8.
202. Kuwabara I, Maruyama H, Mikawa YG, Zuberi RI, Liu FT, Maruyama IN. Efficient epitope mapping by bacteriophage lambda surface display. Nat Biotechnol 1997;15:74-78.
203. Lang IM, Barbas CF III, Schleef RR. Recombinant rabbit Fab with binding activity to type-1 plasminogen activator inhibitor derived from a phage-display library against human alpha-granules. Gene 1996;172(2):295-8.
204. Lata R, Conway JF, Cheng N, Duda RL, Hendrix RW, Wikoff WR, Johnson JE, Tsuruta H, Steven AC. Maturation dynamics of a viral capsid: visualization of transitional intermediate states. Cell 2000;100:253-263.
205. Latta EK, Tjan S, Parkes RK, O'Malley FP. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod Pathol. 2002;15(12):1318-25.
206. Lee, S.-W.; Belcher, A. M. Virus-Based Fabrication of Micro- and Nanofibers UsingElectrospinning. Nano Lett. 2004,4,387-390.
207. Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P: Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 2002; 30(1): 242-244.
208. Levy R, Molineux IJ, Iverson BL, Georgiou G. Isolation of trans-acting genes that enhance soluble expression of scFv antibodies in the E. coli cytoplasm by lambda phage display. J Immunol Methods. 2007; 321(1-2): 164-73.
209. Li L, Gondi CS, Dinh DH, Olivero WC, Gujrati M, Rao JS. Transfection with Anti-p65 Intrabody Suppresses Invasion and Angiogenesis in Glioma Cells by Blocking Nuclear Factor-{kappa}B Transcriptional Activity. Clin Cancer Res. 2007; 13(7): 2178-90.
210. Lim F, Morris CP, Occhiodoro F, Wallace JC. Sequence and domain structure of yeast pyruvate carboxylase. J Biol Chem 1988; 263: 11493-11497.
211. Lin JT, Lis JT. Glycogen synthase phosphatase interacts with heat shock factor to activate CUP1 gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19: 3237-3245.
212. Lipovsek D, Pluckthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290: 51-67
213. Liu B, Conrad F, Cooperberg MR, Kirpotin DB, Marks JD. Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res. 2004; 64(2): 704-10.
214. Liu Y, O'Connor MB, Mandell KJ, Zen K, Ullrich A, Buhring HJ, Parkos CA. Peptide-mediated inhibition of neutrophil transmigration by blocking CD47 interactions with signal regulatory protein alpha. J Immunol. 2004; 172(4): 2578-85.
215. Lowman HB, Bass SH, Simpson N, Wells JA. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry. 1991; 30(45): 10832-8.
216. Lowman HB, Wells JA. Affinity maturation of human growth hormone by monovalent phage display. J Mol Biol. 1993; 234(3): 564-78.
217. Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z. Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int J Cancer. 2002;97(3):393-9.
218. Lubkowski J, Hennecke F, Phickthun A, Wlodawer A. The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nat Struct Biol. 1998;5(2): 140-7.
219. Luzzago A, Felici F, Tramontano A, Pessi A, Cortese R. Mimicking of discontinuous epitopes by phage-displayed peptides, I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene. 1993;128(l):51-7.
220. Lyons LB, Zinder ND. The genetic map of the filamentous bacteriophage fl. Virology. 1972; 49(l):45-60.
221. Malys N, Chang DY, Baumann RG, Xie D, Black LW. A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gpl7) and late sigma factor (gp55) interaction. J Mol Biol 2002;319:289-304.
222. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959 Apr;22(4):719-48.
223. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM. Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA. 2003; 100(12): 694651.
224. Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science. 2004;303(5655):213-7.
225. Marasco WA. Intrabodies: turning the humoral immune system outside in for intracellular immunization. Gene Ther. 1997;4(l):ll-5.
226. Marciano DK, Russel M, Simon SM. An aqueous channel for filamentous phage export. Science. 1999;284(5419):1516-9.
227. Marcus WD, Lindsay SM, Sierks MR. Identification and repair of positive binding antibodies containing randomly generated amber codons from synthetic phage display libraries. Biotechnol Prog. 2006;22(3):919-22.
228. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. Bypassing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991 ;222(3) :581-97.
229. Martin A, Schmid FX. A proline switch controls folding and domain interactions in the gene-3-protein of the filamentous phage fd. J Mol Biol. 2003; 331(5): 1131-40.
230. Martin CD, Rojas G, Mitchell JN, Vincent KJ, Wu J, McCafferty J, Schofield DJ. A simple vector system to improve performance and utilisation of recombinant antibodies. BMC Biotechnol. 2006; 6: 46.
231. Maruyama IN, Maruyama HI, Brenner S. Lambda foo: a lambda phage vector for the expression of foreign proteins Proc Natl Acad Sci USA 1994;91:8273-8277.
232. Marvin DA, Hale RD, Nave C, Helmer-Citterich M. Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, fl, M13), Ifl and IKe. J. Mol Biol. 1994;235(l):260-86.
