Бесплатный автореферат и диссертация по биологии на тему
Влияние органических соединений, содержащихся в природных водах, на качество питьевой воды
ВАК РФ 03.00.16, Экология

Автореферат диссертации по теме "Влияние органических соединений, содержащихся в природных водах, на качество питьевой воды"

На правах рукописи

ИЗВЕКОВА Татьяна Валерьевна

ВЛИЯНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ, СОДЕРЖАЩИХСЯ В ПРИРОДНЫХ ВОДАХ, НА КАЧЕСТВО ПИТЬЕВОЙ ВОДЫ (на примере г. Иванова)

03.00.16-Экология

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Иваново - 2003

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования "Ивановский государственный химико-технологический университет".

Научный руководитель: Доктор химических наук,

доцент Гриневич Владимир Иванович

Официальные оппоненты: Доктор химических наук,

профессор Базанов Михаил Иванович Доктор химических наук, профессор Яблонский Олег Павлович

Ведущая организация: Институт химии растворов Российской

академии наук (г. Иваново)

Защита состоится 1 декабря 2003 г. в 10 часов на заседании диссертационного совета Д 212.063.03 в Государственном образовательном учреждении высшего профессионального образования "Ивановский государственный химико-технологический университет" по адресу: 153460, г. Иваново, пр. Ф. Энгельса, 7.

С диссертацией можно ознакомиться в библиотеке Государственного образовательного учреждения высшего профессионального образования "Ивановский государственный химико-технологический университет".

Автореферат разослан 30 октября 2003 г.

Ученый секретарь

диссертационного совета

Базаров Ю.М.

\82oa

Актуальность работы. Проблема, связанная с присутствием различных органических соединений в питьевой воде привлекает к себе внимание не только исследователей различных областей науки и специалистов водоподготовки, но и потребителей.

Содержание органических соединений в поверхностных водах изменяется в широких пределах и зависит от многих факторов. Доминирующим из них является хозяйственная деятельность человека, в результате которой поверхностные стоки и атмосферные осадки загрязнены разнообразными веществами и соединениями, включая и органические, которые содержатся в микроколичествах, как в поверхностных водах, так и питьевой воде. Некоторые вещества, такие как пестициды, полициклические ароматические углеводороды (ПАУ), хлорорганические соединения (ХОС), включая диоксины, даже в микродозах чрезвычайно опасны для здоровья человека. Это обуславливает их приоритетность наряду с другими экотоксикантами и требует ответственного подхода при выборе технологии водоподготовки, мониторинга и контроля качества, как питьевой воды, так и водоисточника.

Поэтому исследование содержания ХОС как в воде источника водоснабжения, так и появление последних в питьевой воде; определение риска на здоровье населения при краткосрочном и долговременном употреблении воды, как потенциальной опасности угрозы здоровью и для совершенствования действующих систем водоподготовки имеет актуальное значение. В диссертационной работе исследование проводилось на примере У Вольского водохранилища, обеспечивающее

80 % потребления питьевой воды населением г. Иванова. __

Работа выполнена в соответствии с тематическими планами исследований Ивановского государственного химико-технологического университета (2000 - 2003 гг.), ГРАНТом РФФИ № 03-03-96441 и ФЦНП.

Основной целью данной работы было выявление взаимосвязи между качеством воды в Уводьском водохранилище и питьевой водой, а также оценка риска возникновения канцерогенных и общетоксических эффектов у населения. Для достижения этих целей были выполнены:

экспериментальные измерения следующих наиболее важных показателей качества воды: рН, сухой остаток, ХПК, концентрации фенолов, летучих галогеноуглеводородов (хлороформа, чел " ~ [хлорэтана,

- трихлорэтилена, тетрахлорэтилена, 1,1,2,2-тетрахлорэтана), хлорфенолов (2,4-дихлорфенола, 2,4,6-трихлорфенола) и пестицидов (гамма ГХЦГ, ДДТ), как в источнике водоснабжения, так и питьевой воды;

- определены основные источники и стоки углеводородов нефти и фенолов в Уводьском водохранилище;

- расчеты величин риска возникновения канцерогенных и общетоксических эффектов и разработаны рекомендации по снижению вероятности их возникновения у потребителей воды.

Научная новизна. Выявлены закономерности временного и пространственного изменения качества воды в источнике водоснабжения г. Иванова. Установлены взаимосвязи между содержанием основных токсикантов в источнике водоснабжения и качеством питьевой воды, которые позволяют путем варьирования дозы хлора или совершенствованием системы водоподготовки снизить риски развития неблагоприятных канцерогенных и общетоксических эффектов. Установлена взаимосвязь между содержанием взвешенного органического вещества и хлорфенолов в водохранилище и питьевой воде. Показано, что содержание хлороформа обуславливается величинами рН и перманганатной окисляемостью (ПО) природной воды. Впервые определены риски развития неблагоприятных органолептических, общетоксических и канцерогенных эффектов у горожан, а также связанные с этим сокращения ожидаемой продолжительности жизни и ущербы здоровью населения.

