Бесплатный автореферат и диссертация по биологии на тему
Изучение структурных и функциональных особенностей организации хроматина в ядрах сперматозоидов человека методом проточной цитометрии
ВАК РФ 03.00.25, Гистология, цитология, клеточная биология

Содержание диссертации, кандидата биологических наук, Семенова, Елена Вячеславовна

ВВЕДЕНИЕ.

1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. Динамические изменения структуры хроматина ядер сперматозоидов в процессе созревания и оплодотворения: сперматогенез - образование мужского пронуклеуса.

1.1.1. Сперматогенез.

1.1.2. Характеристика протаминов. Модели взаимодействий ДНК протамины.

1.1.3. Дальнейшая стабилизация структуры хроматина в ядрах спермиев.

1.1.4. Структурная организация суперкомпактного хроматина.

1.1.5. Структуры высших порядков организации хроматина и архитектура ядра сперматозоида.

1.1.6. Оплодотворение. Реорганизация хроматина при образовании мужского пронуклеуса.

1.2. Возмущающие воздействия в сперматогенезе: окислительный стресс и температурный дисбаланс.

1.2.1. Окислительный стресс.

1.2.2. Температурный дисбаланс.

1.3. Техника проточной цитофлуориметрии и её использование для изучения состояния хроматина.

1.3.1. Проточноцитометрические исследования упаковки хроматина.

1.3.2. Изучение состояния хроматина ядер сперматозоидов с помощью техники проточной цитометрии.

1.4. Ядерные протеазы и их роль в структурной организации хроматина.

1.4.1. Ядерные протеазы млекопитающих.

1.4.2. Ядерные протеазы мужских половых клеток.

2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Проточные цитометры.

2.2. Приготовление образцов для проточноцитометрического анализа.

2.2.1. Стандартная процедура окрашивания клеток бромистым этидием и обработка гепарином.

2.2.2. Обработка ядер сперматозоидов БН-содержащими реагентами и различными ингибиторами протеаз.

2.3. Процедура лечения бесплодия в программе ЭКО.

2.4. Процедура визуализации эндогенной ядерной протеазы спермиев человека.

2.4.1. Приготовление флуоресцентно меченого ингибитора трипсина соевых бобов.

2.4.2. Обработка сперматозоидов флуоресцентно меченым ингибитором трипсина соевых бобов.

2.5. Статистическая обработка результатов.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.

3.1. Проточноцитометрический метод оценки состояния хроматина ядер мужских половых клеток и результаты лечения бесплодия в программе ЭКО.

3.1.1. Разработка количественного метода регистрации плотности упаковки хроматина в ядрах сперматозоидов с помощью техники проточной цитометрии.

3.1.2. Проточноцитометрический критерий оценки состояния хроматина ядер сперматозоидов человека - тест на фертильность.

3.1.3. Модифицированная математическая модель обсчета и представления проточноцитометрических данных с использованием асимметрий распределения.

3.1.4. Оценка методом проточной цитометрии эффективности очистки сперматозоидов в программе ЭКО.

3.1.5. Влияние состояния хроматина сперматозоидов на динамику развития эмбрионов человека.

3.2. Обнаружение и исследование эндогенной протеолитической активности в ядрах сперматозоидов человека.

3.2.1. Проточноцитометрический анализ факторов, вызывающих декомпактизацию хроматина мужских половых клеток.

3.2.2. Демонстрация ядерной локализации исследуемой протеолитической активности сперматозоидов человека.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

4.1. Влияние состояния хроматина сперматозоидов человека на результаты процедуры экстракорпорального оплодотворения.

4.1.1. Существующие методы оценки функционального состояния мужских половых клеток.

4.1.2. Основные причины аномальной организации хроматина ядер мужских половых клеток.

4.1.2. Доказательства взаимосвязи нарушений организации хроматина в ядрах сперматозоидов и мужского бесплодия.

4.1.3. Преимущества и недостатки разработанного нами способа диагностики мужского бесплодия.

4.1.4. Оптимизация процедуры оплодотворения в культуре на основании результатов проточноцитометрического анализа.

4.1.5. Участие отцовского генома в раннем эмбриональном развитии. Негативное влияние аномалий в структурной организации хроматина сперматозоидов на динамику этого процесса.

4.2. Возможное участие эндогенной протеолитической активности спермиев человека в реорганизации хроматина при формировании мужского пронуклеуса.

ВЫВОДЫ.

Введение Диссертация по биологии, на тему "Изучение структурных и функциональных особенностей организации хроматина в ядрах сперматозоидов человека методом проточной цитометрии"

Одним из важнейших этапов подготовки мужских половых клеток к процессу оплодотворения является радикальная реорганизация структуры ядра в ходе сперматогенеза. Хроматин зрелых сперматозоидов человека отличается от хроматина других типов клеток не только по составу, но и по значительно более высокой степени компактизации: обычные гистоны почти на 85% замещаются специфическими основными белками протаминами, что приводит к практически полному отсутствию нуклеосомной организации ДНК; кроме того, дополнительная стабилизация достигается за счет формирования дисульфидных мостиков между молекулами протаминов, в результате чего образуется исключительно плотная, почти кристаллическая структура (W. Ward and D. Coffey, 1991; J. Kramer and S. Krawetz, 1996). Такое конденсированное состояние хроматина на заключительных стадиях дифференцировки крайне важно для дальнейшего функционирования сперматозоида, с одной стороны, защищая мужской геном от вредных воздействий, с другой стороны, являясь необходимой предпосылкой обратной реорганизации при формировании мужского пронуклеуса. После слияния половых клеток происходит деконденсация плотноупакованного хроматина сперматозоидов, сопровождающаяся заменой протаминов гистонами. В результате генетический материал мужских гамет вновь приобретает характерную для соматических клеток нуклеОсомную организацию, что делает возможным его объединение в одном ядре с женским пронуклеусом и последующую адекватную экспрессию генетической информации (J. Newport, 1987; J. Kleinchmidt and H. Steinbeisser, 1991; G. Almouzni and A. Wolffe, 1993). Очевидно, что нарушение запрограммированной структурной перестройки хроматина сперматозоида может привести к образованию дефектного мужского пронуклеуса и негативно повлиять на ранние стадии эмбриогенеза.

К сожалению, механизмы, обуславливающие такую радикальную переупаковку хроматина, остаются во многом неясными. Поэтому разработка методов тестирования состояния организованного в хроматин генетического материала мужских половых клеток и исследование молекулярно-клеточных факторов, обеспечивающих эффективность процессов реорганизации хроматина в сперматогенезе и после слияния с яйцеклеткой представляют, несомненно, важную медико-биологическую проблему. В связи с развитием новых вспомогательных репродуктивных технологий эта проблема приобрела особую актуальность, поскольку все больше данных свидетельствует о взаимосвязи аномалий упаковки хроматина мужских половых клеток с их оплодотворяющим потенциалом (P. Bianchi et al., 1996; R. Golan et al., 1996; K. Hoshi et al., 1996; B. Sailer et al., 1996; J. Sun et al., 1997; S. Lopes et al., 1998; D. Sakkas et al., 1998; D. Evenson et al., 1994; 1998; D. Irvine et al., 2000; J. Erenpreiss et al., 2001). Кроме того, исследования в этом направлении могут быть полезны для понимания такого фундаментального биологического процесса, как процесс оплодотворения.

Целью настоящей работы является изучение с помощью техники проточной цитометрии структурно-функциональных особенностей организации хроматина ядер сперматозоидов человека и молекулярных механизмов, лежащих в основе коренной переупаковки генетического материала мужских половых клеток в различные периоды жизнедеятельности.

1. ОБЗОР ЛИТЕРАТУРЫ

Заключение Диссертация по теме "Гистология, цитология, клеточная биология", Семенова, Елена Вячеславовна

ВЫВОДЫ

1. Разработан метод оценки состояния хроматина в ядрах сперматозоидов человека с помощью техники проточной цитофлуориметрии и на его основе сформулирован критерий, позволяющий классифицировать семенной материал в соответствии с его оплодотворяющей способностью. Данный подход может быть использован для диагностики мужской стерильности и в качестве прогностического теста для оптимизации программ по вспомогательной репродукции.

2. Частота оплодотворения в культуре и частота наступления беременности у пациентов с недостаточной степенью конденсации хроматина ядер сперматозоидов существенно снижены.

3. Аномалии упаковки хроматина в ядрах мужских половых клеток негативно влияют на ранние стадии развития эмбрионов человека, приводя к замедлению темпов дробления в культуре.

4. В ядрах зрелых сперматозоидов человека существует эндогенная протеолитическая активность. Определены условия ее активации и высказана гипотеза о возможной роли данной протеазы в процессе радикальной реорганизации хроматина мужских половых клеток после слияния с яйцеклеткой.

5. Области преимущественной локализации исследуемой протеазны/протеаз в ядрах сперматозоидов человека продемонстрированы с помощью флуоресцентно меченого ингибитора протеаз.

Библиография Диссертация по биологии, кандидата биологических наук, Семенова, Елена Вячеславовна, Санкт-Петербург

1. Белокопытова И., Костылева Е., Томилин А., Воробьев В. Мужская стерильность человека может быть обусловлена мутациями в гене протамина Р2. Цитология, 1993, Т. 35, N4, сс. 61-67.

2. Белокопытова И. Основные хромосомные белки и структура суперкомпактного хроматина сперматозоидов. Диссертация на соискание ученой степени к. б. н. С.Петербург, 1992.

3. Воробьева О., Филатов М., Леонтьева О., Семенова Е. Влияние степени компактизации хроматина ядер сперматозоидов на развитие эмбрионов человека. Проблемы репродукции, 1998, Т. 4, N 1, сс. 14-18.

4. Газиев А., Куцый М., Закржевская Д. Ассоциация протеиназ с гистонами ядер тимуса крысы. Мол. Биол., 1992, Т. 26, N 3, сс. 532-539.