233. Marvin DA. Filamentous phage structure, infection and assembly. Curr Opin Struct Biol. 1998;8(2):150-8.
234. Marvin DA. Model-building studies of Inovirus: genetic variations on a geometric theme. Int J Biol Macromol. 1990;12(2):125-38.
235. Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display systemfor identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA 1994;91:9022-9026.
236. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348(6301), 552-554.
237. McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G. Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacterid. 2004; 186(17):5919-25.
238. McConnell SJ, Kendall ML, Reilly TM, Hoess RH. Constrained peptide libraries as a tool for finding mimotopes. Gene. 1994;151(l-2):115-8.
239. McGuckin MA, Quin RJ, Ward BG. Progesterone stimulates production and secretion of MUC1 epithelial mucin in steroid-responsive breast cancer cell lines. Int J Oncol. 1998; 12(4):939-45.
240. McLafferty MA, Kent RB, Ladner RC, Markland W. M13 bacteriophage displaying disulfide-constrained microproteins. Gene. 1993;128(l):29-36.
241. Mead DA, Szczesna-Skorupa E, Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986; l(l):67-74.
242. Messing J. and Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 1982; 19:269-276.
243. Mikawa YG, Maruyama IN, Brenner S. Surface display of proteins on bacteriophage lambda heads. J Mol Biol. 1996;262:21-30.
244. Miller JH, Albertini AM. Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol. 1983;164(1):59-71.
245. Milton RC, Milton SC, Kent SB. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificita. Science. 1992;256(5062): 1445-8.
246. Minenkova 00, Ilyichev AA, Kishchenko GP, Petrenko VA. Design of specific immunogens using filamentous phage as the carrier. Gene. 1993;128(l):85-8.
247. Model P, Russel M. Filamentous bacteriophage. In: Calendar R (ed.), The bacteriophages. Plenum Press, New York 1988;375-456.
248. Montigiani S, Muller R, Kontermann RE. Inhibition of cell proliferation and induction of apoptosis by novel tetravalent peptides inhibiting DNA binding of E2F. Oncogene. 2003;22(32):4943-52.
249. Moriki T, Kuwabara I, Liu FT, Maruyama IN. Protein domain mapping by lambda phage display: the minimal lactose-binding domain of galectin-3. Biochem. Biophys Res Commun. 1999; 265(2), 291-296.
250. Moses PB, Horiuchi K. Effects of transposition and deletion upon coat protein gene expression in bacteriophage fl. Virology. 1982;119(2):231~44.
251. Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P, Sellman BR, Whitesides GM, Collier RJ. Designing a polyvalent inhibitor of anthrax toxin. Nat Biotechnol. 2001;19(10):958-61.
252. Murayama O, Nishida H, Sekiguchi K. Novel peptide ligands for integrin alpha 6 beta 1 selected from a phage display library. J Biochem (Tokyo). 1996 Aug;120(2):445-51.
253. Murialdo H. Bacteriophage lambda DNA maturation and packaging. Annu Rev Biochem 1991;60:125-153 .
254. Naik RR, Jones SE, Murray CJ, McAuliffe JC, Vaia RA, Stone MO. Peptide Templates for Nanoparticle Synthesis Derived from Polymerase Chain Reaction-Driven Phage Display. Adv Funct Mater. 2004; 14: 25-30.
255. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater. 2002; 1(3): 169-72.
256. Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci. 1999;24(l):34-6.
257. Nakano H, Yamazaki T, Ikeda M, Masai H, Miyatake S, Saito T. Purification of glutathione S-transferase fusion proteins as a non-degraded form by using a protease-negative E. coli strain, AD202. Nucleic Acids Res 1994; 22:543-544.
258. Nakatsura T, Senju S, Yamada K, Jotsuka T, Ogawa M, Nishimura Y. Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun. 2001 ;281(4):936-44.
259. Nam KT, Peelle BR, Lee SW, Belcher AM. Genetically Driven Assembly of Nanorings Based on the M13 Virus. Nano Lett. 2004; 4(1), pp 23-27.
260. Neuner P, Cortese R, Monaci P. Codon-based mutagenesis using dimer-phosphoramidites. Nucleic Acids Res. 1998;26(5):1223-7.
261. Newton JR, Miao Y, Deutscher SL, Quinn TP. Melanoma imaging with pretargeted bivalent bacteriophage. J Nucl Med. 2007; 48(3): 429-36.
262. Niwa M, Fukuoka K, Fujimoto T, Maruyama IN. Efficient isolation of cDNA clones encoding rheumatoid arthritis autoantigens by lambda phage surface display. J Biotechnol. 2004;114:55-58.
263. Niwa M, Maruyama H, Fujimoto T, Dohi K, Maruyama IN. Affinity selection of cDNA libraries by lambda phage surface display. Gene 2000;256:229-236.
264. Nord K, Nilsson J, Nilsson B, Uhlen M, Nygren PA. A combinatorial library of an alpha-helical bacterial receptor domain. Protein Eng. 1995;8(6):601-8.