Практическая значимость. Впервые определены основные источники (канал Волга-Уводь и атмосферные выпадения) и стоки углеводородов нефти и фенолов (гидродинамический вынос, биохимическая трансформация, седиментация и испарение) в Уводьском водохранилище. Кроме того, полученные экспериментальные данные могут быть использованы как для прогноза изменения качества воды в водохранилище и питьевой воды. Даны рекомендации о водозаборе с контролируемой глубины в определенные времена года, а также для эколого-экономического обоснования необходимости модернизации систем водоподготовки.

Основные положения, выносимые на защиту. 1. Закономерности пространственно-временного и межфазного распределения ХОС в водоеме.

2. Взаимосвязь содержания ХОС в Уводьском водохранилище и в питьевой воде, прошедшей все этапы водоподготовки.

3. Результаты балансовых расчетов по поступлению и выведению углеводородов нефти и фенолов из водоема.

4. Результаты расчета риска для здоровья населения при краткосрочном и долговременном употреблении воды, прошедшей водоподготовку, сокращение ожидаемой продолжительности жизни (LLE) и ущербы, выраженные в денежном эквиваленте, наносимые здоровью населения г. Иваново по статистической стоимости жизни (ССЖ) и ущерб по «минимальному размеру суммы страхования ответственности за причинение вреда жизни, здоровью...».

Публикация и апробация работы. Основные результаты диссертации были доложены на III Российском научно-техническом семинаре "Проблемы питьевого водоснабжения и пути их решения", Москва, 1997; Всероссийской научно -технической конференции "Проблемы освоения и использования природных ресурсов Северо - Запада России", Вологда, 2002; II Международной научно-технической конференции "Проблемы экологии на пути к устойчивому развитию регионов", Вологда, 2003.

По результатам работы опубликовано 6 работ, включая 3 статьи.

Объём диссертации. Диссертация изложена на 148 стр., содержит 50 табл., 33 рис. и состоит из введения, литературного обзора, методик исследований, обсуждения результатов, выводов и списка цитируемой литературы, включающего 146 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе рассмотрены основные источники и стоки органических, включая хлорорганические соединения в природных поверхностных водах, механизмы образования и разложения хлорорганических соединений в воде. Дан сравнительный анализ различных методов водоподготовки (хлорирование, озонирование, УФ-излучение, ультразвук, рентгеновское излучение), а также влияние того или иного метода обеззараживания воды на содержание в ней ХОС. Показано, что в настоящее время не существует ни одного метода и средства без тех или иных недостатков, универсального для всех видов обработки воды: подготовки питьевой воды, обеззараживания промышленных стоков, сточных бытовых и ливневых вод. Поэтому наиболее эффективным и экономически выгод-

ным является повышение качества природных вод в источниках водоснабжения. Таким образом, изучение формирования и миграции основных токсикантов в каждом конкретном случае водоснабжения является не только актуальным, но и обязательным как для улучшения качества воды в источнике, так и для выбора метода водоподготовки.

Во второй главе приведены объекты исследований: поверхностный (Уводь-ское водохранилище, рис. 1) и подземный (Горинский водозабор) источники водоснабжения, а также вода из городского водопровода.

Анализ показателей качества проводили по аттестованным методикам: рН -потенциометрическим; сухой остаток и взвешенные вещества определялись весовым методом; химическое (ХПК), биохимическое (БПК5) потребление кислорода и растворенный кислород - титриметрически, летучие фенолы - фотометрически (КФК-2М), нефтепродукты определяли ИК-спектрофотомет-рическим методом («8ресогс1-80М»), летучие галогеноуглеводороды (хлороформ, четыреххлористый углерод, хлорэтилены, хлорэтаны) определяли как газохроматографически, так

и фотометрическими методами, хлор-фенолы и пестициды (гамма ГХЦГ, ДДТ) - газохроматографическими методами (газовый хроматограф марки «Биолют» с детектором электронного захвата (ДЭЗ)). Случайная погрешность измерения ХОС хроматографи-ческими методами (доверительная вероятность 0,95) не превышала 25 %, а относительная погрешность измерения всех остальных показателей качества воды по стандартным методикам не превышала 20 %.

Глава 3. Качество воды в Уводьском водохранилище. Глава посвящена анализу пространственно-временного распределения органических соединений и влияние на них обобщенных показателей (глава 2). Измерения показали, что изменение величины рН не выходит за пределы толерантности водной экосистемы

дохранилища

-мы. за исключением нескольких замеров (станции: плотина, канал). Сезонные изменения - повышение шелочности, а. следовательно, и величины рН воды в летний период связаны в основном с процессами фотосинтеза. Начиная с 1996 года (водозабор) отмечается тенденция к повышению рН. соответственно по годам: 7,8 (1996 г.); 7.9 (1997 г.); 8,1 (1998 г.); 8,4 (2000 г.); 9,0 (2001 г.). что, по-видимому, связано с повышением биопродуктивности водохранилища и накоплением биомассы в воде. Это свидетельствует о постепенном повышении уровня трофности водоема.