5. Гилберт С. Биология развития (Ред. д. б. н. С. Васецкий). Мир, Москва, 1995, Т. 3, сс. 269-273.

6. Куцый М. и Газиев А. Активируемая ДНК и нуклеотидтрифосфатами протеиназа ядерного матрикса печени крысы, специфичная к гистону HI. Мол. Биол., 1988, Т. 22, N 5, сс. 1430-1436.

7. Мелещенко А., Кравцов А., Ледванов М. Проточная импульсная цитофлюорометрия сперматозоидов человека. Лабораторное дело, 1992, Т. 2, сс. 25-27.

8. Мораска Л. и Эрба Э. Культура животных клеток. Методы (ред. Р. Фрешни). Мир, Москва, 1989, сс. 182-213.

9. Полетаев А. Выделение индивидуальных хромосом и их использование для изучения геномов человека и животных. Молек. биол., 1989, т.23, N 4, сс. 917-923.

10. Полетаев А. Проточная цитометрия и сортировка в цитологии, молекулярной биологии, биотехнологии и медицине. Итоги науки и техники, сер. "Общие проблемы физико-химической биологии", Москва, ВИНИТИ, 1989, Т. 12.

11. Райцина С. Сперматогенез и структурные основы его регуляции. Наука, Москва, 1985, сс. 76-80.

12. Семенова E., Дробченко E., Филатов M. Критерий оценки состояния хроматина ядер сперматозоидов человека с помощью техники проточной цитометрии тест на фертильность. Цитология, 2002, Т. 44, N 5, сс. 470-476.

13. Степанов С., Семенова Е., Носкин Л., Дробченко Е., Филатов М., Котлованова Л. Поклеточный проточноцитометрический анализ хромосом. Цитология, 1989, Т. 31, N4, сс. 410-418.

14. Филатов М. и Варфоломеева Е. Изучение упаковки хроматина в ядрах клеток млекопитающих методом проточной цитометрии. Цитология, 1990, Т. 32, N 4, сс. 343350.

15. Филатов М. и Варфоломеева Е. Демонстрация конформационных изменений ДНК в клетках млекопитающих in vivo с помощью бисбензимидозольного красителя Хехст 34222. Цитология, 1992, Т. 34, N 9, сс. 112-116.

16. Филатов М., Воробьева О., Семенова Е., Леонтьева О. Способ диагностики мужского бесплодия. Патент №2118822 от 10 сентября 1998 г. Заявка №97103029.

17. Adham I., Nayernia К., Burkhardt-Gottges Е., Topaloglu О., Dixkens С., Holstein A., Engel W. Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol. Hum. Reprod., 2001, V. 7, N6, pp. 513-520.

18. Agell N. and Mezquita C. Cellular content of ubiquitin and formation of ubiquitin conjugates during chicken spermatogenesis. Biochem. J., 1988, V. 250, pp. 883-889.

19. Aitken R. Assessment of human sperm function for IVF. Hum. Reprod., 1988, V. 3, pp. 8995.

20. Aitken R. A free radical theory of male infertility. Reprod. Fertil. Dev., 1994, V. 6, pp. 1924.

21. Aitken R. and Clarkson J. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil., 1987b, V. 81, pp. 459-469.

22. Aitken R., Irvine D., Wu F. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am. J. Obstet. Gynec., 1991, V. 164, pp. 542-551.

23. Aitken R., Harkiss D., Buckingham D. Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J. Reorod. Fertil., 1993, V. 98, pp. 257-265.

24. Aitken R., Buckingham D., Brindle J., Gomez F., Baker H., Irvine D. Analysis of sperm movment in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum. Reprod., 1995, V. 10, pp. 2061-2071.

25. Aitken R. and Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction, 2001, V. 122, N 4, pp. 497-506.

26. Allen M., Lee C., Lee J. D., Pogany G., Balooch M., Siekhaus W., Balhorn R. Atomic force microscopy of mammalian sperm chromatin. Chromosoma, 1993, V. 102, N 9, pp. 623-630.

27. Almouzni G., Clark D., Mechali M., Wolffe A. Chromatin assembly on replicating DNA in vitro. Nucleic. Acids Res., 1990, V. 18, pp. 5767-5774.

28. Almouzni G., Mechali M. and Wolffe A. Transcription complex disruption caused by a transition in chromatin structure. Mol. Cell Biol., 1991, V. 11, pp.655-665.

29. Almouzni G. and Wolffe A. Nuclear assembly, structure and function: the use of Xenopus in vitro systems. Exp. Cell Res., 1993, V. 205, pp. 1-15.

30. Alvarez J. and Storey B. Spontaneous lipid peroxidation in rabbit epididymal spermatozoa: its effect on sperm motility. Biol. Reprod., 1982, V. 27, pp. 1102-1108.

31. Alvarez J. and Storey B. Lipid peroxidation and the reactions of superoxide and in mouse spermatozoa. Biol. Reprod., 1984, V. 30, pp. 833-841.

32. Alvarez J. and Storey B. Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res., 1989, V. 23, pp. 77-90.

33. Alvarez J., Touchstone J., Blasco L., Storey B. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. J. Androl., 1987, V. 8, pp. 338-348.

34. Ammer H., Henschen A., Lee S. Isolation and amino asid sequence analysis of human sperm protamines PI and P2. Occurrence of two forms of protamine P2. Biol. Chem. Hoppe-Seyler, 1986, V. 367, pp. 515-522.

35. Anachkova B. and Russev G. Endogenous proteolytic activity of chromatin. Acta. Biol. Med. Ger., 1977, V. 36, N 11-12, pp. 1945-1950.

36. Andreetta A., Stockert J., Barrera C. A simple method to detect sperm chromatin abnormalities: cytochemical mechanism and possible value in predicting semen quality in assisted reproductive procedures. Int. J. Androl., 1995, V. 18, Suppl. 1, pp. 23-28.

37. Annunziato A. Inhibitors of topoisomerases I and II arrest DNA replication, but do not prevent nucleosome assembly in vivo. J. Cell. Sci., 1989, V. 93, pp. 593-603.

38. Aravindan G., Bjordahl J., Jost L., Evenson D. Susceptibility of human sperm to in situ DNA denatured is strongly correlated with DNA strand breaks identified by singl-cell electrophoresis. Exp. Cell Res., 1997, V. 236, pp. 231-237.

39. Ariel M., Cedar H. and McCarry J. Developmental change in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nature Genet., 1994, V. 7, pp. 59-63.

40. Auger J. and Dadoune J. Nuclear status of human sperm cells by transmission electron microscopy and image cytometry: change in nuclear shape and chromatine texture during spermatogenesis and epididymal transit. Biol. Reprod., 1993, V. 49, pp. 166-175.

41. Ausio J. and Subirana J. Nuclear proteins and the organization of chromatin in spermatozoa of Mytilus edulis. Exp. Cell Res., 1982, V. 141, N 1, pp. 39-45.

42. Ausio J. and Van Holde K. A dual chromatin organization in the sperm of the bivalve mollusc Spisula solidissima. Eur. J. Biochem., 1987, V. 165, N 2, pp. 363-371.

43. Avramova Z. and Tasheva B. Tightly bound nonprotamine proteins from ram sperm nuclei studied by one- and two-dimensional peptide mapping. Mol. Cell Biochem., 1987, V. 74, N 1, pp. 67-75.

44. Baarends W., Hoogerbrugge J., Roest H., Ooms M., Vreeburq J., Hoeijmakers J., Grootegoed J. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev. Biol., 1999, V. 207, pp. 322-333.

45. Baler R., Dahl G., Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell Biol., 1993, V. 13, N 4, pp. 2486-2496.

46. Balhorn R. A model for the structure of chromatin in mammalian sperm. J. Cell Biol., 1982,V. 93, pp. 298-305.

47. Balhorn R. Mammalian protamines: Structure and molecular interections. In Molecular Biology of Chromosome Function (Ed. K. W. Adolph). Springer Verlag, New York. 1989, pp. 366-395.

48. Balhorn R., Corzet M., Mazrimas J., Watkins B. Identification of bull protamine disulfides. Biochemistry, 1991, V. 30, pp. 175-181.

49. Balhorn R., Reed S., Tanpaichitr N. Abberant protamine 1 / protamine 2 ratios in sperm of infertile human males. Experientia, 1988, V. 44, pp. 52-55.

50. Balhorn R., Weston S., Thomas C., Wyrobek A. DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp. Cell Res., 1984, V. 150, pp. 298-308.

51. Baran V., Mercier Y., Renard J., Flechon J. Nucleolar substructures of rabbit cleaving embryos: an immunocytochemical study. Mol. Reprod. Dev., 1997, V. 48, N 1, pp. 34-44.

52. Barone J., De Lara J., Cummings K., Ward W. DNA organization in human spermatozoa. J. Androl., 1994, V. 15, N2, pp. 139-144.

53. Baskin Y. Mapping the cell's nucleus. Science, 1995, V. 268, N 5217, pp. 1564-1565.

54. Bauche F., Fouchard M., Jegou B. Antioxdant system in rat testicular cells. FEBS Letters, 1994, V. 349, pp. 392-396.

55. Bedford J., Best M., Calvin H. Variations in the structural character and stability of nuclear chromatine in morphologically normal human spermatozoa. J. Reprod. Fertil., 1973, V. 33, pp. 19-29.

56. Bellve A.R., McKay D.J., Renaux B. S., Dixon G.H. Purification and characterization of mause protamines PI and P2. Amino asid sequence of P2. Biochemistry, 1988, V. 27, pp. 28902897.

57. Bench G., Corzett M., Kramer C., Grant P., Balhorn R. Zinc is sufficiently abundant within mammalian sperm nuclei to bind stoichiometrically with protamine 2. Mol. Reprod. Dev., 2000, V. 56, pp. 512-519.

58. Bianchi P., Manicardi G., Bizzaro D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human spermatozoa. Biol. Reprod., 1993, V. 49, pp. 1083-1088.

