Бесплатный автореферат и диссертация по биологии на тему
Золотые наностержни: синтез, оптические свойства и потенциальные применения в биосенсорике
ВАК РФ 03.00.02, Биофизика

Содержание диссертации, кандидата физико-математических наук, Алексеева, Анна Вячеславовна

Список сокращений.

Введение.

Глава 1. Обзор литературы и постановка задач исследования.

1.1 Методы синтеза металлических наночастиц.

1.1.1 Классификация методов синтеза.

1.1.2 Методы синтеза золотых наносфер.

1.1.3 Методы синтеза золотых наностержней.

1.1.3.1 Синтез золотых наностержней с использованием «жестких» матриц.

1.1.3.2 Синтез золотых наностержней на «мягких» матрицах.

1.1.4 Методы синтеза серебряных частиц.

1.1.5 Золотосеребряные наночастицы.

1.1.6 Модели роста наностержней.

1.2 Оптические свойства металлических гидрозолей.

1.2.1 Поверхностно-плазмонный резонанс.

1.2.2 Оптические свойства сферических наночастиц.

1.2.3 Оптические свойства стержнеобразных наночастиц.

1.3 Методы исследования наностержней.

1.3.1 Микроскопические методы исследования

1.3.2 Оптические методы.

1.3.2.1 Спектроскопия поглощения и резонансного светорассеяния.

1.3.2.2 Динамическое светорассеяние.

1.4 Биосенсоры на основе металлических наночастиц.

1.4.1 Функционализация металлических наночастиц.

1.4.2 Детектирование биомолекулярных взаимодействий в растворах.

1.4.3 Твердофазные методы анализа.

1.4.4 Одночастичное детектирование методом микроспектрометрии рассеяния в темном поле.

1.5 Постановка задач исследования.„

Глава 2. Синтез металлических наностержней заданной формы.

2.1. Синтез золотых наностержней.

2.2. Синтез золотых наностержней в присутствии ионов серебра.

2.2.1 Приготовление образцов НСт и оптический контроль динамики синтеза.

2.2.2 Управление размерами НСт.

2.3 Сепарирование наночастиц.

Введение Диссертация по биологии, на тему "Золотые наностержни: синтез, оптические свойства и потенциальные применения в биосенсорике"

Начало научного исследования свойств коллоидных благородных металлов традиционно связывают с именем Майкла Фарадея [1]. Тем не менее, растворы коллоидного золота были хорошо знакомы алхимикам (3 -16 вв. н.э.), и, возможно, удивительные цветовые превращения, сопровождающие конденсацию металлов при восстановлении из растворов солей, приводили к мысли о превращении элементов - трансмутации.

В настоящее время конъюгаты коллоидного золота с биоспецифическими макромолекулами широко применяются в иммунохимических исследованиях с использованием световой и электронной микроскопии, твердофазного иммуноанализа. Это объясняется уникальными электрохимическими и оптическими свойствами частиц золей золота, обладающих высокой электронной плотностью, сильным поглощением в видимой области светового спектра (интенсивной окраской), способностью нековалентно связываться с биоспецифическими зондами. Благодаря этим свойствам препараты коллоидного золота превосходят аналоги (конъюгаты с ферментными, изотопными, флуоресцентными метками) по чувствительности, простоте использования.

В последние годы наночастицы коллоидного золота, серебра, а также сплавные частицы, широко используются как эффективные оптические преобразователи биоспецифических взаимодействий. В частности, резонансные оптические свойства нанометровых металлических частиц успешно применяются для разработки так называемых биочипов и биосенсоров. Подобные устройства представляют большой интерес для биологии (определение нуклеиновых кислот, белков и метаболитов), медицины (скрининг лекарственных веществ, выявление антител и антигенов, диагностика инфекций) и химии (экспресс-мониторинг окружающей среды, количественный анализ растворов и дисперсных систем). Особый интерес представляет обнаружение определенных последовательностей нуклеиновых кислот (генов) и конструирование новых материалов, основанное на образовании трехмерных упорядоченных структур при гибридизации в растворах с комплементарными олигонуклеотидами, ковалентно связанными с металлическими наночастицами.

Детектирование биоспецифических взаимодействий, основанное на изменении оптических свойств системы наночастиц-//осшяелем, можно отнести к области сравнительно новой отрасли науки — биосенсорике. Причем биосенсором является сама система либо частица-маркер (элементарный сенсор). Коллоидное золото в ряду оптических биосенсоров занимает особое место, поскольку, может выступать и в роли метки в наносенсорном устройстве, и как инструмент в молекулярно-биологических исследованиях, используемый in vitro, in situ и in vivo.

Большинство из рассматриваемых в данной работе вопросов можно также отнести к области сравнительно новой и бурно развивающейся науки нанотехнологии, точнее, биохимии и биофизике наноразмерных структур. То, что классические объекты коллоидной химии выделяют в отдельную область наноразмерных структур, аргументировано представлено в недавних обзорах В.И. Ролдугина [2] и М. Кортье [3]. Основным принципиальным отличием нанотехнологического описания высокодисперсных систем является определение свойств отдельных наноструктурных объектов и манипулирование отдельными наночастицами. В молекулярной биологии это означает создание устройств, позволяющих распознавать отдельные молекулы.

Несферические наночастицы благородных металлов представляют большой интерес из-за их уникальных оптических свойств, обусловленных настраиваемым продольным плазмонным резонансом [4-6]. Для направленного синтеза наностержпей необходимо создавать искусственно анизотропные условия роста, использовать различные «матрицы». В последнее время наибольшей популярностью пользуются зародышевые методы синтеза металлических наностержней на мицеллярных матрицах поверхностно-активных веществ (ПАВ).

Зависимость плазмонного резонанса от диэлектрического окружения лежит в основе развиваемых в настоящее время биомедицинских приложений золотых и серебряных наночастиц как элементарных оптических биосенсоров, преобразующих специфические взаимодействия закрепленных на частицах молекул-зондов с молекулами-мишенями в детектируемый оптический сигнал [7-10]. Вследствие высокой яркости [11, 12] и повышенной чувствительности резонансного рассеяния к диэлектрическому окружению, по сравнению с эквиобъемными сферами [13, 14], несферические наночастицы имеют многообещающие перспективы использования в биомедицинских диагностических целях с применением световой микроскопии темного поля [15-17].

Отличительной особенностью стержнеобразных наночастиц является наличие в их спектрах экстинкции дополнительной плазмонной резонансной полосы, смещенной в длинноволновую область спектра относительно пика, характерного для сферических частиц. Это связано с появлением второго «характерного размера» по сравнению с наносферами - длиной оси стержнеобразной частицы и соответствующим разделением поверхностно-плазмонного резонанса на две моды: поперечную (перпендикулярную длинной оси частицы) и продольную (параллельную длинной оси).

Для оптического мониторинга различных стадий синтеза биомаркеров на основе плазмонно-резонансных частиц широко используется абсорбционная спектроскопия, позволяющая оперативно получить информацию о полидисперсности золя, форме и размере наночастиц и их локальном окружении. В дополнение к спектрам поглощения, резонансное рассеяние света представляет новые возможности для исследования дисперсного состава металлозолей [18, 19], структуры адсорбционного полимерного слоя на поверхности наночастиц [20], аналитических [21, 22] и биомедицинских приложений [23-25]. Однако наиболее широкие перспективы в исследовании оптических свойств плазмонно-резонансных частиц и биоспецифических взаимодействий на таких частицах дает подход, комбинирующий использование обычной спектроскопии экстинкции, дифференциальную спектроскопию светорассеяния и измерения деполяризации рассеянного лазерного света.