265. Nowakowski A, Wang C, Powers DB, Amersdorfer P, Smith TJ, Montgomery VA, Sheridan R, Blake R, Smith LA, Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sei USA. 2002;99(17):11346-50.
266. O'Brien PM, Tsirimonaki E, Coomber DW, Millan DW, Davis JA, Campo MS. Immunoglobulin genes expressed by B-lymphocytes infiltrating cervical carcinomas show evidence of antigen-driven selection. Cancer Immunol Immunother 2001;50(10):523-32.
267. Oldenburg KR, Loganathan D, Goldstein IJ, Schultz PG, Gallop MA. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc Natl Acad Sei USA. 1992;89(12):5393-7.
268. O'Neil KT, Hoess RH, Jackson SA, Ramachandran NS, Mousa SA, DeGrado WF. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins. 1992; 14(4):509-15.
269. Opalka N, Beckmann R, Boisset N, Simon MN, Rüssel M, Darst SA. Structure of the filamentous phage pIVmultimer by cryo-electron microscopy. J Mol Biol. 2003;325(3):461-70.
270. Orlandi R, Gussow DH, Jones PT, Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sei USA. 1989;86(10):3833-7.
271. Orlandi R, Menard S, Colnaghi MI, Boyer CM, Felici F. Antigenic and immunogenic mimicry of the HER2/neu oncoprotein by phage-displayed peptides. Eur J Immunol. 1994;24(11):2868-73.
272. Pan W, Arnone M, Kendall M, Grafstrom RH, Seitz SP, Wasserman ZR, Albright CF. Identification of peptide substrates for human MMP-11 (stromelysin-3) using phage display. J Biol Chem. 2003;278(30):27820-7.
273. Pan W, Craven RC, Qiu Q, Wilson CB, Wills JW, Golovine S, Wang JF. Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc Natl Acad Sei USA. 1995 92(25): 11509-13
274. Papsidero LD, Sheu M, Ruscetti FW. Human immunodeficiency virus type 1-neutralizing monoclonal antibodies which react with pi7 core protein: characterization and epitope mapping. J Virol. 1989;63(l):267-72.
275. Park JH, Kwon HW, Chung HK, Kim IH, Ahn K, Choi EJ, Pastan I, Choe M. A divalent recombinant immunotoxin formed by a disulfide bond between the extension peptide chains. Mol Cells. 2001 Dec 31;12(3):398-402.
276. Parmley SF, Smith GP. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 1988;73(2):305-318.
277. Patel DJ, Suri AK. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J Biotechnol 2000;74:39-60.
278. Paterson Y, Englander SW, Roder H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science 1990; 249: 755-759.
279. Paz K, Brennan LA, Iacolina M, Doody J, Hadari YR, Zhu Z. Human single-domain neutralizing intrabodies directed against Etk kinase: a novel approach to impair cellular transformation. Mol Cancer Ther. 2005; 4(11): 1801-9.
280. Pedersen JS, Otzen DE, Kristensen P. Directed evolution of barnase stability using proteolytic selection. J Mol Biol. 2002; 323(1): 115-23
281. Pereboeva LA, Pereboev AV, Wang LF, Morris GE. Hepatitis C epitopes from phage-displayed cDNA libraries and improved diagnosis with a chimeric antigen. J Med Virol. 2000 Feb;60(2): 144-51.
282. Pessi A, Bianchi E, Bonelli F, Chiappinelli L. Application of the continuous-flow polyamide method to the solid-phase synthesis of multiple antigen peptide (MAP) based on the sequence of a malaria epitope. J Chem Soc, Chem Commun. 1990;1:8-9.
283. Peters EA, Schatz PJ, Johnson SS, Dower WJ. Membrane insertion defects caused by positive charges in the early mature region of protein pill of filamentous phage fd can be corrected by prlA suppressors. J Bacteriol. 1994;176:4296-4305.
284. Petersen G, Song D, Hugle-Dorr B, Oldenburg I, Bautz EKF. Mapping of linear epitopes recognized by monoclonal antibodies with gene-fragment phage display libraries. Mol Gen Genet 1995;249:425-431.
285. Petrenko VA, Smith GP, Gong X, Quinn T. A library of organic landscapes on filamentous phage. Protein Eng. 1996;9(9):797-801.
286. Pfreundschuh M. Exploitation of the B cell repertoire for the identification of human tumor antigens. Cancer Chemother Pharmacol. 2000; 46 Suppl: S3-7.
287. Phalipon A, Folgori A, Arondel J, Sgaramella G, Fortugno P, Cortese R, Sansonetti PJ, Felici F. Induction of anti-carbohydrate antibodies by phage library-selected peptide mimics. Eur J Immunol. 1997; 27(10): 2620-5.
288. Pincus SH, Smith MJ, Jennings HJ, Burritt JB, Glee PM. Peptides that mimic the group B streptococcal type III capsular polysaccharide antigen. J Immunol. 1998; 160(1): 293-8.