59. Bianchi P., Manicardi G., Urner F., Campana A., Sakkas D. Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. Mol. Hum. Reprod., 1996, V. 2., N 3, pp. 139-144.

60. Bizzaro D., Manicardi G., Bianchi P., Sakkas D. Sperm decondensation during fertilisation in the mouse: presence of DNase I hypersensitive sites in situ and a putative role for topoisomerase II. Zygote, 2000, V. 8, N 3, pp. 197-202.

61. Bjorndahl L. and Kvist U. Influence of seminal vesicle fluid on the zink content of human sperm chromatin. Int. J. Androl., 1990, V. 13, pp. 232-238.

62. Blazak W. and Overstreet J. Unstability of nuclear chromatin in the ejaculated spermatozoa of fertile men. J. Reprod. Fertil., 1982, V. 65, pp. 331-339.

63. Bloch D. A catalog of sperm histones. Genetics Suppl., 1969, V. 61, pp. 93-111.

64. Blow J. and Laskey R. Initiation of DNA replication in nuclei and purified DNA by a cellfree extract of Xenopus eggs. Cell, 1986, V. 47, pp. 577-587.

65. Bottiroli G., Croce A. C., Pellicciari C., Ramponi R. Propidium iodide and the thiol-speeific reagent DACM as a dye pair for fluorescence resonance energy transfer analysis: an application to mouse sperm chromatin. Cytometry, 1994, V. 15, pp. 106-116.

66. Brinkley B., Brenner S., Hall J., Tousson A., Balczon R., Valdivia M. Arrangement of kinetochores in mouse cells during meiosis and spermatogenesis. Chromosoma, 1986, V. 94, pp. 309-317.

67. Brinkley B. Towards a structural and molecular definition of the kinetochore. Cell Motil. Cytoskeleton, 1990, V. 16, pp. 104-109.

68. Brodie S., Giron J., Latt S.A. Estimation of accessibility of DNA in chromatin from fluorescence measurements of electronic excitation energy transfer. Nature, 1975, V. 253, N 6, pp. 470-471.

69. Brown D., Blake E., Wolgemuth D., Gordon K., Ruddle F. Chromatin decondensation and DNA synthesis in human sperm activated in vitro by using Xenopus laevis egg extracts. J. Exp. Zool., 1987, V. 242, pp. 215-131.

70. Bunick D., Balhorn R., Stanker L., Hecht N. Expression of the rat protamine 2 gene is supressed at the level of transcription and translation. Exp. Cell. Res., 1990, V. 188, pp. 147-152.

71. Calvin H. and Bedford J. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J. Reprod. Fertil. (Suppl.), 1971, V. 13, pp.65-75.

72. Carrell D. and Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J. Androl., 2001, V. 22, N 4, pp. 604-610.

73. Chang T. and Zirkin B. Proteolytic degradation of protamine during thiol-induced nuclear decondensation in rabbit spermatozoa. J. Exp. Zool., 1978, V. 204, N 2, pp. 283-289.

74. Chen H., Sun J., Zhang Y., Davie J., Meistrich M. Ubiquitination of histone H3 in elonqating spermatids of rat testes. J. Biol. Chem., 1998, V. 273, pp. 13165-13169.

75. Cho H. and Wolffe A. Xenopus laevis B4, an intron-containing oocyte-specific linker histone-encoding gene. Gene, 1994, V. 143, N 2, pp. 233-238.

76. Christensen M., Rattner J., Dixon G. Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res., 1984, V. 12, N 11, pp. 4575-4592.

77. Ciechanover A., Finley D., Varshavsky A. The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation. J. Cell Biochem., 1984, V. 24, N 1, pp. 27-53.

78. Ciejek E, Tsai M., O'Malley B. Actively transcribed genes are associated with the nuclear matrix. Nature, 1983, V. 306, N 5943, pp. 607-609.

79. Claassens O., Menkveld R., Franken D., Pretorius E., Swart Y., Lombard C., Kruger T. The acridine orange test: determining the relationship between sperm morphology and fertilization in vitro. Hum. Reprod., 1992, V. 7, N 2, pp. 242-247.

80. Clarke H. Nuclear and chromatin composition of mammalian gametes and early embryos. Biochem. Cell Biol., 1992, V. 70, N 10-11, pp. 856-866.

81. Clermont Y., Oko R. and Hermo L. Cell biology of mammalian spermatogenesis. In Cell and Molecular Biology of the Testis (Eds. C. Desjardins and L. L. Ewing). Oxford University Press, New York. 1993, pp. 332-376.

82. Courtens J., Biggiogera M., Rothfield N., Burnier M., Fakan S. Migration of centromere proteins in rabbit spermatids. Mol. Reprod. Dev., !992, V. 32, pp. 369-377.

83. Craig E., Gambill B., Nelson R. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev., 1993, V. 57, N 2, pp. 402-414.

84. Crissman H. and Steinkamp J. Cell cycle-related changes in chromatin structure detected by flow cytometry using multiple DNA fluorochromes. Eur. J. Histochem., 1993, V. 37, N 1, pp. 129-138.

85. Czaker R. Relative position of constitutive heterochromatin and of nucleolar structures during mouse spermiogenesis. Anat. Embryol., 1987, V. 175, pp. 467-475.

86. Dadoune J., Mayaux M. and Guihard-Moscato. Correlation between defects in chromatin condensation of human spermatozoa stained by aniline blue and semen characterictics. Andrologia, 1988, V. 20, N 3, pp. 211-217.

87. Darzynkiewicz Z., Traganos F., Sharpless T., Melamed M. Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp. Cell Res., 1975, V. 90, N2, pp. 411-428.

88. Darzynkiewicz Z., Evenson D., Kapuschinski T. Denaturation of RNA and DNA in situ induced by acridine orange. Exp. Cell Res., 1983, V. 148, pp. 31-46.

89. Darzynkiewicz Z. Acid-induced denaturation of DNA in situ as a probe of chromatin structure. Meth. Cell Biol., 1994, V. 41, pp. 527-541.

90. Davie J., Numerow L., Delcuve G. The nonhistone chromosomal protein, H2A-specific protease, is selectively associated with nucleosomes containing histone HI. J. Biol. Chem., 1986, V. 261, N22, pp. 10410-10416.

91. Davie J. and Hendzel M. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochem., 1990, V. 29, pp. 4752-4757.

92. Davie J. and Murphy L. Inhibition of transcription selectively reduces the level of ubiquitinated histone H2B in chromatin. Biochem. Biophts. Res. Commun., 1994, V. 203, pp. 344-350.

93. Davies K. Protein damage and degradation by oxygen radicals. J. Biol. Chem., 1987, V. 262, N20, pp. 9895-9901.

94. Den Boer P., Poot M., Verkerk A., Jansen R., Mackenbach P., Grootegoed J. Glutathione-dependent defence mechanisms in isolated round spermatids from the rat. Int. J. Androl., 1990, V. 13, N 1, pp. 26-38.

95. De Yerba L., Ballesca J., Vanrell J. Complete selective absence of protamine P2 in humans. J. Biol. Chem., 1993, V. 268, pp. 10553-10557.

96. Dilworth S., Honda B., Laskey R. Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell, 1987, V. 51, pp. 1009- 1018.

97. Dimitrov S., Almouzni G., Dasso M., Wolffe A. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev. Biol., 1993, V. 160, pp. 214-227.

98. Dimitrov S., Dasso M., Wolffe A. Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly. J. Cell Biol., 1994, V. 126, N3, pp. 591-601.

99. Doerksen T. and Trasler J. M. Developmental exposure of male germ cells to 5-azacytidine results in abnormal preimplantation development in rats. Biol. Reprod.,1996, V. 55, N 5, pp. 1155-1162.

100. Dutta S., Akey I., Dingwall C., Hartman K., Laue T., Nolte R., Head J., Akey C. The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol. Cell, 2001, V. 8, pp. 841-853.

101. Dyson M. and Walker J. Chromatin associated protease from calf thymus. Int. J. Pept. Protein. Res., 1984, V. 24, N 3, pp. 201-207.

102. Earnshaw W. and Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma, 1985, V. 91, pp. 313-321.

103. Earnshaw W., Honda B., Laskey B., Thomas J. Assembly of nucleosomes: the reaction involving X. laevis nucleoplasmin. Cell, 1980, V. 21, pp. 373-383.

104. Ellwart J. and Dormer P. Vitality measurement using spectrum shift in Hoechst 33342 stained cells. Cytometry, 1990, V. 11, N 3, pp. 239-243.

105. Engh E., Scholberg A., Clausen O., Purvis K. DNA flow cytometry of sperm from normozoospermic men in barren couples and men of proven fertility. Int. J. Fertil. Menopausal Stud., 1993, V. 38, N 5, pp. 305-310.

106. Erenpreiss J., Bars J., Lipatnikova V., Erenpreisa J., Zalkalns J. Comparative study of cytochemical tests for sperm chromatin integrity. J. Androl., 2001, V. 22, pp. 45-53.

107. Esterhuizen A., Franken D., Lourens J., Van Zyl C., Muller I., Van Rooyen L. Chromatin packaging as an indicator of human sperm dysfunction. J. Assist. Reprod. Genet., 2000, V. 17, pp. 508-514.

108. Evenson D., Darzynkiewicz Z. and Melamed M. Relation of mammalian sperm chromatin heterogeneity to fertility. Science, 1980, V. 210, N 4474, pp. 1131-1133.

109. Evenson D. and Melamed M. Rapid analysis of normal and abnormal cell types in human semen and testis biopsies by flow cytometry. J. Histochem. Cytochem., 1983, V. 31, Suppl. 1A, pp. 248-253.

110. Evenson D., Klein F., Whitmore W., Melamed M. Flow cytometric evaluation of sperm from patients with testicular carcinoma. J. Urol., 1984a, V. 132, N 6, pp. 1220-1225.

111. Evenson D., Darzynkiewicz Z., Jost L., Janca F., Ballachey B. Changes in accessibility of DNA to various fluorochromes during spermatogenesis. Cytometry, 1986, V. 7, N 1, pp. 45-53.