Анализ содержания органических веществ (рис. 2) в воде Уводьского водохранилища с 1993 по 1995 г. показал увеличение их содержания до 210 мг/л, причем растворенных органических веществ до 174 мг/л, а во взвешенной форме их содержание возросло до 84 %. Наибольшее количество растворенных органических веществ отмечается в районе д. Рожново, а взвешенные органические вещества более или менее равномерно распределены по водоему.

Исследование содержания органических веществ в составе растворенных и взвешенных форм на водозаборе показало, что в фазы устойчивого водообмена основная масса органических соединений находится в растворенном или коллоидно-растворенном состоянии (93-^98,5 %).

Во время паводка (2 квартал) содержание органических соединений, как в растворенной, так и во взвешенной форме увеличивается, причем взвешенные формы соааюяют 30 35 % от общего содержания органических веществ. Необходимо 01менпь. что в фазы устойчивого водообмена содержание органических соединений и районе водозабора выше, чем в зимние месяцы. По-видимому, это связано с более интенсивными процессами окисления, фотоситеза или гидролиза части органических веществ (возможно нефтепродуктов) и переводом их в растворенное сосюяние.

Величина ПО изменялась в течение 1995-2001 1г. в пределах (мг Оо/л): 6.3-10.5; среднегодовые величины составляли: 6.4-8,5. Содержание биохимически окисляемых органических соединений (БПК5) в воде Уводьского водохра-

154.8174

■ 1 квартал В 2 квартал ОЗ квартал В 4 квартал

\\\\ %

Рис. 2. Содержание органических веществ в воде Уводьского водохранилища

нилища колебалось от 1,1 - 2,7 мг 02/л при нормируемых значениях 2 мг Ог/л по БПК5,аПО- 15мгОг/л.

Максимальное значение цитотоксичности растворов, подверженных окислению (хлорированию, озонированию), возникает при минимальном соотношении БПК/ПО, что указывает на присутствие в растворе биологически неокисляемых соединений. Следовательно, при определенных условиях окисление замещенных соединений может приводить к образованию промежуточных продуктов, имеющих более высокую цитотоксичность.

Результаты измерений (табл. 1) показывают, что наблюдается тенденция уменьшения отношений БПК5/ПО, что свидетельствует о накоплении в водоеме трудно окисляемых органических веществ и является негативным фактором для нормального функционирования водохранилища, и, как следствие, повышается вероятность образования ХОС при хлорировании воды.

Таблица 1

Изменение отношения БПК5/ПО по сезонам_

Сезон Значение БПКз/ПО

1995 г. 1996-1997 г.г. 1998 г. 2000-2001 г.г.

Зима 0,17 0,17 0,15 0,15

Весна 0.26 0,23 0,21 0,21

Лето 0,13 0,20 0,20 0,19

Осень 0,13 0,19 0,19 0,18

Средн. 0,17 0,20 0,19 0,18

За весь исследуемый период времени количество растворенного кислорода в Уводьском водохранилище никогда не падало ниже нормы и абсолютные значения по годам близки между собой. Летом из-за увеличения интенсивности процессов фотосинтеза концентрация растворенного кислорода падает в среднем до 8,4 мг/л. Это приводит к снижению интенсивности окислительных процессов загрязняющих веществ, однако адекватного роста содержания органических соединений (ОС) в 3 квартале не наблюдается (рис. 2). Следовательно, основными каналами разложения ОС являются или фотохимические процессы, или реакции гидролиза и биохимического окисления, а не химического окисления.

Контроль за содержанием органических веществ (рис.3) по акватории водохранилища показал, что среднее содержание летучих фенолов и углеводородов нефти максимально в весенний период и составляет около 9 и 300 ПДКр.х. соответственно. Особенно высокие концентрации отмечаются в районе д. Микшино (14 и 200 ПДКр.х.), д. Рожново (12 и 93 ПДКр.х.) и в близи д. Иванково

более 1000 ПДКр.х. (по нефтепродуктам). Следовательно, накопление в воде Уводьского водохранилища биохимически трудно окисляющихся органических веществ, является следствием загрязнения водохранилища, что и объясняет повышение величины ПО.

1 квартал мг/л

2квартал ю-

3 квартал 5 -

4 квартал О

10

53.9 14,4

1,6 П- .

19 4'6

Ьц-

12 3 4 Нефтепродукты

5 средн.

Рис. 3. Пространственно временное распределение летучих фенолов и нефтепродуктов от времери года по .станциям (1995 г.): 1) плотина, 2) «Мик|ни1ю», 3) ^анал, 4) «Рожново», 5) «Иванково».

Для выясненйя основных причин "повышенного содержания в воде водохранилища фенолов и углеводородов нефти (НП) было измерено их содержание в атмосферных осадках (табл. 2), что позволило из уравнения баланса определить основные источники и стоки этих соединений в водохранилище (табл. 3).