Научная новизна работы:

Метод синтеза золотых наностержней на «мягких» матрицах ПАВ впервые оптимизирован введением оригинального этапа центрифугирования в градиенте концентрации глицерина и применением спектроскопии рассеяния для характеристики фракций препарата [26, 27].

Впервые из препаратов наностержней (метод Nikoobakth-El-Sayed [28]) получена отдельная фракция частиц с плазмонным резонансом около 570 нм, который соответствует частицам кубической формы (Pileni et al. [29]) [26, 27].

Впервые (независимо от Al-Sherbini [30] и Perez-Juste et al. [31]) экспериментально показано, что продольный плазмонный резонанс золотых наностержней обладает большей чувствительностью к диэлектрическому окружению, по сравнению с золотыми наносферами [26].

Впервые получены конъюгаты золотых наностержней со стафилококковым белком А и показана возможность их использования в методе дот-анализа [27].

Резонансное рассеяние неполяризованного света в микроскопии темного поля впервые применено для сравнительного анализа трансляционной диффузии сферических частиц (90 нм) и вращательной диффузии золотых наностержней (толщина порядка 15 нм, длина около 40 нм) [32] (в работе 2005 года Sonnichsen et al. [16] описано первое наблюдение модуляции поляризованного света за счет движения стержней в плоскоети наблюдения).

Научно-практическая значимость работы:

Разработанные методы синтеза металлических гидрозолей с частицами заданных размеров и формы и их функционализации с применением широкого спектра белковых и нуклеотидных зондов могут быть использованы для создания разнообразных биохимических и молекулярно-генетических диагностических и биосенсорных систем нового поколения. Полученные препараты наностержней переданы в ряд научных организаций России (ФГУП ГНЦ НИОПИК, ФИАН РАН) и США (Медуниверситет Арканзаса) для исследования селективного фототермолиза раковых клеток.

Разработанные методики синтеза и функционализации наностержней, а также готовые препараты используются в практических занятиях для студентов кафедры биофизики факультета нелинейных процессов, химического и биологического факультетов СГУ.

Достоверность научных результатов подтверждается воспроизводимостью экспериментальных данных и их соответствием теоретическим расчетам, а также качественным и количественным согласием с результатами независимых исследований других авторов.

На защиту выносятся следующие основные положении:

Параметрами, управляющими формой (осевым отношением) золотых наностержней, получаемых в мицеллярных растворах ПАВ зародышевым способом, являются: концентрация и состав ПАВ, соотношение ионов золота и серебра в ростовом растворе и количество добавляемых золотых зародышей.

Применение центрифугирования в градиенте концентрации глицерина позволяет получить фракцию наностержней с минимальным количеством побочных продуктов - наносфер и нанопризм (кубов).

Золотые стержни с толщиной 15-20 нм и осевым отношением "2-3 являются оптимальной нанотехнологической платформой для синтеза биоспецифических меток, используемых для детектирования молекулярного узнавания и в темнополевой визуализации биологических структур.

Продольный плазмонный резонанс значительно более чувствителен к локальному диэлектрическому окружению наночастиц по сравнению с поперечным и с резонансом наносфер эквивалентного объема. Относительный сдвиг резонанса наностержней пропорционален относительному изменению показателя преломления окружающей среды.

Модуляция интенсивности светорассеяния, регистрируемая с помощью световой микроскопии темного поля, обусловлена трехмерным броуновским движением отдельных золотых наностержней и потенциально может быть использована при разработке нового динамического типа биосенсоров.

Личный вклад диссертанта и результаты, полученные совместно с другими исследователями:

На защиту выносятся только те положения и результаты экспериментов, основная идея которых принадлежит автору и в получении которых роль автора была определяющей.

Все основные экспериментальные результаты диссертации, прежде всего касающиеся исследования механизмов синтеза наностержней, получены лично автором. Постановка задач исследования и обсуждение экспериментальных результатов проведены под руководством д.б.н. В.А. Богатырева. Интерпретация оптических измерений и расчетов выполнена при участии проф. Н.Г. Хлебцова. Теоретические расчеты выполнены совместно с аспирантом Трачук JT.A., к.ф.-м.н. Хлебцовым Б.И. и проф. Хлебцовым Н.Г. Измерения деполяризации лазерного рассеяния и эксперименты по методу динамического светорассеяния проведены совместно с к.ф.-м.н. Хлебцовым Б.Н. Работы по функционализации частиц выполнены совместно с д.б.н. Дыкманом JI.A.

Работа выполнена на кафедре биофизики Саратовского государственного университета им. Н. Г. Чернышевского и в Лаборатории биосенсоров на основе наноразмерных структур ИБФРМ РАН в рамках плановой госбюджетной темы НИР «Развитие методов светорассеяния и электрооптики применительно к анализу природных и синтетических дисперсных систем» (науч. рук. зав. лаб. д.ф.-м.н. профессор Хлебцов Н.Г., № гос. per. 01912022281). Гранты

Данные исследования поддерживались грантами РФФИ (проекты №№ 01-03-33130, 01-04-48736, 04-04-48224 и 05-02-16776) и совместным грантом фонда CRDF и Минобразования РФ № REC-006. Апробация результатов

Основные результаты диссертации представлялись на следующих научных конференциях:

Saratov Fall Meeting - International School for Young Scientists and Students on Optics, Laser Physics & Biophysics, Saratov, Russia, 20022005;

V Всероссийской конференции молодых ученых «Современные проблемы теоретической и экспериментальной химии», Саратов, 2005;

9-ой Международной Путинской школе-конференции молодых ученых «Биология — наука XXI века», Пугцино, 2005; научных конференциях и семинарах ИБФРМ РАН (2003-2006). Публикации

По теме диссертации опубликовано 14 работ, в том числе 4 статьи в рецензируемых зарубежных журналах и журналах РАН и 3 статьи в зарубежных изданиях.

Структура диссертации такова. первой главе дан анализ литературных данных, включая методы синтеза золотых, серебряных и золотосеребряных стержнеобразных наночастиц, обсуждаются оптические свойства сферических и стержнеобразных плазмонно-резонансных ианочастиц и возможности использования наностержней в биосенсорике. Вторая глава посвящена оптимизация технологии получения золотых наностержней и исследованию физико-химических параметров, влияющих на размер и геометрию частиц. В третьей главе проведено теоретическое и экспериментальное исследование оптических свойств золотых наностержней на основе комбинированного использования спектроскопии поглощения, дифференциальной спектроскопии статического рассеяния света и динамического светорассеяния. В четвертой главе обсуждаются перспективы использования стержнеобразных наночастиц в биосенсорике, предлагаются новые методы функционализации наностержней (стафилококковым белком А и тиолированными олигонуклеотидами), рассмотрены статический и динамический режимы анализа наностержней методом микроскопии темного поля.

Диссертационная работа изложена на 155 страницах, содержит 30 рисунков, 5 таблиц, и 229 литературных источников.

Заключение Диссертация по теме "Биофизика", Алексеева, Анна Вячеславовна

Основные результаты проведенных экспериментов и теоретических расчетов, выполненных в данной работе, позволяют сделать следующие выводы:

1. Методами спектроскопии поглощения и статического рассеяния света, динамического светорассеяния и электронной микроскопии исследован механизм формирования золотых наностержней в технологии, основанной на восстановлении ЗХВК в присутствии ультрадисперсных зародышей, ионов серебра и анизотропных мицелл ПАВ. Показано, что осевое I отношение частиц управляется тремя параметрами: (1) концентрацией и составом ПАВ, (2) соотношением ионов золота и серебра в ростовом растворе и (3) количеством добавляемых золотых зародышей. Практически разработана воспроизводимая технология синтеза наностержней с настраиваемым продольным плазмонным резонансом в области 600-1000 нм (осевое отношение от 2 до 5).