112. Evenson D., Janca F., Jost L. Effects of the fungicide methyl-benzimidazol-2-il carbamate (MBC) on mouse germ cells as determined by flow cytometry. J. Toxicol. Environ. Health., 1987, V. 20, N 4, pp. 387-399.

113. Evenson D. Flow cytometry evaluation of male germ cells. Flow Cytometry: Advanced Reserch and Clinical Applications (Ed. A. Yen). CRC Press, Boca Raton, FL, 1989, V. 1, pp. 217-246.

114. Evenson D., Baer R., Jost L. Flow cytometric analysis of rodent epididymal spermatozoa chromatin condensation and loss of free sulfhydryl groups. Mol. Reprod. Dev., 1989, V. 1, pp. 283-288.

115. Evenson D. Flow cytometry assay of male fertility. Methods in Cell Biology, V. 33: Flow Cytometry (Eds. Z. Darzynkiewicz and H. Crissman). Academic Press, New York, 1990, pp. 401-410.

116. Evenson D. and Darzynkiewicz Z. Acridine orange-induced precipitation of mouse testicular sperm cell DNA reveals new patterns of chromatin structure. Exp. Cell Res., 1990, V. 187, pp. 328-334.

117. Evenson D., Jost L., Coico R. Effects of methyl methanesulfonate on mouse sperm chromatin structure and testicular cell kinetics. Environ. Mol. Mutagen, 1993, V. 21, N 2, pp. 144-153.

118. Evenson D., Emeric R., Jost L., Kayongo-Male H., Stewart S. Zinc-silicon interactions influencing sperm chromatin integrity and testicular cell development in the rat as measured by flow cytometry. J. Anim. Sci., 1993, V. 71, N 4, pp. 955-962.

119. Evenson D. and Jost L. Sperm chromatin structure assay: DNA denaturability. Flow Cytometry, Ed. 2. A Volume of Methods in Cell Biology (Eds. Z. Darzynkiewicz, J. Robinson and H. Crissman). Academic Press, Inc., Orlando, FL, 1994, pp. 159-175.

120. Evenson D., Jost L. Utility of sperm chromatin structure assay in the infertility clinic. Cytometry, 1998, Suppl. 9, p. 97.

121. Evenson D., Jost L., Marshall D., Zinaman M., Clegg E., Purvis K., de Angelis P., Claussen O. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in human fertility clinic. Hum. Reprod., 1999, V. 14, pp. 1039-1049.

122. Evenson D., Jost L., Corzett M., Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. Androl., 2000, V. 21, N 5, pp. 739-746.

123. Filatov M. and Varfolomeeva E. Active dissociation of Hoechst 33342 from DNA in living mammalian cells. Mutation research, 1994, V. 327, N 3, pp. 209-215.

124. Filatov M., Semenova E., Tretyakov A., Drobchenko E. Flow cytofluorometric test of sperm chromatin organization. Cytometry, 1996, Supplement 8, p. 124.

125. Filatov M., Semenova E., Vorob'eva O., Leont'eva O., Drobchenko E. Relationship between abnormal sperm chromatin packing and IVF results. Mol. Hum. Reprod., 1999, V. 5, N 9, pp. 825-830.

126. Foresta C., Zorzi M., Rossato M., Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int. J. Androl., 1992, V. 15, pp. 330-337.

127. Fossa S., De Angelis P., Kraggerud S., Evenson D., Theodorsen L., Clausen O. Prediction of posttreatment spermatogenesis in patients with testicular cancer by flow cytometric sperm chromatin structure assay. Cytometry, 1997, V. 30, N 4, pp. 192-196.

128. Fuentes-Mascorro G., Serrano H., Rosado A. Sperm chromatin. Arch. Androl., 2000, V. 45, N3, pp. 215-225.

129. Gajewski E., Rao G., Nackerdien Z., Dizdaroglu M. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry, 1990, V. 29, N 34, pp. 7876-7882.

130. Garagna S. and C. Redi. Chromatin topology during the transformation of the sperm nucleus in pronucleus in vivo. J. Exp. Zool., 1988, V. 246, pp. 187-193.

131. Gardiner-Garden M., Ballesteros M., Gordon M., Tam P. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol. Cell Biol., 1998, V. 18, pp. 3350-3356.

132. Gatewood J., Cook G., Balhorn R., Bradbury E., Sehmid C. Sequence-specific packaging of DNA in human sperm chromatin. Science, 1987, V. 236, N 4804, pp. 962-964.

133. Gaziev A., Malakhova L., Kutsyi M. Postradiation activation of proteinases associated with the hepatocyte nuclear matrix in rats. Radiobiologiia 1987, V. 27, N 2, pp. 166-170.

134. Gaziev A. and Kutsyi M. Histone HI-specific proteinase is associated with the nuclear matrix and is activated by DNA-containing breaks or denatured sites. Dokl Akad Nauk SSSR, 1988, V. 299, N 1, pp. 240-242.

135. Georgiou I., Syrrou M., Stefanidis K., Konstantelli M., Lolis D. Effect of Percoll gradient and swim-up preparation on the chromomycin A3 staining of normal and abnormal semen samples. Andrologia, 1998, V. 30, N 2, pp. 101-104.

136. Gerhart J., Wu M., Kirschner M. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J. Cell Biol., 1984, V. 98, N 4, pp. 1247-1255.

137. Giaretti W., Nüsse M., Bruno S., Di Vinci A., Geido E. A new method to discriminate Gl, S, G2, M and Gl postmitotic cells. Exp. Cell Res., 1989, V. 182, N 2, pp. 290-295.

138. Gillespie P., Blow J. Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication. Nucleic Acids Res., 2000, V. 28, N 2, pp. 472-480.

139. Golan R., Cooper T., Oschry Y., Oberpenning F., Schulze H., Shochat L. and Lewin L. Chenges in chromatin condensation of human spermatozoa during epididymal transit as determined by flow cytometry. Hum. Reprod., 1996, V. 11, N 7, pp. 1457-1462.

140. Gopalkrishnan K., Padwal V., Meherji P., Gokral J., Shah R., Juneja H. Poor quality of sperm as it affects repeated early pregnancy loss. Arch. Androl., 2000, V. 45, N 2, pp. 111-117.

141. Gordon K., Brown D., Ruddle F. In vitro activation of human sperm induced by amphibian egg extract. Exp. Cell Res., 1985, V. 157, pp. 409-418.

142. Gray J., Dolbeare F., Pallavicini M., Beisker W., Waldman F. Cell cycle analysis using flow cytometry. Int. J. Radiat. Biol. 1986, V. 49, N 2, pp.237-255.

143. Gray J. and Cram L. Flow karyotyping and chromosome sorting. Flow Cytometry and Sorting. Second Edition (Eds. M. Melamed, T. Lindmo, M. Mendelsohn). Willey-Liss, New-York, 1990, pp. 503-529.

144. Green G. R., Balhorn R., Poccia D. L. and Hecht N. B. Synthesis and processing of mammalian protamines and transition proteins. Mol. Reprod. Dev., 1994, V. 37, pp. 255-263.

145. Grillo J., Vasserot M., Gamerre M., Vitry G., Stahl A. Nucleolar changes in human embryo during the pre-implantation stage. Activation of ribosomal genes during the nucleologenesis. Biol. Cell, 1991, V. 72, N 3, pp. 201-209.

146. Griveau J., Charbonneau M., Blanchard Y. Decondensation of human sperm nuclei and HP1 protamine degradation from normospermia and astenospermia in Xenopus egg extracts. Arch. Androl., 1992, V. 29, pp 127-136.

147. Gusse M., Sautierre P., Belaiche D., Martinage A., Roux C., Dadoune J., Chevaillier P. Purification and characterization of nuclear basic proteins of human sperm. Biochim. Biophys. Acta, 1986, V. 884, pp. 124-134.

148. Gutteridge J. and Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends. Biochem. Sci., 1990, V. 15, N 4, pp. 129-135.

149. Haaf T., Grunenberg H., Schmid M. Paired arrangements of nonhomologous centromeres during vertebrate spermatogenesis. Expt. Cell Res., 1990, V. 187, pp. 157-161.

150. Haaf T. and Ward D. Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp. Cell Res., 1995, V. 219, pp. 604-611.

151. Hagiwara H., Miyazaki K., Matuo Y., Yamashita J., Horio T. Novel protease bound with chromatins in normal and tumorous tissues of rats. Biochem. Biophys. Res. Commun., 1980, V. 94, pp. 988-995.

152. Hammadeh M., Zeginiadov T., Rosenbaum P., Georg T., Schmidt W., Strehler E. Predictive value of sperm chromatin condensation (aniline blue staining) in the assessment of male fertility. Arch. Androl., 2001, V. 46, N 2, pp. 99-104.

153. Hazzouri M., Rousseaux S., Mongelard F., Usson Y, Pelletier R., Faure A., Vourc'h C., Sele B. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol. Reprod. Dev., 2000, V. 55, N 3, pp. 307-315.

154. Hecht N. Mammalian protamines and their expression. Histones and other basic nuclear proteins. Boca Raton, CRC Press. 1989, pp. 347-373.

155. Hecht N. Regulation of haploid expressed genes in male germ cells. J. Reprod. Fert., 1990, V. 88, pp. 679-693.

156. Hendrick J. and Hartl F. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem., 1993, V. 62, pp. 349-384.

157. Hess H., Heid H., Franke W. Molecular characterization of mammalian cylicin, a basic protein of the sperm head cytoskeleton. J. Cell Biol., 1993, V. 122, pp. 1043-1052.

158. Hess H., Heid H., Zimbelmann R., Franke W. The protein complexity of the cytoskeleton of bovine and human sperm heads: the identification and characterization of cylicin II. Exp. Cell Res., 1995, V. 218, pp. 174-182.