Таблица 2

Концентрации фенолов и углеводородов нефти в атмосферных выпадениях в

Показатель Снежный покров* Дождевые осадки

1 2 3 4 15 1 Сред.

Фенолы, мкг/л 17 12 15 8 19 IV 12

НП. мг/л 0,35 отс 0,1 отс 0,05 0.1 0,3

*1) плотина,2) «Мнкшино», 3) канал, 4) «Рожново», 5) «Иванково».

Таблица 3

Источники и стоки фенолов и углеводородов нефти в Уводьском водохранилище

Соединение Источники поступления, т/год 2, т/год Источники выведения, т/год* А. т/год

Дождевой сток Талые воды Сток Р-Уводь Канал Волга-Уводь ГВ, т/год БТ, т/год и, т/год

Фенолы 0,6 0,3 0,5 0,8 2,2 1,1 0,3 0,6 -0,2 (8,5%)

НП 13,76 2,36 156,3 147,7 320,1 111,6 93,6 96,0 -18,9 (5,9%)

* ГВ - гидродинамический вынос: БТ - трансформация (биохим ), И - испарение; X -суммарное поступление; Д - разница между приходными и расходными статьями.

Загрязненность атмосферных выпадений НП, по сравнению с содержанием их в водоеме в весенний паводок невелика и составляет для снега 0,1 мг/л (2 ПДКпит), а для дождя 0,3 мг/л (6 ПДКпит), поэтому повышенные концентрации НП, наблюдаемые весной (рис. 3) в воде Уводьского водохранилища, вызваны другими источниками. Данные табл. 3 показывают следующее:

• основными источниками поступления углеводородов нефти в Уводьское водохранилище является канал Волга-Уводь и сток реки Уводь (примерно по 50 %), атмосферные выпадения и талые воды не оказывают существенного влияния на содержание НП в воде водохранилища;

• для фенолов основными источниками являются все рассматриваемые каналы поступления: канал Волга-Уводь - 36 %, дождевой сток - 26 %, сток р. Уводь — 23 %, талые воды - 15 %;

• определены основные каналы выведения: для фенолов - гидродинамический вынос (~ 50 %); для НП - гидродинамический вынос, испарение и биохимическая трансформация -34,30,29 % соответственно.

Измерения содержания общего органического хлора, включающего летучие, адсорбирующиеся и экстрагирующиеся ХОС (рис. 4), показали, что суммарное содержание ХОС в пересчете на хлор в водохранилище максимально в период весеннего водообмена в районе д. Иванково — 264 и летний период - 225 мкг/л («Микши-но»), а в осенний — канал, Иванково (234 и 225 мкг/л соответственно).

■ 1 квартал

□ 2 квартал

□ 3 квартал В4 квартал

1 2 3 4 5 среди водозабор горнил.

Рис. 4. Содержание ХОС (в пересчете на СГ) от времени года по станциям: 1) плотина, 2) «Микшино», 3) канал, 4) «Рожново», 5) Иванково.

Необходимо отметить, что если в 1995-96г.г. в районе водозабора в пределах чувствительности методик, ХОС не всегда обнаруживались, то в 1998 г. хлороформ регистрировался в 85 % замеров, а четыреххлористый углерод в 75 %. Диапазон варьируемых значений для хлороформа составлял от 0,07 до 20,2 мкг/л, (среднее - 6,7 мкг/л), что в 1,5 раза выше ПДКр.х., а для ССЦ от 0,04 до 1,4 мкг/л (в среднем 0,55 мкг/л), при нормируемом отсутствии его в водотоке. Концентрации хлорэтиленов в воде водохранилища не превышали нормируемых величин, однако в 1998 году летом 'зарегистрировали тетрахлорэтилен, присутствие которого в природных водах недопустимо. Измерения, проведенные в 1995 - 1997 г.г. показали отсутствие 1,2 - дихлорэтана и 1,1,2,2-

тетрахлорэтана. но в 1998 году было обнаружено наличие 1,2-дихлорэтана в районе водозабора в период весеннего водообмена.

Хлорфенолы в Уводьском водохранилище накапливаются преимущественно в придонных слоях воды, причем во время паводка (2 квартал) их концентрация увеличивается. Аналогичное распределение наблюдается и у взвешенных и растворенных органических веществ (рис. 2). Таким образом, наблюдается хорошая корреляция между ростом содержания взвешенных веществ (коэффициент корреляции 11=0,97), а именно органических взвесей (в 12,5 раз) и концентраций хлор-фенолов в воде водохранилища (рис. 5).

С, мкг/дм* В фазу устойчивого водооб-

2,4-дихлорфенол / мена содержание хлорфенолов в

2,4,6-трихлорфенол/. районе водозабора максимально,

что, по-видимому, связано с перемещением токсикантов в поверхно-

взвеш.в-ва слои из придонных слоев, от-

60 70 80 масс.%

личающихся более высоким содер-

Рис. 5. Зависимость концентрации хлор, г г жанием органических взвешенных фенолов от содержания взве- г

шенных органических веществ. веществ.