2. Экспериментально показано, что комбинация методов дифференциальной спектроскопии поглощения и рассеяния вместе с измерениями деполяризации лазерного рассеяния позволяют дать среднюю по ансамблю характеристику формы и полидисперсности частиц.

3. Разработана модификация метода синтеза, использующая фракционирование в градиенте концентрации глицерина, позволяющая

V • получить фракцию наностержней с минимальным количеством побочных продуктов. Показано, что третья (нижняя) фракция имеет нетипичный плазмонный резонанс на 570 нм, соответствующий кубическим частицам.

4. Экспериментально1 показано, что относительный сдвиг продольного плазмонного резонанса наностержней пропорционален относительному изменению показателя преломления и существенно превышает аналогичный сдвиг для золотых наносфер эквивалентного объема. Этот вывод согласуется с теоретической оценкой на основе дипольного приближения.

5. Получены конъюгаты золотых наностержней со стафилококковым белком А? которые были использованы в методе дот-анализа для биоспецифического выявления IgG. Экспериментально показана возможность функционализации наностержней с помощью тиолированных однонитевых олигонуклеотидов.

6. Методом резонансного рассеяния в темном поле микроскопа обнаружены существенные различия в динамическом изменении рассеянной интенсивности для золотых наносфер (90 нм) и наностержней (15x40 нм), помещенных в 50% раствор глицерина. Показано, что во втором случае модуляция осуществляется за счет вращательной броуновской диффузии стержней.

Заключение и выводы по диссертации

На основании анализа обширного литературного материала и результатов собственных теоретических и экспериментальных исследований по управляемому синтезу металлических стержнеобразных наночастиц различных размеров, функционализации их биоспецифическими макромолекулами и изучению оптических свойств наностержней, а также НСт-маркеров в процессе взаимодействия с молекулами-мишенями методами спектроскопии поглощения и рассеяния, динамического светорассеяния и световой микроскопии можно сформулировать общий вывод: металлические плаз'монно-резонансные стержнеобразные наночастицы являются эффективным преобразователем молекулярных взаимодействий в оптически регистрируемый сигнал. Учитывая соизмеримые размеры меток и зондов, а также незначительное влияние наночастиц благородных металлов на биохимическую активность адсорбированных макромолекул, можно заключить, что такие маркеры весьма перспективны в создании наносенсорных устройств и диагностических систем, позволяющих изучать биохимические процессы на молекулярном уровне, в том числе, в реальном времени.

Используя различные комбинации основных управляющих параметров (концентрация ПАВ, мольное отношение Ag / Au и количество добавляемых зародышей) легко получить НСт с продольным плазмонным резонансом, i -f настроенным заданным образом в достаточно широком диапазоне (610 -920 нм). Основной недостаток большинства приведенных в литературе методов синтеза НСт, недостаточно высокий выход продукта, эффективно устраняется путем введения этапа центрифугирования в градиенте концентраций глицерина, что позволяет получать препараты НСт практически без примесей наночастиц других форм.

На основании проведенного тщательного исследования оптических свойств НСт можно с уверенностью утверждать, что стержнеобразные золотые наночастицы имеют большие возможности в плане детектирования биоспецифических взаимодействий по сравнению с металлическими наносферами. Это связано, в первую очередь, с разделением поверхностно-плазмонного резонанса на две моды и уникальными свойствами продольного резонанса.

Теоретически и экспериментально показано, что относительный сдвиг плазмонного резонанса прямо пропорционален относительному изменению показателя преломления окружающей среды. Измерения спектров экстинкции наностержней в водно-глицериновых смесях выявили большую чувствительность продольного плазмонного резонанса к диэлектрическому окружению по сравнению с поперечным резонансом. Причем с ростом значения отношения осей наночастицы сдвиг продольного резонанса при изменении показателя преломления окружающей среды существенно возрастает.

Положение пика светорассеяния НСт практически совпадает со спектральным положением максимума поглощения. При этом добротность продольного резонанса спектров рассеяния значительно выше, чем экстинкции. Данная особенность способствует более эффективному, по сравнению с эквиобъемными сферами, применению НСт в световой микроскопии темного поля (вплоть до возможности детектирования единичных частиц и соответственно единичных молекул) как в статическом, так и в динамическом режимах анализа.

Библиография Диссертация по биологии, кандидата физико-математических наук, Алексеева, Анна Вячеславовна, Саратов

1. Faraday М. Experimental relations of gold (and others metals) to light // Phil. Trans. Royal. Soc. (Lond.). 1857. V. 147. P. 145-181.

2. Ролдугин В.И. Квантоворазмерные металлические коллоидные системы //

3. Успехи химии. 2000. Т. 69. С. 899-923.

4. Cortie М. The weird world of nanoscale gold // Gold Bulletin. 2004. V. 37.1. P. 12-19.

5. Yu Y.-Y., Chang S.-S., Lee C.-L., Wang C.R.C. Gold nanorods: electrochemicalsynthesis and optical properties // J. Phys. Chem. B. 1997. V. 101. P. 66616664.

6. Chang S.-S., Shih Ch.-W., Chen Ch.-D., Lai W.-Ch., Wang C. R. Ch. The shapetransition of gold nanorods // Langmuir. 1999. V. 15. P. 701-709.

7. Link S., El-Sayed M. A. Optical properties and ultrafast dynamics of metallicnanocrystals // Annu. Rev. Phys. Chem. 2003. V. 54. P. 331-336.

8. Parak W. J., Gerion D., Pellegrino Т., Zanchet D., Micheel C., Williams S. C.,

9. Boudreau R., Le Gros M. A., Larabell C. A., Alivisatos A. P. Biological applications of colloidal nanocrystals // Nanotechnology. 2003. V. 14. P. R15-R27.

10. McFarland A. D., Van Duyne R. P. Single silver nanoparticles as real-timeoptical sensors with zeptomole sensitivity // Nano Lett. 2003. V. 3. P. 1057• io62. . ' .

11. Raschke G., Kowarik S., Franzl Т., Sonnichsen C.,; Klar T. A., Feldmann J.,

12. Nichtl A., Kurzinger K. Biomolecular recognition based on single gold nanoparticle light scattering //Nano Lett. 2003. V. 3; P. 935-938.

13. Stuart D. A., Haes A. J., Yonzon C. R., Hicks E. M., van Duyne R. P. Biological applications of localised surface plasmonic phenomenae // IEE Proc. Nanobiotechnol. 2005. V. 152. P. 13-32.

14. Yguerabide J., Yguerabide E. Light-scattering submicroscopic particles ashighly fluorescent analogs and their use as tracer labels in clinical andi

15. Mohamed M. В., Volkov V., Link S., El-Sayed M. A. The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal//Chemical Physics Letters. 2000. V. 317. P. 517-523.

16. Хлебцов H. Г., Трачук JI. А., Мельников А. Г. Влияние размера, формы и структуры' металлических наночастиц на зависимость их оптических свойств от показателя преломления дисперсионной среды // Опт. спектр. 2005. Т. 98. С. 82-89.

17. Miller М. М., Lazarides A. A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment // J. Phys. Chem. B. 2005. V. 109. P. 2l556-2)p65.