159. Hock R, Moorman A., Fischer D., Scheer U. Absence of somatic histone H4 in oocytes and preblastula embryos of Xenopus laevis. Dev. Biol., 1993, V. 158, pp. 510-522.

160. Hofmann N., Hilscher B. Use of aniline blue to assess chromatine condensation in morphological normal spermatozoa in normal and infertile men. Hum reprod., 1991, V. 6, pp. 979-982.

161. Hoshi K., Katayose H., Yanagida K. The relationship between acridine orange fluorescence of sperm nuclei and the fertilizing ability of human sperm. Fertil. Steril., 1996, V. 66, pp. 634-639.

162. Hughes C., Lewis S., McKelvey-Martin V., Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol. Hum. Reprod., 1996, V. 2, pp. 613-619.

163. Hutchison C., Cox R., Drepaul R., Gomperts M., Ford C. Periodic DNA synthesis in cellfree extracts of Xenopus eggs. EMBO J., 1987, V. 6, N 7, pp. 2003-2010.

164. Ibrahim M., Moussa M., Pedersen H. Sperm chromatin heterogeneity as an infertility factor. Arch. Androl., 1988, V. 21, pp. 129-133.

165. Imajoh S. and Suzuki K. Reversible interaction between Ca2+-activated neutral protease (CANP) and its endogenous inhibitor. FEBS Lett., 1985, V. 187, pp. 47-50.

166. Imschenetzky M., Diaz F., Montecino M., Sierra F., Puchi M. Identification of a cysteine protease responsible for degradation of sperm histones during male pronucleus remodeling in sea urchins. J. Cell Biochem., 1997, V. 67, N 3, pp. 304-315.

167. Inagaki T. Chromatin-bound protease and its inhibitor from rat peritoneal macrophages. Tanpakushitsu Kakusan Koso, 1980, V. 25, N 6, pp. 447-453.

168. Iranpour F., Nasr-Esfahani M., Valojerdi M., al-Taraihi T. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J. Assist. Reprod. Genet., 2000, V. 17, N 1, pp. 60-66.

169. Irvine D., Twigg J., Gordon E., Fulton N., Milne P., Aitken R. DNA integrity in human spermatozoa: relationships with semen quality. J. Androl., 2000, V. 21, N 1, pp. 33-44.

170. Itoh T., AusioJ., Katagiri C. Histone HI variants as sperm-specific nuclear proteins of Rana catesbeiana, and their role in maintaining a unique condensed state of soerm chromatin. Mol. Reprod. Dev., 1997, V. 47, N 2, pp. 181-190.

171. Iwasaki A. and Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril., 1992, V. 57, pp. 409-416.

172. Jager S., Wijchman J., Kremer J. Studies on the decondensation of human, mouse, and bull sperm by heparin and other polyanions. J. Exp. Zool., 1990, V. 256, N 3, pp. 315-322.

173. Jager S. Sperm nuclear stability and male infertility. Arch. Androl., 1990, V. 25, N 3, pp. 253-259.

174. Jentsch S., McGrath J., Varshavsky A. The yeast DNA repair gene RAD6 encodes a ubiquitin- conjugating enzime. Nature, 1987, V. 329, pp. 131-134.

175. Jeulin C., Feneux D., Serre C., Jouannet P. Sperm factors related to failure of human in vitro fertilization. J. Reprod. Fertil., 1986, V. 76, pp. 735-744.

176. Johnson P., Yelick P., Liem H., Hecht N. Differential distribution of the PI and P2 protamine gene sequences in eutherian and marsupial mammals and a monotreme. Gamete Res.1988, V. 19, pp. 169-175.

177. Juttermann R., Li E., Jaenisch R. Toxicity of 5-aza-2'- oxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA demethylation. Proc. Natl. Acad. USA, 1994, V. 91, pp. 11797-11801.

178. Kapuscinski J. and Darzynkievicz Z. Denaturation of nucleic acids induced by intercalating agents. Biochemical and biophysical properties of acridine orange-DNA complexes. J. Biomolec. Struct. Dynam., 1984, V. 1, N 4, pp. 1485-1499.

179. Kasinsky H., Mann M., Huang S., Fabrel L., Coyle B., Byrd E. On the diversity of sperm basic proteins in the vertebrates: Cytochemical and amino asid analysis in Squamata, Testudines and Crocodylia. J. Exp. Zool., 1987, V. 243, pp. 137-151.

180. Kasinsky H. Spesifisity and distribution of sperm basic proteins. In Histones and Other Basic Sperm Nuclear Proteins (Eds. L. Hnilica, G. Stein, J. Stein). CRC Press, Boca Raton, FL.1989.

181. Kierszenbaum A. Transition nuclear proteins during spermiogenesis: unrepaired DNA breaks not allowed. Mol. Reprod. Dev., 2001, V. 58, N 4, pp. 357-358.

182. Kim Y. and Chae C. A protease is bound to rat liver nucleosomes. Biochim. Biophys. Acta., 1983, V. 755, N l,pp. 151-154.

183. Kleinchmidt J. and Steinbeisser H. DNA dependent phosphorylation of histone H2A.X during nucleosome assembly in Xenopus laevis oocytes: involvment of protein phosphorylation in nucleosome spacing. EMBO J., 1991, V. 10, pp. 3043-3050.

184. Kobayashi H., Larson K., Sharma R., Nelson D., Evenson D., Toma H., Thomas A., Agarwal A. DNA damage in patients with untreated cancer as measured by the sperm chromatin structure assay. Fertil. SteriL, 2001, V. 75, N 3, pp. 469-475.

185. Koehler J. Structural heterogeneity of the mammalian sperm flagellar membrane. J. Submicrosc. Cytol., 1983, V. 15, N 1, pp. 247-253.

186. Koken M., Reynolds P., Jaspers-Dekker I., Prakash S., Prakash I., Bootsma D., Hoeijmakers J. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc. Natl. Acad. Sci. USA, 1991, V. 88, pp. 8865-8869.

187. Kopecny V., Fulka J., Pivko J., Petr J. Localization of replicated DNA-containing sites in preimplantation bovine embryo in relation to the onset of RNA synthesis. Biol. Cell, 1989, V. 65, N 3, pp. 231-238.

188. Kosower N., Katayose H., Yanagimuchi R. Thiol disulfide status and acridine orange fluorescence of mammalian sperm nuclei. J. Androl., 1992, V. 13, pp. 342-348.

189. Kozik A., Bradbury E., Zalensky A. Increased telomere size in sperm cells of mammals with long terminal (TTAGGG)n arrays. Mol. Reprod. Dev., 1998, V. 51, pp. 98-104.

190. Kramer J. and Krawetz S. Matrix-associated regions in haploid expressed domains. Mamm. Genome, 1995, V. 6, N 9, pp. 677-679.

191. Kramer J. and Krawetz S. Nuclear matrix interactions within the sperm genome. J. Biol. Chem., 1996, V. 271, N20, pp. 11619-11622.

192. Kramer J. and Krawetz S. RNA in spermatozoa: implications for the alternative haploid genome. Mol. Hum. Reprod., 1997, V. 3,'pp. 473-478.

193. Krawetz S., Kramer J., McCarrey J. Reprogramming the male gamete genome: a window to successful gene therapy. Gene, 1999, V. 234, N 1, pp. 1-9.

194. Kukucka M. and Misra H. The antioxidant defense system of isolated guinea pig Leydig cells. Mol. Cell Biochem., 1993, V. 126, N 1, pp. 1-7.

195. Kvist U. Spermatozoa thiol-disulphide interaction: A possible event underlying physiological sperm nuclear chromatine decondensation. Acta Physiol. Scand., 1982, V. 115, pp.•503-505.

196. Kvist U., Bjorhdalh L., Kjelleberg S. Sperm nuclear zinc, chromatin stability and male fertility. Scanning Microsc., 1987, V. 1, N 3, pp. 1241-1247.

197. Lalande M., Ling V., Miller R. Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells. Proc. Natl. Acad. Sci. USA, 1981, V. 78, N 3, pp. 363-367.

198. Larson K., Brannian J., Singh N., Burbach J., Jost L., Hansen K., Kreger D., Evenson D. Chromatin structure in globozoospermia: a case report. J. Androl., 2001, V. 22, N 3, pp. 424431.

199. Laskey R., Honda B., Mills A., Finch J. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, 1978, V. 275, pp. 416-420.

200. Lavoié L., Tremblay A., Mirault M. Distinct oxidoresistance phenotype of human T47D cells transfected by rat glutathione S-transferase Yc expression vectors. J. Biol. Chem., 1992, V. 267, N 6, pp. 3632-3636.

201. Lebo R. Chromosome sorting and DNA sequence localization. Cytometry, 1982, V. 3, N 1, pp. 145-154.

202. Leclerc P., Sirard M. A., Chafouleas J. G., Lambert R. D. Decrease in calmodulin concentrations during heparin- induced capacitation in bovine spermatozoa. J. Reprod. Fertil., 1992, V. 94, N 1, pp. 23-32.

203. Leno G., Mills A., Philpott A., Laskey R. Hyper phosphorylation of nucleoplasmin facilitates Xenopus sperm decondensation at fertilization. J. Biol. Chem., 1996, V. 271, N 13, pp. 7253-7256.

204. Li L., Seddon A., Meister A., Risley M. Spermatogenic cell-somatic cell interactions are required for maintenance of spermatogenic cell glutathione. Biol. Reprod., 1989, V. 40, N 2, pp. 317-331.

205. Li W., Nagaraja S., Delcuve J., Hendzel M., Davie J. Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem. J., 1993, V. 296, pp. 737-744.

206. Lichter P., Cremer T., Tang C., Watkins P., Manuelidis L., Ward D. Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc. Natl. Acad. Sci. USA, 1988, V. 85, N 24, pp. 9664-9668.

207. Lipinska A. and Klyszejko-Stefanowicz L. The activity of chromatin-bound protease extracted selectively with histone H2B from calf thymus and rat liver. Int. J. Biochem., 1980, V.l 1, N 3-4, pp. 299-303.