В течение всего периода исследований у- ГХЦГ, ДДТ и его метаболиты в воде Уводьского водохранилища и питьевой воде обнаружены не были. Ожидаемого уменьшения содержания ОС в результате процесса разбавления в отбираемых пробах вод на последовательно расположенных станциях («Рожново», «Микшино», «Иванково») не происходит. К примеру, на станции «Рожново» средние концентрации фенолов, НП. хлороформа, трихлорэтилена. ПО составляют в долях ПДКрх соответственно 8.7: 56; <0,5; 0,02; 0,85. На станции «Микшино» средние концентрации составляю! соответственно - 8.9: 110; 2.9; 0.03; 0.73.На станции «Иванково» - 7,0; 368: 6.75; 0.36; 0,55. Таким образом, явление разбавления характерно для фенолов и других, трудно окисляемых соединений (ПО); для НП. хлороформа и трихлорэтилена отмечается явный рост концентраций.

Несколько иная ситуация отмечается на станциях «Канал» и «Плотина». Процессы разбавления здесь проявляются для всех измеряемых соединений.

Средние концентрации фенолов, НП, хлороформа, трихлорэтилена, ПО на станции «Канал» составляют в долях ПДКрх соответственно - 7,4; 30; 0,7; 0,04, 0,55; средние же концентрации на станции «Плотина» - 4,8; 10; <0,5; 0,02; 0,61. Наблюдается рост концентраций трудно окисляемых соединений (по результатам замеров ПО, БПК5/ПО) у верхнего бьефа плотины, что связано с гидродинамическим переносом с акватории водохранилища.

Глава 4. Взаимосвязь качества воды в источнике водоснабжения и питьевой воды. В течение всего периода наблюдений прослеживается взаимосвязь между содержанием хлорорганических соединений в Уводьском водохранилище и в питьевой воде, после процесса хлорирования. Суммарное содержание хлорорганических соединений в пересчете на хлор максимально в резервуаре чистой воды на входе в горколлектор во всех наблюдаемых периодах (рис. 4). Отметим, что увеличение данного показателя после хлорирования воды подземного источника незначительно (1,3 раза), а максимальное значение - 88 мкг/л.

Анализ содержания ХОС в Уводьском водохранилище (табл. 4) и в питьевой воде (табл. 5). показал наличие соединений, обладающих высокими уровнями генотоксической активности, в частности, такие хлорорганическис соединения, как тригалогенметаны, хлорэгилены, хлорланы и хлорфенолы.

Таблица 4

Годовая динамика содержания ХОС в Уводьском водохранилище

■ Показатель ■ -■■ ......- Среднее значение, мкг/дм * ПДКр.х.,

1995 г.** 1996-1997 г.г. 1998 г. мкг/дм3

Хлороформ <5-121 /8,6 <5-12,6/8,0 1,4-15,0/7,8 5

ССЦ <1-29,4/1,3 <1 0,08-1,4/0,5 отс.

1,2-дихлорэтан___ <6 <6 <0,2-1,7/0,6 100

Трихлортгилен <0,4-13/0,81 <0,1-0,1 /0,05 <0,1-0,1 /0,03 10

Тетрахлорэтилен - - <0,04-0,1 /0,02 отс.

1,1,2,2-тетрахлорэтан - - <0,1 отс.

2,4-дихлорфенол - <0,4-3,4/1,26 <0,1-2.1 /0,48 О 1С.

2,4,6-трихлорфенол j <0.4-3,0/1,3 | <0,4-2,3/0,43 ОТС.

♦min - шак/(среднегод.); ** - усредн. данные по 6 станциям наблюдения.

Наблюдается благоприятная для экосистемы водохранилища тенденция уменьшения содержания всех контролируемых ХОС (табл. 4), но среднегодовые концентрации хлороформа, четыреххлористого углерода, тетрахлорэтиле-на, 2,4-дихлорфенола и 2,4,6-трихлорфенола превышают соответствующие

ПДКрХ, т.е. водные экосистемы испытывают повышенные нагрузки по этим соединениям.

После хлорирования концентрации ХОС в питьевой воде возрастают, но не превышают соответствующих нормативов, установленных для питьевой воды, кроме 2,4-дихлорфенола (табл. 5).