18. Schultz D. Plasmon resonant particles for biological detection // Curr. Opin. , Biotechnol. 2003. V. 14. P. 13-22.

19. Sonnichsen C., Alivisatos A. P. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy // Nano Lett. 2005. V. 5. P. 301 -304.

20. Dietrich H. R. C., Young I. Т., Garini Y. Gold nanoparticles: A novel application of spectral imaging in proteomics preliminary results // Proc. SPIE. 2005. V. 5694. P. 82-89.

21. Богатырев В. А., Дыкман JI. А., Хлебцов Б. H., Хлебцов Н. Г. Определениесреднего размера и оценка полидисперсности наночастиц золота по спектрам поглощения и рассеяния света // Опт. спектр. 2004. Т.: 94. С. 139-147. ' :

22. Не Y. Q., Liu S. P., Kong L., Liu Z. F. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scatteringand resonance non-linear scattering // Spectrochim. Acta, Part A. 2005. V. 61. P. 2861-2866.

23. Liu S. P., Chen S. L., Zhong F., Ни X. L., Li Т. S. Resonance Rayleigh scattering spectra of interaction of sodium carboxymethylcellulose with cationic acridine dyes and their analytical applications // Analyt. Chim. Acta. 2005. V. 535. P. 169-175.

24. Li N. В., Luo H. Q., Liu S. P. Resonance Rayleigh scattering,:study of the inclusion complexation of chloramphenicol with P-cyclodextrin// Talanta. 2005. V. 66. P. 495-500.

25. Roll D., Malicka J., Gryczynski I., Giyczynski Z., Lakowicz J. R. Metallic colloid wavelength-ratiometric scattering sensors // Anal. Chem. 2003. V. 75. P. 3440-3445.

26. Liu X., Yuan H., Pang D., Cai R. Resonance light scattering spectroscopy study • of interaction between gold colloid and thiamazole and its analyticalapplication // Spectrochimica Acta Part A. 2004 V. 60. P. 385-389.

27. Alekseeva A. V., Bogatyrev V. A., Trachuk L. A., Khlebtsov N. G. Synthesis, fractionation and optical characterization of Au-Ag composite nanorods //

28. Saratov Fall Meeting 2004: Coherent Optics of Ordered and Random Media V / Ed. by Zimnyakov D. A. Proc. SPIE. V. 5772. P. 18-32. Bellingham, WA: SPIE. 2005.

29. Nikoobakht В., El-Sayed M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method // Chem. Mater. 2003. V. 15. P. 1957-1962.

30. Jiang X. C., Brioude A., Pileni M. P. Gold nanorods: Limitations on their synthesis and optical properties // Colloids and Surfaces A. 2006. V. 277. P. 201-206.

31. Al-Sherbini A.-S. A.-M. Thermal instability of gold nanorods in micellar solution of water/glycerol mixtures // Colloids and Surfaces A. 2004. V. 246. P. 61-69.

32. Perez-Juste J., Pastoriza-Santos I., Liz-Marzan L. M., Mulvaney P. Gold ; nanorods: \ synthesis, characterization and applications // Coordination

33. Chemistry Reviews, 2005 V. 249. P. 1870-1901.

34. Zsigmondy R. Ueber wassrige Losungen metallischen Goldes // Ann. Chem. 1898. Bd. 301. S. 29-54.

35. Goia D. V., Matijevic E. Tailoring the particle size of monodispersed colloidal gold // Colloids and Surfaces A: Physicochem. Eng. Aspects. 1999. V. 146. P. 139-152.

36. СведбергТ. Образование коллоидов. Л.: Науч. хим.-тех. изд-во, 1927.

37. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nature. 1973. V. 241. P. 20-22.

38. Turkevich J., Stevenson P. C., Hillier J. A study of the nucleation and growth process in the synthesis of colloidal gold // Discussion of the Faraday Society. 1951. V. 11. P. 55-75.

39. Saraiva S. M., de Oliveira J. F. Control of particle size in the preparation of colloidal gold //J. Dispertion Sci. and Tchnol. 2002. V. 23. P. 837-844.

40. Brown K. R., Walter D. G., Natan M. J. Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape // Chem. Mater. 2000. V. 12. P. 306-313.

41. De Mey J., Moeremans M. The preparation of colloidal gold probes and their use as marker in electron microscopy // In: Advansed techniques in biological electron microscopy / Ed. Koehler J. K. -Berlin: Springer-Verlag. 1986. V. 3. P. 229-271.

42. Grabar К. C., Freeman R. G., Hommer M. В., Natan M. J. Preparation and characterization of Au colloid monolayers // Anal. Chem. 1995. V. 67. P. 735743.

43. Sau Т. K., Pal A., Jana N. R., Wang Z. L., Pal T. Size controlled synthesis of gold nanoparticles using photochemicaly prepared seed particle // Journal of Nanoparticle Research. 2001. V. 3. P. 257-261.

44. Mallick K., Wang Z. L., Pal T. Seed-mediated successive growth of gold • particles accomplished by UV irradiation: a photochemical approach for sizecontrolled synthesis // Journal of Photochemistry and Photobiology A: Chemistiy. 2001. V. 140. P. 75-80.

45. Schmid G., West H., Malm J.-O., Bovin J.-O., Grenthe G. Catalytic propeties oflayered gold-palladium colloids // Chem. -A Eur. J. 1996. V. 2. P. 1099-1103.

46. Жигмонди P. Коллоидная химия. Харьков, Киев: Изд-во НКСнаба УССР.1933.

47. Brown К. R., Natan M.J . Hydroxylamine seeding of colloidal Au nanoparticlesin solution and on surfaces // Langmuir. 1998. V. 14. P. 726-728.

48. Brown K. R., Walter D. G., Natan M. J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape // Chem. Mater. 2000. V. 12 P. 306-313.

49. Jana N. R., Gearheart L., Murphy C.J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles // Langmuir. 2001. V. 17. P. 6782 -6786.

50. Jana N. R. , Gearheart L., Murphy C. J. Evidence for seed-mediated nucleationin the chemical reduction of gold salts to gold nanoparticles // Chem. Mater. 2001. V. 13. P. 2313-2322.

51. Daniel M.-Ch., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology // Chem. Rev. 2004. V. 104. P. 293-346.

52. Zhou Y., Itoh H., Uemura Т., Naka K., Chujo Y. Preparation of p-conjugated polymer-protected gold nanoparticles in stable colloidal form // Chem. Commun. 2001. P. 613-614.

53. Sato S., Toda K., Oniki S. Kinetic study on the formation of colloidal gold in the presence of acetylenic glycol nonionic surfactant // Journal of Colloid and Interface Science. 1999. V. 218. P. 504-510

54. Дыкман JI.'А., Ляхов А. А., Богатырев В. А., Щеголев С. Ю. Синтез коллоидного золота с применением высокомолекулярныхвосстановителей // Коллоидный журнал. 1998. Т. 60. С. 757-762.

55. Tan Y., Dai X., .Li Y., Zhua D. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate //J. Mater. Chem. 2003. V. 13. P. 1069-1075.

56. Kamat P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles //J. Phys. Chem. B. 2002.V. 106. P. 7729-7744.

57. Okitsu K., Yue A., Tanabe S., Matsumoto H., Yobiko Y. Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold (III) reduction and size of formed gold particles // Langmuir. 2001. V. 17. P. 7717-7720.

58. Link S., Mohamed M. В., El-Sayed M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant//J. Phys. Chem. 1999. V. 103. P. 3073-3077.