208. Lipinska A., Krawczyk Z., Krajewska W., Klyszejko-Stefanowicz L., Chorazy M. Activity of chromatin-bound protease in histone fractions from rat liver and Morris hepatoma. Neoplasma, 1980, V. 27, N 4, pp. 409-413.

209. Liu Y. and Baker H. Test of human sperm function and fertilization in vitro. Fértil. Steril. 1992, V. 58, N 3, pp. 465-483.

210. Locklear L., Ridsdale J., Bazett-Jones D., Davie J. Ultrastructure of transcriptionally competent chromatin. Nucl. Acids Res., 1990, V. 18, pp. 7015-7024.

211. Lohka M. and Mailer J. Induction of metaphase chromosome condensation human sperm by xenopus egg extrakts. Exp. Cell Res., 1988, V. 179, pp. 303-309.

212. Lohka M. and Masui Y. Formation in vivo of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science, 1983, V. 220, pp. 719-721.

213. Longo F. and Kunkle M. Transformation of sperm nuclei upon insemination. Curr. Top. Dev. Biol., 1978, V. 12, pp. 149-184.

214. Longo F., Krohn G., Franke W. Basic proteins of the perinuclear theca of mammalian spermatozoa and spermatids: a novel class of cytoskeletal elements. J. Cell Biol., 1987, V. 105, pp. 1105-1120.

215. Longo F. and Cook S. Formation of the perinuclear theca in spermatozoa of diverse mammalian species: relationship of the manchette and multiple band polypeptides. Mol. Rep. Dev., 1991, V. 28, pp. 380-393.

216. Lopes S., Sun J., Jurisieova A. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil. Steril., 1998, V. 69, pp. 528-532.

217. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am. J. Physiol., 1943, V. 138, pp. 512-518.

218. Maeda Y., Yanagimachi H., Tateno H., Usui N., Yanagimachi R. Decondensation of the mouse sperm nucleus within the interphase nucleus. Zigote, 1998, V. 6, N 1, pp. 39-45.

219. Maleszewski M., Borsuk E., Koziak K., Maluchnik D., Tarkowski A. Delayed sperm incorporation into parthenogenetic mouse eggs: sperm nucleus transformation and development of resulting embryos. Mol. Reprod. Dev., 1999, V. 54, N 3, pp. 303-310.

220. Mallidis C., Howard E., Baker H. Variation of semen quality in normal men. Int. J. Androl., 1991, V. 14, pp. 99-107.

221. Marushige Y. and Marushige K. Enzymatic unpacking of bull sperm chromatin. Biochim. Biophys. Acta., 1975, V. 403, N 1, pp. 180-191.

222. Marushige Y. and Marushige K. Dispersion of mammalian sperm chromatin during fertilization: an in vitro study. Biochim. Biophys. Acta., 1978, V. 519, N 1, pp. 1-22.

223. Marushige Y. and Marushige K. Proteolysis of somatic type histones in transforming rat spermatid chromatin. Biochim. Biophys. Acta., 1983, V. 761, N 1, pp. 48-57.

224. Matwee C., Betts D., King W. Apoptosis in the early bovine embryo. Zygote, 2000, V. 8, N 1, pp. 57-68.

225. Mayer W., Nussbaum G., Domenjoud L., Klemm U., Engel W. The lack of protamine P2 in boar and bull spermatozoa is due to mutation within the P2 gene. Nucl. Acids. Res., 1990, V. 18, pp. 1249-1254.

226. McCarey J. R. Development of the germ cell. In Cell and Molecular Biology of the Testis (Eds. C. Desjardins and L. Ewing). Oxford University Press, New York. 1993, pp. 58-89.

227. McKay D., Renaux B., Dixon G. H. Human sperm protamines. Amino asid sequence of two forms of P2. Eur. J. Biochem., 1986, V. 156, pp. 5-8.

228. Mezquita J. and Mezquita C. Characterization of a chicken polyubiquitin gene preferentially expressed during spermatogenesis. FEBS Lett., 1991, V. 279, N 1, pp. 69-72.

229. Mieusset R. Spermatozoa and embryo development. In Frontiers in Endocrinology. Epididimis: Role and Importance in male infertility Treatment (Eds. S. Hamamah,R. Mieusset, J. Dacheux). Area Serano Symposia, Roma, 1995, pp. 105-128.

230. Miller A. and Blakely W. Inhibition of glutathione reductase activity by a carbamoylating nitrosourea: effect on cellular radiosensitivity. Free Radic. Biol. Med., 1992, V. 12, N 1, pp. 5362.

231. Mirault M., Tremblay A., Beaudoin N., Tremblay M. Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J. Biol. Chem., 1991, V. 266, N 31, pp. 20752-20760.

232. Mitchell P. and Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 1989, V. 245, N 4916, pp. 371-378.

233. Mitchell M., Woods D., Tucker P., Opp J., Bishop C. Homology of a candidate spermatogenesis gene from the mouse Y chromosome to the ubiquitin-activating enzyme El. Nature, 1991, V. 354, pp. 483-486.

234. Mochida K., Tres L., Kierszenbaum A. Structural features of the 26S proteasome complex isolated from rat testis and sperm tail. Mol. Reprod. Dev., 2000, V. 57, N 2, pp. 176-184.

235. Molina J., Castilla J., Gil T., Hortas M., Vergara F., Herruzo A. Influence of incubation on the chromatin condensation and nuclear stability of human spermatozoa by flow cytometry. Hum. Reprod., 1995, V. 10, N 5, pp. 1280-1286.

236. Monesi V. Synthetic activities during spermatogenesis in the mouse: RNA and protein. Exp. Cell Res., 1965, V. 39, pp. 197-224.

237. Mosser D., Theodorakis N., Morimoto R. Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol. Cell Biol., 1988, V. 8, N 11, pp. 4736-4744.

238. Muller W. and Gantier F. Interactions of heteroaromatic compounds with nucleic acids. A-T-specific non-intercalating DNA ligands. Eur. J. Biochem ., 1975, V. 54, N 2, pp. 385-394.

239. Naryzhny S., Levina V., Varfolomeeva E., Drobchenko E., Filatov M. Active dissociation of Hoechst from DNA in a living cell. Who could do it? Electrophoresis, 1999, V. 20, N 4-5, pp. 1033-1038.

240. Newport J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell, 1987, V. 48, pp. 205-217.

241. Newport J. and Kirschner M. Regulation of the cell cycle during early Xenopus development. Cell, 1984, V. 37, N 3, pp. 731-742.

242. Ng F., Liu D., Baker H. Comparison of Percoll, Mini-Percoll and swim-up methods for sperm preparation from abnormal semen samples. Hum. Reprod., 1992, V. 7, pp. 261-266.

243. Nickel B., Roth S., Cook R., Allis C., Davie J. Changes in the histone H2A variant H2A.Z and polyubiquitinated histone species in developing trout testis. Biochem., 1987, V. 26, pp. 4417-4421.

244. Nonchev S. and Tsanev R. Protamine-histone replacement and DNA replication in the male mouse pronucleus. Mol. Reprod. Dev., 1990, V. 25, N 1, pp. 72-76.

245. Ohsumi K. and Katagiri C. Occurrence of HI subtypes specific to pronuclei and cleavage-stage cell nuclei of anuran amphibians. Dev. Biol., 1991, V. 147, N 1, pp. 110-120.

246. Okuwaki M., Matsumoto K., Tsujimoto M., Nagata K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett., 2001, V. 506, pp. 272-276.

247. Oliva R. and Dixon G. H. Vertebrate protamine gene evolution. Sequence alignment and gene structure. J. Mol. Evol., 1990, V. 30,pp. 333-346.

248. Oliva R. and Dixon G. H. Vertebraite protomine geges and the gistone-to-protamine replacement reaction. Prog. Nucleic Acid. Res. Mol. Biol., 1991, V. 40, pp.25-94.

249. Oliva R., Goren R. and Dixon G. H. Quail ( Coturnix japónica) protamine, full-length cDNA sequence, and the function and evolution of vertebrate protamines. J. Biol. Chem., 1989, V. 264, pp. 17627-17630.

250. Palmer A., Rivett A., Thomson S., Hendil K., Butcher G., Fuertes G., Knecht E. Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem. J., 1996, V. 316, pp. 401-407.

251. Parry T. and Prather R. Carry-over of mRNA during nuclear transfer in pigs. Reprod. Nutr. Dev., 1995, V. 35, N 3, pp. 313-318.

252. Pasteur X., Maubon I., Sabido O., Cottier M., Laurent J. Comparison of the chromatin stainbility of human spermatozoa separated by discontinuous percoll gradient centrifugation. Anal. Quan. Cytol. Histol., 1992, V. 14, pp. 96-104.

253. Patrizio P., Ord T., Silber S., Asch R. Correlation between epididymal length and fertilization rate of men with congenital absence of the vas deferens. Fertil. Steril., 1994, V. 61, pp. 265-268.

254. Peltola V., Huhtaniemi I., Ahotupa M. Antioxidant enzyme activity in the maturing rat testis. J. Androl., 1992, V. 13, N 5, pp.450-455.

255. Perreault S. and Zirkin B. Sperm nuclear decondensation in mammals: role of spermassociated proteinase in vivo. J. Exp. Zool., 1982, V. 224, N 2, pp. 253-257.

256. Perreault S., Barbee R., Elstein K., Zucker R., Keefer C. Interspecies differences in the stability of mammalian sperm nuclei assessed in vivo by sperm microinjection and in vitro by flow cytometry. Biol. Reprod., 1988, V. 39, N 1, pp. 157-167.

257. Philpott A., Leno G., Laskey R. Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell, 1991, V. 65, pp. 569-578.

258. Philpott A. and Leno G. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell, 1992, V69, pp. 759-767.

259. Pinkel D., Lake S., Glendhill B., Van Dilla M„ Stephenson D., Watchmaker G. High resolution DNA content measurements of mammalian sperm. Cytometry, 1982, V. 3, N 1, pp. 19.