289. Pinilla C, Appel JR, Borras E, Houghten RA. Advances in the use of synthetic combinatorial chemistry: mixture-based libraries. Nat Med 2003; 9: 118-122.
290. Pinilla C, Appel JR, Houghten RA. Tea bag synthesis of positional scanning synthetic combinatorial libraries and their use for mapping antigenic determinants. Methods Mol Biol 1996; 66:171-179.
291. Pluckthun A, Pack P. New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology. 1997; 3(2): 83-105.
292. Pope AR, Embleton M, Mernaugh R. Construction and use of antibody gene repertoires. In: McCafferty J, Hoogenboom H, Chiswell D. Antibody Engineering A practical approach. Oxford: Oxford University Press, 1996:1-40.
293. Prezzi C, Nuzzo M, Meola A, Delmastro P, Galfre G, Cortese R, Nicosia A, Monaci P. Selection of antigenic and immunogenic mimics of hepatitis C virus using sera from patients. J Immunol. 1996; 156(11):4504-13.
294. Punt CJ, Barbuto JA, Zhang H, Grimes WJ, Hatch KD, Hersh EM. Anti-tumor antibody produced by human tumor-infiltrating and peripheral blood B lymphocytes. Cancer Immunol Immunother 1994; 38(4): 225-32.
295. Putterman C, Diamond B. Immunization with a peptide surrogate for double-stranded DNA (dsDNA) induces autoantibody production and renal immunoglobulin deposition. J Exp Med. 1998; 188(1): 29-38.
296. Rajpal A, Turi TG. Intracellular stability of anti-caspase-3 intrabodies determines efficacy in retargeting the antigen. J Biol Chem. 2001; 276(35): 33139-46.
297. Rasched I, Oberer E. Ff coliphages: structural and functional relationships. Microbiol Rev. 1986;50(4):401-27.
298. Rawlings N, Ashman K, Wittmann-Liebold B. Computerised version of the Chou and Fasman protein secondary structure predictive method. Int J Pept Protein Res. 1983; 22(5): 51524.
299. Rebar EJ, Pabo CO. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science. 1994; 263(5147): 671-3.
300. Reche P, Li YL, Fuller C, Eichhora K, Perham RN. Selectivity of post-translational modification in biotinylated proteins: the carboxy carrier rotein of the acetyl-CoA carboxylase of Escherichia coli. Biochem J 1998;329:589-596.
301. Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature. 1989;337(6208):651-3.
302. Reichlin M. Antibodies to Ro and La. Ann Med Interne (Paris). 1998;149(1):34-41.
303. Reiss BD, Mao C, Solis DJ, Ryan KS, Thomson T, Belcher AM.Biological routes to metal alloys ferromagneticnanostructures. Nano Lett 2004,4:1127-1132
304. Ren ZJ, Baumann RG, Black LW. Cloning of linear DNAs in vivo by overexpressed T4 DNA ligase: construction of a T4 phage hoc gene display vector. Gene 1997;195:303-311.
305. Ren ZJ, Black LW. Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid. Gene 1998;215:439-444.
306. Ren ZJ, Lewis GK, Wingfield PT, Locke EG, Steven AC, Black LW. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci 1996;5:1833-1843.
307. Rhyner C, Kodzius R, Crameri R. Direct selection of cDNAs from filamentous phage surface display libraries: potential and limitations. Curr Pharm Biotechnol 2002;3:13-21.
308. Rhyner C, Kodzius R, Crameri R. Direct selection of cDNAs from filamentous phage surface display libraries: potential and limitations. Curr Pharm Biotechnol 2002;3:13-21.
309. Ridgway JB, Ng E, Kern JA, Lee J, Brush J, Goddard A, Carter P. Identification of a human anti-CD55 single-chain Fv by subtractive panning of a phage library using tumor and nontumor cell lines. Cancer Res 1999; 59(11):2718-23.
310. Riechmann L, Holliger P. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell. 1997;90(2):351-60.
311. Riechmann L, Winter G. Novel folded protein domains generated by combinatorial shuffling of polypeptide segments. Proc Natl Acad Sci USA. 2000;97(18):10068-73.
312. Roberts RW, Szostak JW. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 1997;94:12297-12302.
313. Robinson C, Callow M, Stevenson S, Scott B, Robinson BW, Lake RA. Serologic responses in patients with malignant mesothelioma: evidence for both public and private specificities. Am J Respir Cell Mol Biol. 2000;22(5):550-6.
314. Rosenberg A, Griffin K, Studier WS, McCormick M, Berg J, Novy R, Mierendorf R. T7 Select Phage Display System: A powerful new protein display system based on bacteriophage T7. innovations 1996;6:1-6.
315. Roth TA, Weiss GA, Eigenbrot C, Sidhu SS. A minimized M13 coat protein defines the requirements for assembly into the bacteriophage particle. J Mol Biol. 2002;322(2):357-67.
316. Rothe A, Hosse RJ, Power BE. Ribosome display for improved biotherapeutic molecules. Expert Opin Biol Ther. 2006; 6(2): 177-87.