59. Van der Zande В. M. I., Bohmer M. R., Fokkink L. G. J., Schonenberger C. Colloidal dispersion of gold rods: synthesis and optical properties // Langmuir. 2000. V. 16. P. 451-458.

60. Chen W., Cai W., Zhang L., Wang G., Zhang L. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica // J. Coll.and Interface Sci. 2001. V. 238. P. 291-295.i :

61. Zhivkov A., van der Zande В. M. I., Stoylov S. Electro-optics of metal particles: electric birefringence of gold rods // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2002. V. 209. P. 299-303.

62. Han Y. J., Kim J. M., Stucky G. D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15 // Chem. Mater. 2000. V. 12. P. 20682069.

63. Foss C. A. Jr., Hornyak G. L., Stockert J. A., Martin C. R. Optical properties ofcomposite membranes containing arrays of nanoscopic gold cylinders // J. Phys. Chem. 1992. V. 96. P. 7497-7499.

64. Рдп S. L., Zeng D. D., Zhang H. L., Li H. L. Preparation of ordered array of nanoscopic gold rods by template method and its optical properties // Appl. Phys. A. 2000. V. 70. P. 637-640.

65. Русанов И. А. Мицеллообразование в растворах поверхностно-активных веществ. С.-Пб.: Химия, 1990.

66. Досон Р., Эллиот Д., Эллиот У., Джонс К. Справочник биохимика. Пер. с англ. М.: Мир, 1991.

67. Jana N. R., Gearheart L., Murphy С. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods // J. Phys. Chem. 2001. V. 105. P. 4065-4067.

68. Obare S. O., Jana N. R., Murphy C. J. Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes//Nano Lett. 2001. V. 1. P. 601-603.

69. Hsieh S., Meltzer S., Wang C. R. C., Requicha A. A. G., Thompson M. E., Koel В. E. Imaging and manipulation of gold nanorods with an atomic force microscope // J. Phys. Chem. B. 2002. V. 106. P. 231 -234.

70. Link S., Wang Z. L., El-Sayed M. A. How does a gold nanorod melt? // J. Phys.

71. Chem. B. 2000. V. 104. P. 7867-7870.

72. Link S., Burda C., Nikoobakht В., El-Sayed M. A. How long does it take to . melt a gold nanorod? A femtosecond pump-probe absorption spectroscopicstudy// Chemical Physics Letters. 1999. V. 315. P. 12-18.

73. Kim F., Song J. H., Yang P. Photochemical synthesis of gold nanorods // J. Am.

74. Chem. Soc. 2002 V. 124. P. 14316-14317.

75. Mandal M., Kundu S., Ghosh S. K., Pal T. UV-photoactivation technique for size and shape controlled synthesis and annealing of stable gold nanoparticles in micelle // Bull. Mater. Sci. 2002. V. 25. P. 509-511.

76. Niidome Y., Nishioka K., Kawasaki H., Yamada S. Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes // Chem. Commuri. 2003. P. 2376-2377.

77. Jana N. R., Gearheart L., Murphy C. J. Seed-mediated growth approach for • shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using asurfactant template // Adv. Mater. 2001. V. 13. P. 1389-1393.

78. Kang S. K., Chah S., Yun C. Ye., Yi J. Aspect ratio controlled synthesis of goldnanorods // Korean J. Chem. Eng, 2003. V. 20. P. 1145-1148.

79. Jana N. R., Gearheart L., Obare S. O., Murphy C. J. Anisotropic chemical reactivity of gold spheroids and nanorods // Langmuir. 2002. V. 18. P. 922927.

80. Perez-Juste J., Liz-Marzan L. M., Carnie S., Chan D. Y. C., Mulvaney P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions //Adv. Funct. Mater. 2004. V. 14. P. 571-579.

81. Sau Т. K., Murphy C. J. Seed high yield synthesis of short Au nanorods in aqueous solution // Langmuir. 2004. V. 20. P. 6414-6420.

82. Murphy C. J., Jana N. R. Controlling the aspect ratio of inorganic nanorods and nanowires // Adv. Mater. 2002. V. 14. P. 80-82.

83. Liu F.-K., Chang Y.-Ch., Ко F.-H., Chu T.-Ch. Microwave rapid heating for thesynthesis of gold nanorods // Materials Letters. 2004. V. 58. P. 373-377.

84. Busbee B. D., Obare S. O., Murphy C. J. An improved synthesis of high-aspect-ratio gold nanorods // Adv. Mater. 2003. V. 15. P. 414-416.

85. Карпов С. В., Попов А. К., Слабко В. В., Шевнина Г. Б. Эволюция, оптических спектров гидрозолей серебра при фотостимулированной агрегации дисперсной фазы // Коллоид, журн. 1995. Т. 57. С. 199-206.

86. Jin R., Cao Y. W., Mirkin Ch. A., Kelly К. L., Schatz G. С., Zheng J. G. Photoinduced conversion of silver nanospheres to nanoprisms // Science. 2001. V. 294. P. 1901- 1903.

87. Jana N. R., Gearheart L., Murphy C. J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio // Chem. Commun. 2001. P. 617-618.

88. Zhu J., Wang Y., Huang L., Lu Y. Resonance light scattering characters of core-shell structure of Au-Ag nanoparticles // Physics Letters A. 2004. V. 323.1 "~71. P. 455-459.

89. Halas N. Playing with plasmons: tuning the optical resonant properties of metallic nanoshells // MRS Bulletin. 2005. V. 30. P. 362-367.-r-f

90. Perez-Juste J., Correa-Duarte M. A., Liz-Marzan L. M. Silica gels with tailored, gold nanorod-driven optical functionalities // Appl. Surf. Sci. 2004. V. 226. P. 137-143.

91. Liu M., Guyot-Sionnest Ph. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids //J. Phys. Chem. B. 2005. V. 109. P. 22192-22200.

92. Wang Ch., Wang Т., Ma Zh., Su Zh. PH-tuned synthesis of gold nanostructuresfrom gold nanorods with different aspect ratios // Nanotechnology. 2005. V. 16. P. 2555-2560.

93. Gao. J., Bender C.M., Murphy C.J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution // Langmuir. 2003. V. 19. P. 9065-9070.

94. Orendorff Ch. J., Murphy C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods // J. Phys. Chem. B. 2006. V. 110. P. 39903994.

95. Johnson C. J., Dujardin E., Davis S. A., Murphy C. J., Mann S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directedsynthesis // J. Mater. Chem. 2002. V. 12. P. 1765-1770.

96. Zweifel D. A., Wei A. Sulfide-arrested growth of gold nanorods // Chem. Mater. 2005. V. 17. P. 4256-4261.

97. Colloidal gold: principles, methods and applications / Ed. by Hayat M. A. San Diego: Academic Press. 1989. V. 1. 538 p.; V. 2. 484 p.; 1990. V. 3. 421 p.

98. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles // Langmuir. 1996. V. 12. P. 788-800.

99. Bohren C. F., Huffman D. R. Absorption of light by small particles. N.-Y.:1. Wiley, 1983.

100. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. -м М.: Мир, 1983.

101. Van der Hulst Н. С. Light scattering by small metal particles. N.-Y.: Wiley, 1957.

102. Ван дер Хюлст Г. Рассеяние света малыми частицами. М.: ИЛ, 1961.