260. Pirhonen A., Linnala-Kankkunen A., Maenpaa P. Comparison of partial amino acid sequence of two protamine 2 variants from stallion sperm. FEBS Lett., 1989, V. 244, pp. 199202.

261. Plusa B., Ciemerych M., Borsuk E., Tarkowski A. Transcription and DNA replication of sperm nuclei introduced into blastomeres of 2-cell mouse embryos. Zygote, 1997, V. 5, N 4, pp. 289-299.

262. Poccia D. Remodeling of nucleoproteins during gametogenesis, fertilization and early development. Int. Rev. Cytol., 1986, V. 105, pp. 1-65.

263. Potts R., Newbury C., Smith G., Notarianni L., Jefferies T. Sperm chromatin damage associated with male smoking. Mutat. Res., 1999, V. 423, N 1-2, pp. 103-111.

264. Quintanilla-Vega B., Hoover D., Bal W., Silbergeld E., Waalkes M., Anderson L. Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem. Res. Toxicol., 2000 V. 13, N 7, pp. 594-600.

265. Rao V., Goldstein S., Czapski G. The relative efficiency of radicals in radiation damage to deoxyribose. Free Radic. Res. Commun., 1991, V. 12-13, pp. 67-73.

266. Rayburn A., Auger J., McMurphy L. Estimating percentage constitutive heterochromatin by flow cytometry. Exp. Cell Res., 1992, V.198, N 2, pp. 175-178.

267. Redi C., Garagna S., Bottiroli G. Cytochemical evaluation of sperm and lymphocyte DNA content after treatment with 5 N HC1. Histochemistry, 1986, V. 84, N 1, pp. 41-44.

268. Renard J.-P., Babinet C. Barra J. Participation of the paternal genome is not required before the eight-cell stage for full-term development of mouse embryos. Dev. Biol., 1991, V. 143, pp. 199-202.

269. Redner A., Hegewisch S., Haimi J., Steiherz P., Jhanwar S., Andreeff M. A study of multidrug resistance and cell kinetics in a child with near-haploid acute lymphoblastic leukemia. Leuk. Res., 1990, V. 14, N 7, pp. 771-777.

270. Retief J. D., Winkfein R. J., Dixon G. H., Adroer R., Queralt R., Ballabriga J., Oliva R. Evolution of protamine PI genes in primates. J. Mol. Evol., 1993, V. 37, pp. 426-434.

271. Reyes R., Carranco A., Huacuja L., Delgado N. Male pronuclei formation release of phosphorylation of histone H-3 during decondensation of human sperm nuclei activated in vitro by heparin. Arch. AndroL, 1991, V. 26, N 2, pp. 53-60.

272. Reyes R., Sanchez-Vazquez M., Merchant-Larios H., Rosado A., Delgado N. Effect of heparin-reduced glutathione on hamster sperm DNA unpacking and nuclear swelling. Arch. AndroL, 1996, V. 37, N 1, pp. 33-45.

273. Robinson B., Johnson D., Poulos A. Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in mammalian testes and spermatozoa. J. Biol. Chem., 1992, V. 267, N 3, pp. 1746-1751.

274. Rodman T., Pruslin F., Allfrey V. Mechanisms of displacement of sperm basic nuclear proteins in mammals. An in vitro simulation of post-fertilization results. J. Cell Sci., 1982, V. 53, pp. 227-244.

275. Rousseaux J. and Rousseaux-Prevost R. Molecular localization of free thiols in human sperm chromatin. Biol. Reprod., 1995, V. 52, N 5, pp. 1066-1072.

276. Royere D., Hamamah S., Nicolle J., Lansac J. Chromatin alterations induced by freeze-thawing influence the fertilizing ability of human sperm. Int. J. Androl., 1991, V. 14, N 5, pp. 328-332.

277. Sailer B., Jost L., Erikson K., Tajiran M., Evenson D. Effects of X-irradiation on mouse testicular cells and sperm chromatin structure. Environ. Mol. Mutagen, 1995, V. 25, N 1, pp. 2330.

278. Sailer B., Jost L., Evenson D. Bull sperm head morphometry related to abnormal chromatin structure and fertility. Cytometry, 1996, V. 24, pp. 167-173.

279. Sailer B., Sarkar L., Bjordahl J., Jost L., Evenson D. Effects of heat stress on mouse testicular cells and sperm chromatin structure. J. Androl., 1997, V. 18, N 3, pp. 294-301.

280. Sakkas D., Manicardi G., Bianchi P. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol. Reprod., 1995, V. 52, pp. 1149-1155.

281. Sakkas D., Mariethoz E., Manicardi G., Bizzaro D., Bianchi P., Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev. Reprod., 1999, V. 4, N 1, pp. 31-37.

282. Sakkas D., Urner F., Bianchi P., Bizzaro D. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum. Reprod., 1996, V. 11, pp. 837-843.

283. Sakkas D., Urner F., Bizzaro D., Manicardi G., Bianchi P., Shoukir Y., Campana A. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum. Reprod., 1998, Suppl. 4, pp. 9-11.

284. Samocha-Bone D., Lewin L., Weissenberg R., Madgar Y., Soffer Y., Shochat L., Golan R. In-vitro human spermatozoa nuclear decondensation assessed by flow cytometry. Mol. Hum. Reprod., 1998, V. 4, N 2, pp. 133-137.

285. Sanchez-Vazquez M., Reyes R., Ramirez G., Merchant-Larios H., Rosado A., Delgado N. DNA unpacking in guinea pig sperm chromatin by heparin and reduced glutathione. Arch. Androl., 1998, V. 40, N 1, pp. 15-28.

286. Saowaros W. and Panyim S. The formation of disulfide bonds in human protamines during sperm maturation. Experientia, 1979, V. 35, pp. 191-193.

287. Sarge K. Male germ cell-specific alteration in temperature set point of the cellular stress response. J. Biol. Chem., 1995, V. 270, N 32, pp. 18745-18748.

288. Sasagawa I., Ichiyanagi O., Yazawa H., Nakada T., Saito H., Hiroi M., Yanagimachi R.

289. Round spermatid transfer and embryo development. Arch. Androl., 1998, V. 41, pp. 151-157.

290. Schlicker M., Schnulle V., Schneppel L. Disturbances of nuclear condensation in human spermatozoa: seach for mutations in the genes for protamine 1, protamine 2 and transition protein 1. Hum. Reprod., 1994, V. 9, pp. 2313-2317.

291. Schulman I. and Bloom K. Centromeres: an integrated protein/DNA complex required for chromosome movement. Annu Rev. Cell Biol., 1991, V. 7, pp. 311-336.

292. Sealy L., Cotten M., Chalkley R. Xenopus nucleoplasmin: egg vs oocyte. Biochem., 1986, V. 25, pp. 3064-3072.

293. Segal A. and Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem. Sci., 1993, V. 18, N 2, pp. 43-47.

294. Seligman J., Shalgi R., Oschry Y., Kosower N. S. Sperm analysis by flow cytometry using the fluorescent thiol labeling agent monobromobimane. Mol. Reprod. Devel., 1991, V. 29, pp. 276-281.

295. Seufert W., Futcher B., Jentsch S. Role of a ubiquitin-conjugating enzime in degradation of S- and M-phase cyclins. Nature, 1995, V. 373, pp. 78-81.

296. Shalika S., Dugan K., Pelesh D., Padilla S. A Mono-Percoll separation technique improves sperm recovery of normal and male factor specimens when compared with the swim-up technique. Hum. Reprod., 1995, V. 10, N 12, pp. 3195-3197.

297. Shapiro H. Practical Flow Cytometry. Alan Liss, NewYork, 1985.

298. Shimada A., Kikuchi K., Noguchi J., Akama K., Nakano M., Kaneko H. Protamine dissociation before decondensation of sperm nuclei during in vitro fertilization of pig oocytes. J. Reprod. Fertil., 2000, V. 120, N 2, pp. 247-256.

299. Smith P., Debenham P. and Watson J. A role of DNA topoisomerases in the active dissociation of DNA minor grooveligand complex. Mutat. Res., 1989, V. 217, N 2, pp. 169-172.

300. Smith R., Dworkin-Rastl E., Dworkin M. Expression of a histone HI-like protein is restricted to early Xenopus development. Genes Dev., 1988, V. 2, pp. 1284-1295.

301. Smith S., Soloy E., Kanka J., Holm P., Callesen H. Influence of recipient cytoplasm cell stage on transcription in bovine nucleus transfer embryos. Mol. Reprod. Dev., 1996, V. 45, N 4, pp. 444-450.

302. Spano M. and Evenson D. Flow cytometric analysis for reproductive biology. Biol. Cell, 1993, V. 78, N 1-2, pp. 53-62.

303. Spano M., Kolstad A., Larsen S., Cordelli E., Leter G., Giwercman A., Bonde J. The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Asclepios. Hum. Reprod., 1998, V. 13, N 9, pp. 2495-2505.

304. Stepanov S., Konushev V., Kotlovanova L., Roganov A. Karyotyping of individual cells with flow cytometry. Cytometry, 1996, V. 23, pp. 279-283.

305. Stokke T., Holt H., Steen H. In vitro and in vivo activation of B-lymphocytes: a flow cytometric study of chromatin structure employing 7-aminoactinomycin D. Cancer Res., 1988, V. 48, N 12, pp. 6708-6714.

306. Stokke T., Holte H., Erikstein B., Davies C., Funderund S., Steen H. Simultaneous assessment of chromatin structure, DNA content, and antigen expression by dual wavelength excitation flow cytometry. Cytometry, 1991, V. 12, N 2, pp. 172-178.

307. Stokke T., Holt H., Smeland E., Lie S., Steen H. Differential chromatin structure-dependent binding of 7-aminoactinomycin D in normal and malignant bone marrow hematopoietic cells. Cancer Res., 1992, V. 52, N 12, pp. 5007-5012.