317. Rowitch DH, Hunter GJ, Perham RN. Variable electrostatic interaction between DNA and coat protein in filamentous bacteriophage assembly. J Mol Biol. 1988;204(3):663-74.
318. Rowley MJ, O'Connor K, Wijeyewickrema L. Phage display for epitope determination: a paradigm for identifying receptor-ligand interactions. Biotechnol Annu Rev. 2004;10:151-88.
319. Rudolf MP, Vogel M, Kricek F, Ruf C, Zürcher AW, Reuschel R, Auer M, Miescher S, Stadler BM. Epitope-specific antibody response to IgE by mimotope immunization. J Immunol. 1998;160(7):3315-21.
320. Rüssel M. Filamentous phage assembly. Mol Microbiol. 1991;5(7):1607-13.
321. Rüssel M, Model P. Genetic analysis of the filamentous bacteriophage packaging signal and of the proteins that interact with it. J Virol. 1989;63(8):3284-95.
322. Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem. 2004;279(50):51965-72.
323. Sahin U, Tureci O, Pfreundschuh M. Serological identification of human tumor antigens. Curr Opin Immunol 1997;9:709-716.
324. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sei USA 1995;92:11810-11813.
325. Salcini AE, Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pelicci PG, Di Fiore PP. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev. 1997;11(17):2239-49.
326. Sano K, Shiba K. A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc. 2003;125(47):14234-5.
327. Santi E, Capone S, Mennuni C, Lahm A, Tramontano A, Luzzago A, Nicosia A. Bacteriophage lambda display of complex cDNA libraries: a new approach to functional genomics. J Mol Biol 2000;296:497-508.
328. Santini C, Brennan D, Mennuni C, Hoess RH, Nicosia A, Cortese R, Luzzago A. Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J Mol Biol. 1998;282:125-135.
329. Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater. 2003; 2: 577-585.
330. Sarikaya M. Biomimetics: materials fabrication through biology. Proc Natl Acad Sci USA. 1999;96(25):14183-5
331. Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Tureci O, Sahin U, Pfreundschuh M, Old LJ. Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer. 1998;76(5):652-8.
332. Scanlan MJ, Gordan JD, Williamson B, Stockert E, Bander NH, Jongeneel V, Gure AO, Jager D, Jager E, Knuth A, Chen YT, Old LJ. Antigens recognized by autologous antibody in patients with renal-cell carcinoma. Int J Cancer. 1999;83(4):456-64.
333. Scanlan MJ, Gout I, Gordon CM, Williamson B, Stockert E, Gure AO, Jager D, Chen YT, Mackay A, O'Hare MJ, Old LJ. Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immun. 2001;1:4.
334. Scholler N, Garvik B, Quarles T, Jiang S, Urban N. Method for generation of in vivo biotinylated recombinant antibodies by yeast mating. J Immunol Methods. 2006 Dec 20;317(1-2): 132-43.
335. Schultz J, Milpetz F, Bork P, Ponting CP: SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 1998; 95(11): 5857-5864.
336. Schumacher TN, Mayr LM, Minor DL Jr, Milhollen MA, Burgess MW, Kim PS. Identification of D-peptide ligands through mirror-image phage display. Science. 1996; 271(5257): 1854-7.
337. Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990; 249(4967):3 86-90.
338. Seed B, Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocytereceptor, by a rapid immunoselection procedure. Proc Natl Acad Sci USA 1987;84:3365-3369.
339. Seehaus T, Breitling F, Dubel S, Klewinghaus I, Little M. A vector for the removal of deletion mutants from antibody libraries. Gene 1992; 114(2), 235-237.
340. Shadidi M, Sioud M. An anti-leukemic single chain Fv antibody selected from a synthetic human phage antibody library. Biochem Biophys Res Commun 2001; 280(2): 54852.
341. Shadidi M, Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug Resist Updat. 2003;6(6):363-71.
342. Shao CY, Secombes CJ, Porter AJ. Rapid isolation of IgNAR variable single-domain antibody fragments from a shark synthetic library. Mol Immunol. 2007; 44(4): 656-65.
343. Shively IE, Miller Ph, Ronk M. Microsequence analysis of peptides and proteins. VI. A continuous flow reactor for sample concentration and sequence analysis. Analit Biochem. 1980; 163: 517-529.
344. Sibilia M, Fleischmairn A, Behrens A, Stingl L, Carroll J, Watt FM, Schlessinger J, Wagner EF: The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 2000; 102(2): 211-220.
345. Sibille P, Ternynck T, Nato F, Buttin G, Strosberg D, Avrameas A. Mimotopes of polyreactive anti-DNA antibodies identified using phage-display peptide libraries. Eur J Immunol. 1997; 27(5): 1221-8.
346. Sikora K, Alderson T, Phillips J, Watson JV. Human hybridomas from malignant gliomas. Lancet 1982; 1(8262): 11-4.
347. Sikora K, Alderson T, Ellis J, Phillips J, Watson J. Human hybridomas from patients with malignant disease. Br J Cancer 1983; 47(1): 135-45.