103. Kerker М. The scattering of light and other electromagnetic radiation. N.-Y.: Academic Press, 1969.

104. Mie G. Beitrage zur Optic Triiber Medienspeziell kolloidaler Metallosungen // Ann. Phys. 1908. P. 25. S. 377-445.

105. Alvarez M. M., Khoury J. Т., Schaaff T. G., Shafigullin M. N., Vezmar I., Whetten R. L.-Optical absorption spectra of nanocrystal gold molecules // J. Phys. Chem. B. 1997. V. 101. P. 3706-3712.

106. Kreibig U., Vollmer M. Optical properties of metal clusters. Berlin: Springer-Verlag, 1995.

107. Link S., El-Sayed M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles // J. Phys. Chem. B. 1999. V. 103. P. 4212-4217.

108. Кленин В. И., Щеголев С. Ю., Лаврушин В. И. Характеристические функции светорассеяния дисперсных систем. Саратов: Изд-во Сарат. унта, 1977.

109. Хлебцов Н. Г., Дыкман Л. А., Богатырев В. А., Хлебцов Б. Н. Двухслойная модель биоконъюгатов коллоидного золота и её применение для оптимизации наносенсоров // Коллоид, журн. 2003. Т. 65. С. 552-562.

110. Templeton А. С., Pietron J. J., Murray R. W., Mulvaney P. Solvent refractive index and core charge influences on the nanoparticle solutions // J. Appl. Phys. 2002. V. 92. P. 7486-7490.

111. Liz-Marzan L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles // Langmuir. 2006. V. 22. P. 32-41.

112. Khlebtsov N. p., Bogatyrev V. A., Dykman L. A., Melnikov A. G. Spectral extinction of colloidal gold and its biospecific conjugates // Journal of Colloid Interface Science. 1996. V. 180. P. 436-445.

113. Хлебцов H. Г., Богатырев В. А., Дыкман JI. А., Мельников А. Г. Спектральные свойства коллоидного золота // Опт. спектр. 1996. Т. 80. С. 128-137.

114. Yguerabide J., Yguerabide Е. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. I. Theory // Anal. Biochem. 1998. V. 262. P. 137-156.

115. Underwood S., Mulvaney P. Effect of the solution refractive index on thecolor of gold colloids // Langmuir. 1994. V. 10. P. 3427-3430.■ ' 1 f

116. Templeton A. C., Pietron J. J., Murray R. W., Mulvaney P. Solvent refractiveiindex and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters // J. Phys. Chem. B. 2000. V. 104. P. 564-570.

117. Kreibig U. Electronic properties of small silver particles: the optical constants and their temperature dependence//J. Phys. F. 1974. V. 4. P. 999-1014.

118. Kreibig U. The transition cluster-solid state in small gold particles // Solid State Commun. 1978. V. 28. P. 767-769.

119. Doremus R. H. Optical properties of small gold particles // J. Chem. Phys.1964. V.40. P. 2389-2396.

120. Doremus R. H^Optical properties of small silver particles // J. Chem. Phys.1965. V. 42. P. 414-417.

121. Gans R. Ueber die Form ultramikroskopischer Goldteilchen // Ann. Phys. 1912. V. 37. P. 881-900.

122. Papavassiliou G. C. Optical properties of small inorganic and organic metal particles // Prog. Solid State Chem. 1979. V. 12. P. 185-271.

123. Link S., El-Sayed M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods//J. Phys. Chem. B. 1999. V. 103. P. 8410-8426.

124. El-Sayed M. A. Some interesting properties of metals confined in time and nanometer space of different shapes // Acc. Chem. Research. 2001. V. 34. P. 257-264.

125. Kelly L., Coronado E., Zhao L. L., Schatz G. C. The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment // J. Phys. Chem. B. 2003. V. 107. P. 668-677.

126. Shalaev V. M. (Ed.) Topics in applied physics, optical properties of nanostructured random media. Springer-Verlag, Berlin-Heidelberg, 2002.

127. Hao E., Schatz G. C., Johnson R. C., Hupp J. T. Hyper-Rayleigh scattering (HRS) from silver nanoparticles // J. Chem. Phys. 2002. V. 117. P. 5963-5965.

128. Mishchenko M. I., Travis L. D., Mackowski D. W. T-matrix computations of light scattering by nonspherical particles: a review // J. Quant. Spectrosc. Radiat. Transfer. 1996. V. 55. P. 535-575.

129. Ludwig A. C. The generalized multipole technique // Comput. Phys. Commun. 1991/V. 68. P. 306-314.

130. Purcell E. M., Pennypacker C. R. Scattering and absorption of light by nonspherical dielectric grains//Astrophys. J. 1973. V. 186. P. 705-714.

131. Kottman J. P., Martin O. J. F., Smith D. R., Schultz S. Spectral response of plasmon resonant nanoparticles with a non-regular shape // Opt. Express. 2000. V. 6. P. 213-219.

132. Roth J. The colloidal gold marker system for light and electron cytochemistry // In: Techniques in immunocytochemistry. V.2. / Ed. by Bullock G. R. and Petrusz P. London: Academic Press, 1983. P. 217-284.

133. Xu X.-H. N., Chen J., Jeffers R. В., Kyriacou S. Direct measurement of sizes and dynamics oFsingle living membrane transporters using nanooptics // Nano Lett. 2002. V. 2. P. 175-182.

134. Jurgens L., Nichtl A., Werner U. Electron density imaging of protein films on gold-particle surfaces with transmission electron microscopy // Cytometry. 1999. V. 37. P. 87-92.

135. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Krasnov Ya. M., Melnikov A. G. Optical properties of colloidal-gold bioconjugates // Izv. Vuz. Applied Nonlinear Dynamics. 2002. V. 10. P. 172-187.

136. Mock J. J., Smith D. R., Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles // Nano. Lett. 2003. V.3. P. 485-491.

137. Khlebtsov N. G., Dykman L. A., Bogatyrev V. A., Khlebtsov B. N. Two-layer model of colloidal gold bioconjugates and its application to the optimization of nanosensors // Colloid J. 2003. V. 65. P. 552-562.

138. Лансберг. Оптика. Учебник для вузов. М.: Наука, 1969.

139. Dragnea В., Chen С., Kwak E.-S., Stein В., Kao С. C. Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses // J. Am. Chem. Soc. A. 2003. V. 125. P. 6374-6375.

140. Wang Y. F, Pang D. W., Zhang Zh. L., Zheng H. Zh., Cao J. P., Shen J. T. Visual gene diagnosis of HBV and HCV based on nanoparticle probe amplification and silver staining enhancement // J. Med. Vir. 2003. V. 70. P. 205-211.

141. Zhiliang J., Zhongwei F., Tingsheng L., Fang L., Fuxin Zh., Jiyun Xie, Xianghui Yi. Resonance scattering spectroscopy of gold nanoparticle // Science in China B. 2001. V. 44. P. 175-181.

142. P. 42-48. Bellingham, WA: SPIE, 2001.t

143. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Khlebtsov B. N., Krasnov Ya. M. Differential light-scattering spectroscopy: a new-approach to studying of colloidal gold nanosensors // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 89. P. 133-142.

144. Berne B. J., Pecora R. Dynamic light scattering with applications to chemistry, biology, and physics. Mineola-N.Y.: Dover Publications, 2000.

145. Pecora R. (Ed.) Dynamic light scattering. Applications of photon correlation spectroscopy. New York- London: Plenum Press, 1985.

146. Камминс Г., Пайк Э. Спектроскопия оптического смешения и корреляция фотонов. М.: Мир, 1978.

147. Носкин В. А. Изучение макромолекул и надмолекулярных структур методом квазцудругого рассеяния. Дисс. доктора физ.-мат. наук. JL: ЛИЯФ, 1983.