308. Subirana J. A. Protein- DNA interactions in spermatozoa. Comparative Spermatology 20 Years Later. Serono Symposia Pablications, V. 75. (Ed. B. Baccetti). Raven Press, New York. 1991, pp. 89-92.

309. Sun J., Jurisicova A., Casper R. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol. Reprod., 1997, V. 56, pp. 602-607.

310. Surkenova G., Malakhova L., Gaziev A. Proteinase activity of the peripheral blood cell nuclei of gamma- irradiated rats. Radiobiologiia, 1990, V. 30, N 6, pp. 740-744.

311. Surowy C. and Berger N. Nucleotide-stimulated proteolysis of histone HI. Proc. Nat. Acad. Sci. USA, 1983, V. 80, pp. 5510-5514.

312. Sutovsky P. and Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int. Rev. Cytol., 2000, V. 195, pp. 1-65.

313. Suzuki Y. and Murachi T. A chromatin-bound neutral protease and inhibitor in rat peritoneal macrophages. J. Biochem. (Tokyo), 1978, V. 84, N 4, pp. 977-984.

314. Tanphaichitr N., Sobhon P., Taluppeth N., Chalermisarachai P. Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp. Cell Res., 1978, V. 117, N 2, pp. 347356.

315. Tesarik J. Developmental control of human preimplantation embryos: a comparative approach. J. In Vitro Fert. Embryo Transf. 1988, V. 5, pp. 347-362.

316. Tesarik J. and Kopecny V. Development of human male pronucleus: ultrastructure and timing. Gamete Res., 1989, V. 24, N 2, pp. 135-149.

317. Tesarik J., Kopecny V., Plachot M., Mandelbaum J. Activation of nucleolar and extranucleolar RNA synthesis and changes in the ribosomal content of human embryos developing in vitro. J. Reprod. Fertil., 1986, V. 78, pp. 463-470.

318. Thorn A., Sautiere P., Briand G., Crane-Robinson C. The structure of ubiquitinated histone H2B. EMBO J., 1987, V. 6, pp. 1005-1010.

319. Tipler C., Hutchon S., Hendil K., Tanaka K., Fishel S., Mayer R. Purification and characterization of 26S proteasomes from human and mouse spermatozoa. Mol. Hum. Reprod., 1997, V. 3, N 12, pp. 1053-1060.

320. Tosic J. and Walton A. Formation of hydrogen peroxide by spermatozoa and its inhibitory effect on respiration. Nature, 1946, V. 158, pp. 485.

321. Tosic J. and Walton A. Metabolism of spermatozoa. Formation of hydrogen peroxide by spermatozoa and its effects on motility and survival. Biochem. J., 1950, V. 47, pp. 199-212.

322. Tounekti O., Belehradek J., Mir L. Relationships between DNA fragmentation, chromatin condensation, and changes in flow cytometry profiles detected during apoptosis. Exp. Cell Res., 1995, V. 217, N4, pp. 506-516.

323. Tsanev R. and Avramova Z. Nonprotamine nucleoprotein ultrastructures in mature ram sperm nuclei. Eur. J. Cell Biol., 1981, V. 24, N 1, pp. 139-145.

324. Tsurugi К and Ogata К. Studies on the serine proteases associated with rat liver chromatin. J. Biochem., 1982, V. 92, N 5, pp. 1369-1381.

325. Tsurugi К and Ogata K. Effects of DNA and urea on the specificity for HI histone of the neutral protease В partially purified from rat liver chromatin J. Biochem., 1988, V. 99, pp. 237241.

326. Van der Zwalmen P. Частота оплодотворения и беременности после интрацитоплазматической инъекции сперматозоида (ICSI) при использовании эякулированных, эпидидимальных и тестикулярных сперматозоидов. Пробл. репрод., 1995, Т. 2, сс. 52-60.

327. Van der Zwalmen P., Bertin-Segal G., Geerts L., Debauche C., Schoysman R. Sperm morphology and IVF pregnancy rate: comparison between Percoll gradient centrifugation and swim-up procedures. Hum. Reprod., 1991, V 6, N 4, pp. 581-588.

328. Vinogradov A. Cell membrane-dependent chromatin condensation. Cytometry, 1995, V. 19, N2, pp. 183-189.

329. Visner G., Dougall W., Wilson J., Burr I., Nick H. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J. Biol. Chem., 1990, V. 265, N 5, pp. 2856-2864.

330. Vorobjova O., Filatov M., Leontjeva O., Semenova E. A flow cytometric registration of sperm chromatin condensation: correlation with the in vitro fertilization outcome. 6 Baltic Sea Conference on Obst. and Gynec. Kiel, Germany, 1997.

331. Wagner T. and Yun J. Human sperm chromatin has a nucleosomal structure. Arch. Androl., 1981, V.7, N 3, pp. 251-257.

332. Wagner T. and Yun J. Fine structure of human sperm chromatin. Arch. Androl., 1979, V. 2, N4, pp. 291-294.

333. Wang X. and Ausio J. Histones are the major chromosomal protein components of the sperm of the nemerteans Cerebratulus californiensis and Cerebratulus lacteus. J. Exp. Zool., 2001, V. 290, N4, pp. 431-436.

334. Ward W. Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol. Reprod., 1993, V. 48, N 6, pp. 1193-1201.

335. Ward W. and Coffey D. Specific organization of genes in relation to the sperm nuclear matrix. Biochem. Biophys. Res. Commun., 1990, V. 173, N. 1, pp. 20-25.

336. Ward W. and Coffey D. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod., 1991, V. 44, pp. 569- 574.

337. Ward W., Kishikawa H., Akutsu H., Yanagimachi H., Yanagimachi R. Further evidence that sperm nuclear proteins are necessary for embryogenesis. Zygote, 2000, V. 8, N 1, pp. 51-56.

338. Wassarman P. The biology and chemistry of fertilization. Science, 1987, V. 235, N 4788, pp. 553-560.

339. Watt R. and Voss E. Characterization of affinity-labeled fluorescyl ligand to specifically-purified rabbit IgG antibodies. Immunochemistry, 1978, V. 15, pp. 875-882.

340. Westwood J. and Wu C. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell Biol., 1993, V. 13, N 6, pp. 3481-3486.

341. Wiger R., Hongslo J., Evenson D., De Angelis P., Schwarze P., Holme J. Effects of acetaminophen and hydroxyurea on spermatogenesis and sperm chromatin structure in laboratory mice. Reprod. Toxicol., 1995, V. 9, N 1, pp. 21-33.

342. Wing S. and Jain P. Molecular cloning, expression and characterization of a ubiquitin enzyme (E217kD) highly expressed in rat testis. Biochem. J., 1995, V. 305, pp. 125-132.

343. Witmyer F., Barrett A., Cristello J. The fertilization ability of sperm correlates with staining by fluorescent label monobrobimane. Abstr. of Meetings of KSFS, 1993, p. 180.

344. Wojcik C., Benchaib M., Lornage J., Czyba J., Guerin J. Proteasomes in human spermatozoa. Int. J. Androl., 2000, V. 23, N 3, pp. 169-177.

345. Worcel A., Han S., Wong M. Assembly of newly replicated chromatin Cell, 1978, V. 15, pp. 969-977.

346. Wolffe A. Chromatin: structure and function. Acad. Press, London, 1992.

347. Yanagimachi R. Fertilization in mammals. Tokai J. Exp. Clin. Med., 1984, V. 9, N 2, pp. 81-85.

348. Yanagimachi R. Intracytoplasmic sperm injection experiments using the mouse as a model. Hum. Reprod., 1998, V. 13, Suppl 1, pp. 87-98.

349. Yu Y., Zhang Y., Unni E., Shirley C., Deng J., Russell L., Weil M., Behringer R., Meistrich M. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc. Natl. Acad. Sci. USA, 2000, V. 97, pp. 4683-4688.

350. Zalenskaya I., Pospelov V., Zalensky A., Vorob'ev V. Nucleosomal structure of sea urchin and starfish sperm chromatin. Histone H2B is possibly involved in determining the length of linker DNA. Nucleic Acids Res., 1981, V. 9, N 3, pp. 473-487.

351. Zalenskaia I., Zalenskii A., Kostyleva E., Ibragimov R., Vorob'ev V. The role of H2B histories from the sea urchin sperm in the formation of supranucleosome structures. Mol. Biol. (Moskva), 1985, V. 19, N 3, pp. 774-783.

352. Zalensky A. and Avramova Z. Nucleosomal organization of a part of chromatin in mollusc sperm nuclei with a mixed basic protein composition. Mol. Biol. Rep., 1984, V. 10, N 2, pp. 6974.

353. Zalensky A., Breneman J., Zalenskaya I., Brinkley B., Bradbury E. Organization of centromeresin the decondensed nuclei of mature human sperm. Chromosoma, 1993, V. 102, pp. 509-518.

354. Zalensky A., Tomilin N., Zalenskaya I., Teplitz R., Bradbury E. Telomere-telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells. Exp. Cell. Res., 1997, V. 232, pp. 29-41.

355. Zalenskaya I., Bradbury E., Zalensky A. Chromatin structure of telomere domain in human sperm. Biochem. Biophys. Res. Comm., 2000, V. 279, pp. 213-218.

356. Zini A., Kamal K., Phang D., Willis J., Jarvi K. Biologic variability of sperm DNA denaturation in infertile men. Urology, 2001, V. 58, N 2, pp. 258-261.193

357. Zinkowski R., Meyne J., Brinkley B. The centromere-kinetoehore complex: a repeated subunit model. J. Cell Biol., 1991, V. 113, pp. 1091-1110.

358. Zirkin B., Chang T., Heaps J. Involvement of an acrosinlike proteinase in the sulfhydryl-induced degradation of rabbit sperm nuclear protamine. J. Cell Biol., 1980, V. 85, N 1, pp. 116121.

359. Zlatanova J. and van Holde K. Chromatin loops and transcriptional regulation. Crit. Rev. Eukaryot. Gene Expr., 1992, V. 2, N 3, pp. 211-224.