Таблица 5

Годовая динамика содержания ХОС в питьевой воде

3

V

Показатель Среднее значение, мкг/дм"1 *

1995 г. 19961997 г.г. 1998 г. 2000 г. 2001 г. ПДКп**

Хлороформ 7.8-35.2 5.6-24.6 5,0-43.5 3.2-38.6 5.0-24.4 200/30

(18,3) (12,2) (11,3) (10,95) (9,3)

ССЦ <1 <1 0.2-0.86 (0,5) 0,2-1,2 (0,53) 0.2-1.1 (0,51) 6/2

1,2-дихлорэтан <6-8,6 <6 <6 <0.2-6.0 (1,4) <0.2-2.5 (1,18) <0.2-1.3 (0,74) 20/10

Трихлорэтилен <0,4-0,4 <0,4 <0,4 <0.1-0.7 (0,18) <0.1-0.2 (0,1) <0.1-0.4 (0,16) 70/3

Тетрахлорэтилен - <0.04-0.1 (0,06) <0,040,1 2/1

1,1,2,2-тетрахлорэтан - - <0,1 <0,10.12 <0,1 200

2,4-дихлорфенол - 0.4-5.3 <0.1-4.3 <0.1-2.1 0.1-0.4 2

(1,6) (1,43) (0,7) (0,3)

2,4,6-трихлорфенол - <0,4-2,8 (0,92) <0.4-3.1 (1,26) <0.4-1.3 (0,78) <0,4 4/10

Гамма ГХЦГ ДДТ - <0,002 2/отс

*тах - тт / (среднегодовые значения); **ПДК„ - нормы РФ/ - нормы ВОЗ.

С1 Периодически (в отдельные месяцы) на-

Я-С-С-С! оЯ-С-О'+СНСЬ блюдалось повышенное содержание хло-О С1 О роформа относительно норм, рекомендо-

ванных ВОЗ. Количество образующегося хлороформа обуславливается величинами рН, ПО природной воды (рис. 7), что не противоречит литературным данным.

Периодически (в отдельные месяцы) наблюдалось повышенное содержание хлороформа относительно норм, рекомендованных ВОЗ. Количество образующегося хлороформа обуславливается величинами рН, ПО природной воды (рис. 7), что не противоречит литературным данным.

Концентрация 2,4-дихлорфенола превышала нормируемую величину (ПДК„ -2 мкг/л) в 30 % замеров в среднем на 40 -5-50 % в течение всего периода

наблюдений. Отметим, что максимальные концентрации хлорфенолов в питьевой воде наблюдались летом (3 квартал), что коррелирует с их содержанием в районе водозабора.

рЧ

7,8 7,6 7,4 7,2

С хф, мкг/дм3

2

| -5 ' о"

и 5

■ О В

I3

и

*г2 о.

х о

со 1

в

X

мкг/дм

10

15

■чв 80®"

я

а а

60 з в

5

12 3 4

Рис. 7. Взаимосвязь содержания хло- Рис. 8. Взаимосвязь между содержани-роформа в питьевой воде от рН (1) ем хлорфенолов в питьевой и хлорфе-иХПК(2) в природной воде нолов (1), взвешенных органических

(Я, = 0,88; = 0,83). соединений (2) в природной воде

(К| - 0,79; К2 _ 0,83).

Прослеживается тенденция увеличения хлорфенолов в питьевой воде: 2,4-дихлорфенола в среднем в 2 раза, а 2,4,6-трихлорфенола — 1,3 раза в летний период времени. Имеется хорошая корреляция (рис. 8) между концентрацией хлорфенолов в питьевой воде, а также их концентрацией и содержанием взвешенных органических соединений в природной воде.

В связи с тем, что концентрации хлорфенолов в придонных слоях выше и преимущественно находятся во взвешенном состоянии, необходимо улучшить процесс фильтрования воды, а так же осуществлять водозабор с контролируемой глубины. особенно в весенне-летний период.

Глава 5. Оценка влияния питьевой воды на здоровье населения. С помощью

компьютерной программы «Чистая вода». разработанной научно-производственным объединением «ПОТОК» г.Сант -Петербург, была выполнена оценка соответствия питьевой воды по кошролир>емы\1 показа1елям и произведена оценка риска нарушения функционирования ор!анов и систем человека при употреблении воды, прошедшей водоподготовку (1абл. 6).

Результаты расчета показывают уменьшение риска неблагоприятных органолеп-тических эффектов при потреблении питьевой воды, как немедленного действия, так и хронической интоксикации относительно природной воды в районе водозабора. Значимую часть в него вносят такие показатели как фенолы и их хлорпроизводные (2,4-дихлорфенол и 2.4,6-трихлорфенол). С другой сто-

роны после процесса водоподготовки увеличивается (в 1,4 раза) риск канцерогенных эффектов (хлороформ, четыреххлористый углерод и трихлорэтилен) и общетоксический риск: хронического действия в 4-5 раз и суммарного в 2-3 раза, который формируют фенолы, хлороформ, четыреххлористый углерод, 1,2-дихлорэтан и трихлорэтилен.

Таблица 6

Результаты расчета риска по 1998 г._

Показатели Риск

Поверхн. Дно Питьевая

Риск развития неблагоприятных органолепти-ческих эффектов (немедленного действ.) 0,971 0,999 0,461

Риск развития неблагоприятных органолепти-ческих эффектов (хронической интоксикации) 0,911 0,943 0,401

Риск канцерогенных эффектов 0,018 0,016 0,21

Риск общетоксический (развития хронической интоксикации) 0,001 0,001 0,005

Риск общетоксический (суммарный) 0,003 0,003 0,008

Полученные данные позволили выделить приоритетные поллютанты из чис-

ла исследованных, такие как хлороформ, четыреххлористый углерод и трихлорэтилен, 1,2-дихлорэтан, 2,4-дихлорфенол и 2,4,6-трихлорфенол, которые вносят существенный вклад в суммарный общетоксический риск.