148. Brown R. G. W., Burnett J. G., Mansbridge J., et al. Miniature laser light scattering instrumentation for particle size analysis // Appl. Opt. 1990. V. 29. P. 4159-4169.

149. Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J. A DNA-based method for rationally assambling nanoparticles into macroscopic materials // Nature. 1996. V. 382. P. 607-609.

150. Schalkhammer Th. Metal nano clusters as transducers for bioaffinity interactions // Chem. Monthly. 1998. V. 129. P. 1067-1092.

151. Mullett W. M., Lai E. P. C., Yeung J. M. Surface plasmon resonance-based immunoassays // Methods. 2000. V. 22. P. 77-91. .?.

152. Storhoff J. J., Lazarides A. A., Mucic R. C., Mirkin C. A., Letsinger R. L., Schatz G. C. What controls the optical properties of DNA-linked gold nanoparticle assemblies? // J. Am. Chem. Soc. 2000. V. 122. P. 4640-4650.

153. Belloni J. Metal nanocolloids // Curr. Opin. Colloid Interface Sci. 1996. V. 1. P. 184-196.

154. Niemeyer Ch. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials sciencc//Angew. Chem. Int. Ed. 2001. V. 40. P. 4128-4158.

155. Lyon L. A., Musick M. D., Natan M. J. Colloidal Au-enhanced surface plasmon resonance immunosensing// Anal. Chem. 1998. V. 70. P. 5177-5183.

156. Schuk P. Use of surface plasmon resonance to probe the equilibrium and • dynamic aspects of interactions between biological macromolecules // Annu.

157. Rev. Biophys. Biomol. Struct. 1997. V. 26. P. 541-566.

158. Кройт Г. P. Наука о коллоидах. Т. 1. Необратимые системы. М.: Изд-во иностранной литературы, 1955.

159. Chow M. К., Zukoski С. F. Gold sols formation mechanisms: role of colloidal stability//J. Coll. and Interf. Sci. 1994. V. 165. P. 97-109.

160. Thiele H., Hoppe K., Moll G. Uber das kolloide Gold // Kolloid-Z. u. Z. Polymere. 1962. Bd. 185. S. 45-52.

161. Баран А. А. Полимерсодержащие дисперсные системы. Киев: Наук.1. Думка, 1986.t

162. Щукин Е. Д., Перцов А. В., Амелина Е. А. Коллоидная химия: Учебник для вузов. М.: МГУ, 1982.

163. Фролов Ю. Г. Курс коллоидной химии. Поверхностные явления и дисперсионные системы: Учебник для вузов, 2-е изд. М.: Химия, 1989.

164. Alivisatos А. P., Johnsson К. P., Peng X., Wislon Т. Е., Loweth С. J., Bruchez М. P. Jr., Schultz P. G. Organization of nanocrystal molecules using DNA//Nature. 1996. V. 382. P. 609-611.

165. Elghanian R., Storhoff J. J., Mucic R. C., Letsinger R. L., Mirkin C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles // Science. 1997. V. 277. P. 1078-1081.

166. Letsinger R. L., Elghanian R., Viswanadham G., Mirkin C. A. Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates // Bioconjug. Chem. 2000. V. 11. P. 289-291.

167. Li Z., Jin R. C., Mirkin C. A., Letsinger R. L. Multiple thiol-anchor capped DMA-gold nanoparticle conjugates // Nucleic Acids Res. 2002. V. 30. P. 1558-1562.

168. Cao Y. W., Jin R., Mirkin C. A. DMA-modified core-shell Ag/Au nanoparticles//J. Am. Chem. Soc. 2001. V. 123. P. 7961-7962.

169. Storhoff J. J., Elghanian R., Mirkin C. A., Letsinger R. L. Sequence-dependent stability of DMA-modified gold nanoparticles // Langmuir. 2002. V. 18. P. 6666-6670.

170. Mirska D., Schirmer K., Funari S. S., Langner A., Dobner В., Brezesinski G. Biophysical and biochemical properties of a binary lipid mixture for DNA transfection // Colloids Surf. B. 2005. V. 40. P. 51-59.

171. Zimmer A. Antisense oligonucleotide delivery with polyhexylcyanoacrylate nanoparticles as carriers // Methods Companion Methods Enzymol. 1999. V. 18. P. 286-295.

172. Практическая химия белка / под ред. Дарбре А. М.: Мир, 1989.

173. Liao Н., Hafner J. Н. Gold nanorod bioconjugates // Chem. Mater. 2005. V. 17. P. 4636-4641.

174. Takahashi H., Niidome Y., Yamada S. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light // Chem. Commun. 2005. V. 17. P. 2247-2249.

175. Chang J.-Y., Wu H., Chen H., Ling Y.-Ch., Tan W. Oriented assembly of Aunanorods using biorecognition system // Chem. Commun. 2005. P. 1092-1094.i

176. Vale R. D. The molecular motor toolbox for intracellular transport // Cell. 2003. V. 112. P. 467-480.

177. Stoschek С. M. Protein assay sensitive at nanogram levels // Anal. Biochem. 1987. V. 160. P. 301-305.

178. Ciesiolka Т., Gabius H.-J. An 8 to 10 fold enhancement in sensitivity for quantitation of proteins by modified application of colloidal gold // Anal. Biochem. 1988. V. 168. P. 280-283.

179. Martin J. M. C., Paques M., van der Velden-de Groot Т. A. M, Beuvery E. C. Characterization of antibody labeled colloidal gold particles and their applicability in a sol particle immunoassay (SPIA) // J. Immunoassay. 1990. V. 11. P. 31-47.

180. Leuvering J. H.JyV., Thai P. J. H. M., van der Waart M., Schuurs A. H. W. M. Sol particle immunoassay (SPIA) //J. Immunoassay. 1980. V. 1. P. 77-91.

181. Englebienne P., van Hoonacker A., Verhas M. High-throughput screening using the surface plasmon resonance effect of colloidal gold nanoparticles // Analyst. 2001. V. 126. P. 1645-1648.

182. Englebienne P., van Hoonacker A., Valsamis J. Rapid homogeneous immunoassay for human ferritin in the Cobas Mira using colloidal gold as the reporter reagent // Clin. Chem. 2000. V. 46. P. 2000-2003.

183. Sorensen С. M. Light scattering by fractal aggregates: a review // Aerosol Sci. Technol. 2000. V. 35. P. 648-687.

184. Souza G. R., Miller J. H. Oligonucleotide detection using angle-dependent light scattering and fractal dimension analysis of gold-DNA aggregates // J. Am. Chem. Soc. 2001. V. 123. P. 6734-6735.

185. Markel V. A., Shalaev V. M., Stechel E. В., Kim W., Armstrong R. L. Small-particle composites. I. Linear optical properties // Phys. Rev. B.1996. V. 53. P. 2425-2436.

186. Хлебцов H. Г., Дыкман JI. А., Краснов Я. M., Мельников А. Г. Поглощение света кластерами коллоидных золотых и серебряных частиц, формирующимися в режимах медленной и быстрой агрегации // Коллоидный журнал. 2000. Т. 62. № 6. С. 844-859.

187. Lazarides A. A. Schatz G. С. DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties // J. Phys. Chem. B. 2000. V. 104. P. 460-467.

188. Wu M., Davidson N. Transmission electron microscopic method for gene mapping on polytene chromosomes by in situ hybridization // Proc. Natl. Acad. Sci. USA. 1981. V. 78. P. 7059-7063.