348. Sidhu SS, Weiss GA, Wells JA. High copy display of large proteins on phage for functional selections. J Mol Biol. 2000; 296(2): 487-95.
349. Sidhu SS. Engineering M13 for phage display. Biomol Eng. 2001; 18(2): 57-63.
350. Sieber V, Pluckthun A, Schmid FX. Selecting proteins with improved stability by a phage-based method. Nat Biotechnol. 1998; 16(10): 955-60.
351. Sillibourne JE, Milne DM, Takahashi M, Ono Y, Meek DW: Centrosomal anchoring of the protein kinase CK1 delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450. J Mol Biol 2002; 322(4): 785-797.
352. Smedley D, Hamoudi R, Lu YJ, Cooper C, Shipley J. Cloning and mapping of members of the MYM family. Genomics. 1999; 60(2): 244-7.
353. Smith DB. Purification of glutathione S-transferase fusion proteins. Methods Mol Cell Biol. 1993,'4: 220-229.
354. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228: 1315-1317.
355. Smith GP. Filamentous phages as cloning vectors. Biotechnology. 1988; 10: 61-83.
356. Smith G.P. Filamentous phage assembly: Morphogenetically defective mutants that do not kill the host. Virology 1988; 167: 156-165.
357. Smith DB, Johnson KS. Single step purification of polypeptides expressed in Escherechia coli as fusion with glutatione S-transferase. Gene 1988; 67: 31-40.
358. Smith GP, Patel SU, Windass JD, Thornton JM, Winter G, Griffiths AD. Small binding proteins selected from a combinatorial repertoire of knottins displayed on phage. J Mol Biol. 1998; 277(2): 317-32.
359. Smith GP, Petrenko VA. Phage display. Chem Rev 1997; 97: 391-410
360. Smith GP, Schultz DA, Ladbury JE. A ribonuclease S-peptide antagonist discovered with a bacteriophage display library. Gene. 1993; 128(1): 37-42.
361. Smith GP, Scott JK. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 1993; 217: 228-57.
362. Soberon X, Covarrubias L, Bolivar F. Construction and characterization of new cloning vehicles. IV. Deletion derivatives ofpBR322 and pBR325. Gene. 1980; 9(3-4): 287-305.
363. Sompuram SR, Vani K, Hafer LJ, Bogen SA. Antibodies immunoreactive with formalin-fixed tissue antigens recognize linear protein epitopes. Am J Clin Pathol. 2006; 125(1): 82-90.
364. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 1997; 275(5296): 73-7.
365. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, et al. SH2 domains recognize specific phosphopeptide sequences. Cell. 1993; 72(5): 767-78.
366. Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T, et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol. 1994; 14(4): 2777-85.
367. Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 1990; 50(18): 6075-86.
368. Spada S, Krebber C, Pluckthun A. Selectively infective phages (SIP). Biol Chem. 1997; 378(6): 445-56.
369. Sparks AB, Hoffman NG, McConnell SJ, Fowlkes DM, Kay BK. Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins. Nat Biotechnol. 1996; 14(6): 741-4.
370. Sparks AB, Quilliam LA, Thorn JM, Der CJ, Kay BK. Identification and characterization of Src SH3 ligands from phage-displayed random peptide libraries. J Biol Chem. 1994; 269(39): 23853-6.
371. Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science. 2004; 305(5691): 1770-3.
372. Starovasnik MA, Braisted AC, Wells JA. Structural mimicry of a native protein by a minimized binding domain. Proc Natl Acad SciU S A. 1997; 94(19): 10080-5.
373. Sternberg N, Hoess RH. Display of peptides and proteins on the surface of bacteriophage lambda. Proc Natl Acad Sci USA 1995; 92: 1609-1613.
374. Steven AC, Greenstone H, Bauer AC, Williams RW. The maturation-dependent conformational change of the major capsid protein of bacteriophage T4 involves a substantial change in secondary structure. Biochemistry 1990; 29: 5556-5561.
375. Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A, Old LJ. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 1998; 187: 1349-1354.
376. Stolz J, Ludwig A, Sauer N. Bacteriophage lambda surface display of a bacterial biotin acceptor domain reveals the minimal peptide size required for biotinylation. FEBS Lett. 1998; 440(1-2): 213-217.
377. Stolz J, Ludwig A, Stadler R, Biesgen C, Hagemann K, Sauer N. Structural analysis of a plant sucrose carrier using monoclonal antibodies and bacteriophage lambda surface display. FEBS Lett. 1999; 453(3): 375-379.
378. Streltsov V, Nuttall S. Do sharks have a new antibody lineage? Immunol Lett. 2005; 97(1): 159-60.
379. Streltsov VA, Varghese JN, Carmichael JA, Irving RA, Hudson PJ, Nuttall SD. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proc Natl Acad Sci USA. 2004; 101(34): 12444-9.