Найденные значения вероятностей проявления общетоксических и канцерогенных эффектов значительно превышают нормируемую величину риска. Допустимый (приемлемый риск) от веществ с канцерогенными свойствами лежит в интервале 1 (Г4 до 10"6 чел/чел-год, то есть значения риска заболеваний и смерти при потреблении воды являются не приемлемыми.

Показано, что современное состояние потребляемой населением г. Иванова питьевой воды, приводит к ухудшения его здоровья и как следствие сокращению продолжительности жизни: мужчины - 5,2; женщины - 7,8 лет (табл. 7).

Таблица 7

Сокращение ожидаемой продолжительности для групп населения___

Наименование риска (Я), доли отн. ед. 1ХЕ = Ь х К, год

Мужчины Женщины

1 1 3

Средняя продолжительность жизни 56 71

Средний возраст населения 37 42.3

Ожидаемый остаток я <изни 19 28.7

Риск развития неблагоприятных органолеп-тических эффектов (немедленного действия) 0,157 Показатель, характеризующий возникновение неустойчивых отрицательных реакций организма на потреблённую питьевую воду (аллергические реакции и др.). Органолеп. показатели немед. действия в большинстве случаев не приводят к ЬЬЕ.

Продолжение табл. 7

1 2 3

ЬЬЕ 2,98 4,5

Риск развития неблагоприятных органолепти ческих эффектов (хроническая интоксикация) 0,09 Показатель, характеризующий возникновение устойчивых отрицательных реахций организма на потреблённую питьевую воду (приобрётенная "глобальная" аллергия, болезни органов дыхания, анемия и др.)

ЬЬЕ 1.71 2.6

Риск канцерогенных эффектов 0,02 Показатель, характеризующий возникновение мутагенных и канцерогенных эффектов в организме человека (раковые опухоли, изменение ДНК и др.)

1ЛЕ 0.38 0.57

Риск общетоксический (развития хрон. интоксикации) 0,006 Показатель, характеризующий развитие у человека заболеваний органов дыхания, эндокринной системы, мочеполовых путей и др.

ЬЬЕ 0.11 0.17

£1ХЕ, год 5,2 7,8

Результаты расчетов показывают, что наибольшее сокращение продолжи-

тельности жизни определяется факторами, формирующими неблагоприятные ор-ганолептические эффекты, величина которых определяется содержанием фенолов и их хлорпроизводными (табл. 6).

В практике применяется экономическая оценка воздействия окружающей среды на здоровье, которая складывается исходя из стоимости жизни и суммы плат на восстановление здоровья. Поэтому был рассчитан ущерб (У) здоровью населения г.Иваново (450 тыс. чел.) от потребления питьевой воды, прошедшей подготовку, по статистической стоимости жизни (табл. 8) и ущерб по «минимальному размеру суммы страхования ответственности за причинение вреда жизни, здоровью, или имуществу других лиц и окружающей природной среде в случае аварии на опасном объекте» (табл. 9).

Таблица 8

Расчёт величины ущерба на основании статистической стоимости жизни (ССЖ)*

Численность в г. Иванове, человек Мужчины (164000) Женщины (197250)

ЬЬЕ от потребления некачественной питьевой воды для одного человека, лет 5,2 7,8

Средняя (ожидаемая) продолжительность жизни, лет 56 71

Ущерб от сокращения продолжительности жизни 1-го человека, выраженный в денежном эквиваленте, € 3496,6 4407,4

Суммарный ущерб, € 0,96 млрд.

* ССЖ = ВВП х Тср / N. где ВВП - внутренний валовый продукт, руб; Т^, - средняя продолжительность жизни, лет; N - количество населения, человек.

Таблица 9

Расчёт величины ущерба, исходя из "минимального размера страховой суммы"

Ущерб от сокращения продолжительности жизни 1-го человека, выраженный в денежном эквиваленте, € Мужчины Женщины

1151,4 1371,3

Суммарный ущерб, €** 0,3 млрд.

** основание ст. 15 Закона РФ "О промыш. безопасности опасных объектов" №116-ФЗ (п 2)

Из полученных значений (табл. 7-9), на территории г. Иваново имеет место область недопустимого экологического риска (Ю^.-.Ю"4), требующая проведения природоохранных мероприятий, независимо от масштабов финансовых расходов. Важно отметить, что рассчитанный уровень экологического риска не может быть обусловлен только потреблением питьевой воды.