189. Dykman L. A., Krasnov Ya. M, Bogatyrev V. A., Khlebtsov N. G.

190. Quantitative immunoassay method based on extinction spectra of colloidaligold bioconjugates. // In: Optical Technologies in Biophysics and Medicine II / Ed. by Tuchin V. V. Proc. SPIE. V. 4241. P. 37-41. Bellingham, WA: SPIE, 2001.

191. Lazarides A. A., Kelly L. K., Jensen T. R., Schatz G. C. Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors // Theochem. 2000. V. 529. P. 59-63.

192. Lazarides A. A., Schatz G. C. DNA-linked metal nanosphere materials: Fourier-transform solutions for the optical response // J. Chem. Phys. 2000. V. 112. P. 2987-2993.

193. Kelly K. L., Lazarides A. A., Schatz G. C. Computational electromagnetics of metal nanoparticles and nanoparticle aggregates // Computing in Science & Engineering. 2001. V. 3. P. 67-73.

194. Lazarides A. A., Kelly K. L., Schatz G. C. Effective medium theory of DNA-linked gold nanoparticle aggregates: effect of aggregate shape // Mat. Res. Soc. Symp. Proc. 2001. V. 635. P. C.6.5.1-10.

195. Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes // Analyst 1998. V. 123. P. 1599-1603.

196. Englebienne P.^yan Hoonacker A., Verhas M., Khlebtsov N. G. Biomolecular interaction monitoring in real-time with colloidal metal nanoparticles // Combinatorial Chemistry & High Throughput Screening. 2003. V. 6. P. 777787.

197. Thi N., Thanh K., Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles // Anal. Chem. 2002. V. 74. P. 1624-1628.

198. Liu J., Lu Yi. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles // J. Am. Chem. Soc. 2003. V. 125. P. 6642• 6643.

199. Storhoff J. J., Mirkin C. A. Programmed materials synthesis with DNA // Chem. Rev. 1999. V. 99. P. 1849-1862.

200. Hilliard L. R., Zhao X., Tan W. Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies // Anal. Chim. Acta. 2002. V. 470. P. 51-56.

201. Mirkin C. A. Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks // Inorg. Chem. 2000. V. 39. P. 2258-2272.

202. Bao P., Frutos A. G., Greef Ch., Lahiri J., Muller U., Peterson Т. C., Warden L., Xie X. High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering // Anal. Chem. 2002. V, 74. P. 1792-1797.

203. Дыкман JI. А., Богатырев В. А. Коллоидное золото в твердофазных методах анализа // Биохимия. 1997. Т. 62. С. 411-418.

204. Moeremans М., Daneels G., de Raeymaeker М., de Mey J. Colloidal metal staining of blots // In: Handbook of Immunoblotting of Proteins. V. I. P. 137144. / Ed. by Bjerrum O. J. and Heegaard N. H. H. Orlando: CRC Press, 1988.

205. Fowler S. J. The detection of proteins on blots using gold or immunogold. Review//Methods Mol. Biol. 1994. V. 32. P. 239-255.206 jECurien В. Т., Scofield R. H. Protein blotting: a review // J. Immunol. Meth. 2003. V. 274. P. 1-15.

206. Дзантиев Б. Б., Жердев А. В., Попов В. О., Венгеров Ю. Ю., Старовойтова Т. А., Тогузов Р. Т. Системы экспрессной иммунодетекции биологически активных соединений // Клин. лаб. диагн. 2002. № 8. С. 2532.

207. Han A., DufVa М., Belleville Е., Christensen С. В. V. Detection of analyte binding to microarrays using gold nanoparticle labels and a desktop scanner //

208. Lab. Chip. 2003. V. 3. P. 329-332.

209. Стародуб H. Ф., Артюх В. П., Назаренко В. И., Коломиец Л. И. Белковый иммуноблот и иммунодот в биохимических исследованиях // Украинский биохимический журнал. 1987. Т. 59. С. 108-120.

210. Bogatyrev V. A., Dykman L. A., Matora L. Yu., Schwartsburd В. I. The serotyping of Azospirillum Spp by cell gold immunoblotting // FEMS Microbiol. Lett. 1992. V. 96. P. 115-118.

211. Матвеев В. 10., Богатырев В. А., Дыкман JI. А., Матора Л. Ю., Шварцбурд Б.И. Физико-химические свойства клеточной поверхности R-и S-вариантов штамма Azospirillum brasilense // Микробиол. 1992. Т. 61. С. 645-651.

212. Mirkin С. A., Letsinger R. L., Mucic R. С., Storhoff J. J., Elghanian R.i 'r-f

213. Nanoparticles having oligonucleotides attached thereto and used therefore // US Patent № 6,417,340. 2002.

214. Glynou K., Ioannou P. C., Christopoulos Т. K., Syriopoulou oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization // Anal. Chem. 2003. V. 75. P. 4155-4160.

215. Lackie P. M. Immunogold Silver Staining for Light Microscopy. // Histochem. Cell Biol. 1996. V. 106. P. 9-17. •

216. Link S., El-Sayed M. A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant//J. Phys. Chem. B. 2005. V. 109. P. 10531-10532.

217. Khlebtsov N. G., Melnikov A. G., Bogatyrev V. A., Dykman L. A., Alekseeva A. V., Trachuk L. A., Khlebtsov B. N. Can the light scattering depolarization ratio of small particles be greater than 1/3? // J. Phys. Chem. B.2005. V. 109. P. 13578-13584.

218. Brioude A., Jiang X. C., Pileni M. P. Optical Properties of Gold Nanorods: DDA Simulations Supported by Experiments // J. Phys. Chem. B. 2005. V. 109. P. 13138-13142.

219. Хлебцов H. Г., Трачук JT. А., Мельников А. Г. Новый спектральный резонанс металлических наностержней // Опт. спектр. 2004. Т. 97. С. 105107.

220. Payne Е. К., Shuford К. L., Park S., Schatz G. С., Mirkin С. A. Multipoleг

221. Plasmon Resonances in Gold Nanorods // J. Phys. Chem. B. 2006. V. 110. P. 2150-2154.

222. Laurent G., Felidj N., Aubard J., Levi G., Krenn J.R., Hohenau A., Schider G., Leitner A., Aussenegg F.R. Surface enhanced Raman scattering arising from multipolar plasmon excitation // J. Chem. Phys. 2005. V. 122. P. 011102.

223. Rayleigh D. W. On the light from the sky, its polarization and color // Phil. Mag. S. 5. 1871. V. 41. P. 107-120; P. 274-279.T

224. Lu N., Sorensen С. M. Depolarized light scattering from fractal soot aggregates // Phys. Rev. E. 1994. V. 50. P. 3109-3115.

225. Lin M. Y., Lindsay H. M., Weitz D. A., Ball R. C., Klein R., Meakin P. Universality of fractal aggregates as probed by light scattering // Proc. R. Soc. London Ser. A. 1989. V. 423. P. 71-87.

226. Zero К., Pecora R. Dynamic depolarized light scattering // In: Dynamic Light Scattering. Applications of Photon Correlation Spectroscopy / Ed. by Pecora R. New York-London: Plenum Press, 1985.

227. Mischenko M. 1. Single scattering by a small volume element. // Opt. Soc. Am. A. 2004. V. 21. P. 71-87.1. Благодарности

228. Хочу также выразить благодарность Мельникову Андрею Геннадиевичу, Хлебцову Борису Николаевичу, Трачук Любови Анатольевне и Дыкману Льву Абрамовичу за помощь и рекомендации в ходе выполнения и подготовки диссертационной работы.