380. Tahtinen M, Gombert F, Hyytinen ER, Jung G, Ranki A, Krohn KJ. Fine specificity of the B-cell epitopes recognized in HIV-1 NEF by human sera. Virology. 1992; 187(1): 156-64.
381. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y: Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell 2002; 13(9): 3235-3245.
382. Takamizawa A, Mori C, Fuke I, Manabe S, Murakami S, Fujita J, Onishi E, Andoh T, Yoshida I, Okayama H. Structure and organization of the hepatitis C virus genome isolated from human carriers. J Virol. 1991; 65(3): 1105-13.
383. Tam JP. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A. 1988; 85(15): 5409-13.
384. Tarnovitski N, Matthews LJ, Sui J, Gershoni JM, Marasco WA. Mapping a neutralizing epitope on the SARS coronavirus spike protein: computational prediction based on affinity-selected peptides. J Mol Biol. 2006; 359(1): 190-201.
385. Thomas E, Berner G. Prognostic and predictive implications of HER2 status for breast cancer patients. Eur J Oncol Nurs. 2000; 4(Sa): 10-7.
386. Tominaga O, Unsal K, Zalcman G, Soussi T. Detection of p73 antibodies in patients with various types of cancer: immunological characterization. Br J Cancer 2001; 84: 57-63.
387. Topping KP, Hough VC, Monson JR, Greenman J. Isolation of human colorectal tumour reactive antibodies using phage display technology. Int J Oncol 2000; 16(1): 187-95.
388. Tsunetsugu-Yokota Y, Tatsumi M, Robert V, Devaux C, Spire B, Chermann JC, Hirsch I. Expression of an immunogenic region of HIV by a filamentous bacteriophage vector. Gene. 1991; 99(2): 261-5.
389. Tureci O, Sahin U, Neumann F, Pfreundschuh M. Exploitation of the antibody repertoire of cancer patients for identification of human tumor antigens. Hybridoma 1999; 18: 23-28.
390. Tureci O, Sahin U, Pfreundschuh M. Serological analysis of human tumor antigens: molecular definition and implications. Mol Med Today 1997; 3: 342-349.
391. Tureci O, Sahin U, Zwick C, Koslowski M, Seitz G, Pfreundschuh M. Free in PMC Identification of a meiosis-specific protein as a member of the class of cancer/testis antigens. Proc Natl Acad Sci USA. 1998; 95(9): 5211-6.
392. Turner DJ, Ritter MA, George AJ. Importance of the linker in expression of single-chain Fv antibody fragments: optimisation of peptide sequence using phage display technology. J Immunol Methods. 1997; 205(1): 43-54.
393. Vaccaro P, Pavoni E, Monteriu G, Andrea P, Felici F, Minenkova O. Efficient display of scFv antibodies on bacteriophage lambda. J Immunol Methods. 2006;310(l-2):149-58.
394. Vispo NS, Felici F, Castagnoli L, Cesareni G. Hybrid Rop-pIII proteins for the display of constrained peptides on filamentous phage capsids. Ann Biol Clin (Paris). 1993; 51(10-11): 917-22.
395. Viti F, Nilsson F, Demartis S, Huber A, Neri D. Design and use of phage display libraries for the selection of antibodies and enzymes. Methods Enzymol. 2000; 326: 480-505.
396. Wallis NG, Perham RN. Structural dependence of post-translational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex. J Mol Biol 1994; 236: 209-216.
397. Wang LF, Du Plessis DH, White JR, Hyatt AD, Eaton BT. Use of a gene-targeted phage display random epitope library to map an antigenic determinant on the bluetongue virus outer capsid protein VP5. J Immunol Methods 1995; 178: 1-12.
398. Wang R, Fang D, Liu W, Luo Y. Aberrant expression of MUC2 and MUC3 genes in gastric carcinoma and its significance. Chin Med J (Engl). 2000; 113(6): 502-7.
399. Ward ES, Gussow D, Griffiths AD, Jones PT, Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989; 341(6242): 544-6.
400. Weiss GA, Sidhu SS. Design and evolution of artificial M13 coat proteins. J Mol Biol. 2000; 300(1): 213-9
401. Weiss GA, Wells JA, Sidhu SS. Mutational analysis of the major coat protein of M13 identifies residues that control protein display. Protein Sci. 2000; 9(4): 647-54.
402. Wiesehan K, Buder K, Linke RP, Patt S, Stoldt M, Unger E, Schmitt B, Bucci E, Willbold D. Selection of D-amino-acid peptides that bind to Alzheimer's disease amyloid peptide abetal-42 by mirror image phage display. Chembiochem. 2003; 4(8): 748-53.
403. Willis AE, Perham RN, Wraith D. Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene. 1993; 128(1): 79-83.
404. Witczak O, Skalhegg BS, Keryer G, Born ens M, Tasken K, Jahnsen T, Orstavik S: Cloning and characterization of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450. EMBO J 1999; 18(7): 1858-1868.
405. Wong KK, Stillwell LC, Dockery CA, Saffer JD. Use of tagged random hexamer amplification (TRHA) to clone and sequence minute quantities of DNA-application to a 180 kb plasmid isolated from Sphingomonas F199. Nucleic Acids Res 1996;24:3778-3783.
406. Wong WT, Schumacher C, Salcini AE, Romano A, Castagnino P, Pelicci PG, Di Fiore PP. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Epsl5 and conserved in evolution. Proc Natl Acad Sci USA. 1995; 92(21): 9530-4.
407. Worn A, Auf der Maw A, Escher D, Honegger A, Barberis A, Pluckthun A. Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J Biol Chem. 2000; 275(4): 2795-803.
408. Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ. Small peptides as potent mimetics of the protein hormone erythropoietin. Science. 1996; 273(5274): 458-64.
409. Wu AM, Tan GJ, Sherman MA, Clarke P, Olafsen T, Forman SJ, Raubitschek AA. Multimerization of a chimeric anti-CD20 single-chain Fv-Fc fusion protein is mediated through variable domain exchange. Protein Eng. 2001; 14(12): 1025-33.
410. Wu M, Pasula R, Smith PA, Martin WJ 2nd. Mapping alveolar binding sites in vivo using phage peptide libraries. GeneTher. 2003; 10(17): 1429-36.
411. Xu MY, Xu XH, Chen GZ, Deng XL, Li J, Yu XJ, Chen MZ. Production of a human single-chain variable fragment antibody against esophageal carcinoma. World J Gastroenterol 2004; 10(18): 2619-23.
412. Yang WP, Green K, Pinz-Sweeney S, Briones AT, Burton DR, Barbas CF 3rd. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J Mol Biol. 1995; 254(3): 392-403.
413. Yang F, Forrer P, Dauter Z, Conway JF, Cheng N, Cerritelli ME, Steven AC, Pluckthun A, Wlodawer A. Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD. Nat. Struct. Biol., 2000; 7: 230-237.
414. Yao N, Hesson T, Cable M, Hong Z, Kwong AD, Le HV, Weber PC. Structure of the hepatitis C virus RNA helicase domain. Nat Struct Biol. 1997; 4(6): 463-7.
415. Yasuda M, Takenoyama M, Obata Y, Sugaya M, So T, Hanagiri T, Sugio K, Yasumoto K. Tumor-infiltrating B lymphocytes as a potential source of identifying tumor antigen in human lung cancer. Cancer Res 2002; 62(6): 1751-6.
416. Yip YL, Hawkins NJ, Clark MA, Ward RL. Evaluation of different lymphoid tissue sources for the construction of human immunoglobulin gene libraries. Immunotechnology 1997;3:195-203.
417. Young RA, Davis RW. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci USA 1983; 80: 1194-1198.
418. Yu J, Smith GP. Affinity maturation of phage-displayed peptide ligands. Methods Enzymol. 1996; 267: 3-27.
419. Yuwen H, Hsia CC, Nakashima Y, Evangelista A, Tabor E. Binding of wild-type p53 by topoisomerase II and overexpression of topoisomerase II in human hepatocellular carcinoma. Biochem Biophys Res Commun. 1997; 234(1): 194-7.
420. Zawadzke LE, Berg JM. A Racemic Protein. J Am Chem Soc. 1992; 114, 4002-4003.
421. Zhang H, Lake DF, Barbuto J A, Bernstein RM, Grimes WJ, Hersh EM. A human monoclonal antimelanoma single-chain Fv antibody derived from tumor-infiltrating lymphocytes. Cancer Res 1995; 55(16): 3584-91.
422. Zhang Y, Pak JW, Maruyama IN, Machida M. Affinity selection of DNA-binding proteins displayed on bacteriophage lambda. J Biochem (Tokyo) 2000; 127: 1057-1063.
423. Zhou X, Chang YC, Oyama T, McGuire MJ, Brown KC. Cell-specific delivery of a chemotherapeutic to lung cancer cells. J Am Chem Soc. 2004; 126(48): 15656-7.
424. Zhumabayeva B, Diatchenko L, Chenchik A, Siebert PD. Use of SMART-generated cDNA for gene expression studies in multiple human tumors. Biotechniques. 2001; 30(1): 158-63.
425. Zucconi A, Dente L, Santonico E, Castagnoli L, Cesareni G. Selection of ligands by panning of domain libraries displayed on phage lambda reveals new potential partners of Synaptojanin 1. JMolBiol 2001; 307: 1329-1339.
- Миненкова, Ольга Олеговна
- доктора биологических наук
- Кольцово, 2007
- ВАК 03.00.03
- Рекомбинантные миниантитела человека в формате scFv к энтеротоксину A стафилококков
- Летальный фактор из Bacillus anthracis
- Пептиды-имитаторы эпитопов ВИЧ-1, узнаваемых нейтрализующими антителами широкого спектра действия
- Определение антигенных детерминант белков вируса гепатита С методом фагового дисплея
- Использование фаговых мини-антител для иммуноанализа диагностически-значимых антигенов