Так как основной проблемой в системе водоподготовки является образование ХОС при хлорировании воды, а из-за большой протяженности трубопроводов в городе нельзя полностью исключить хлорирование из процесса водоподготовки, то сделать это возможно, заменив хлор на 1-ой ступени хлорирования другим окислителем, в качестве которого предлагается озон, а на 2-ой ступени - хлорирование.

Основные результаты и выводы

1. Установлено, что изменение содержания органических соединений в Уводьском водохранилище во времени имеет тенденцию к уменьшению, хотя концентрации нефтепродуктов и летучих фенолов по-прежнему значительно выше нормируемых величин до 42 и 4 ПДКр.х. соответственно.

2. Показано, что уменьшение содержания органических соединений в результате процесса разбавления на последовательно расположенных станциях («Рожново», «Микшино», «Иванково») не происходит. Явление разбавления характерно только для фенолов, а для нефтепродуктов, хлороформа и трихлорэтилена отмечается явный рост концентраций, что связано с дополнительными источниками поступления (диффузия из иловых вод, поверхностный сток).

3. Впервые из уравнения баланса установлены основные источники и стоки углеводородов нефти и фенола в водохранилище, а именно:

• основными источниками поступления углеводородов нефти в Уводьское водохранилище является канал Волга-Уводь и сток реки Уводь (при

примерно по 50 %), атмосферные выпадения и талые воды не оказывают большого влияния на содержание нефтепродуктов в воде водохранилища;

• для фенолов основными источниками являются все рассматриваемые каналы поступления: канал Волга-Уводь - 36 %, дождевой сток - 26 %, сток р. Уводь - 23 %, талые воды -15%;

• определены основные каналы выведения: для фенолов - гидродинамический вынос (~ 50 %); для нефтепродуктов - гидродинамический вынос, испарение и биохимическая трансформация - 34,30,29 % соответственно.

4. Показано, что концентрации ХОС в питьевой воде взаимосвязаны как с процессами внутри водоема, так и с процессом обеззараживания воды -хлорированием.

5. Суммарное содержания хлорорганических соединений (в пересчете на СГ) после хлорирования воды из Уводьского водохранилища в среднем увеличивается в 7 раз, а при хлорировании воды из подземного источника (Горинский водозабор) только в 1,3 раза.

6. Установлена корреляция между содержанием хлорфенолов и взвешенных органических веществ в воде Уводьского водохранилища и концентраций 2,4-дихлорфенола и 2,4,6-трихлорфенола после хлорирования питьевой воды.

7. Современное состояние потребляемой населением г. Иванова питьевой воды, приводит к ухудшению его здоровья и как следствие сокращению продолжительности жизни (мужчины - 5 лет, женщины — 8 лет, 2001 г.). Величина финансовых потерь оценивается 0,3 млрд. €/год, а, исходя из статистической стоимости жизни, в 0,96 млрд. €/год.----

8. Показано, что хлорфенолы в воде Уводьского водохранилища находятся преимущественно в составе взвешенного вещества, поэтому рекомендовано для снижения их концентрации в питьевой воде улучшить процесс еб фильтрования, а так же осуществлять водозабор с контролируемой глубины, особенно в весенне-летний период.

9. Выявлено, что основной вклад в значение величины экологического риска вносят ХОС, поэтому рекомендовано заменить первую ступень хлорирования (ОНВС-1) на озонирование.

Основное содержание диссертации изложено в следующих работах:

1. Гриневич В.И., Извекова Т.В., Костров В.В., Чеснокова Т.А. Корреляционные связи между качеством воды в водотоке и питьевым водоснабжением // Тез. докл. на 3-ем Российском научно-техническом семинаре "Проблемы питьевого водоснабжения и пути их решения", Москва. -1997.-С. 123-125.

2. Гриневич В.И., Извекова Т.В., Костров В.В., Чеснокова Т.А. Источники хлорорганических соединений в питьевой воде г. Иваново // Журнал "Инженерная экология" №2,1998. - С. 44-47.

3. Гриневич В.И., Костров В.В., Чеснокова Т.А., Извекова Т.В. Качество питьевой воды в г. Иваново. // Сборник научных трудов "Окружающая среда и здоровье человека"// Иваново, 1998. - С. 26-29.

4. Извекова Т.В., Гриневич В.И., Костров В.В. Хлорорганические соединения в питьевой воде // Тез. докл. «Проблемы освоения и использования природных ресурсов Северо-Запада России: Материалы Всероссийской научно -технической конференции.».- Вологда: ВоГТУ, 2002. - С. 85-88.

5. Извекова Т.В., Гриневич В.И., Костров В.В. Хлорорганические поллютанты в природном источнике водоснабжения и в питьевой воде г. Иванова // Журнал "Инженерная экология" №3,2003. - С. 49-54.

6. Извекова Т.В., Гриневич В.И. Органические соединения в воде Уводьского водохранилища // Тез. докл. На второй Международной научно-технической конференции "Проблемы экологии на пути к устойчивому развитию регионов". - Вологда: ВоГТУ, 2003. - С. 212 - 214.

Лицензия ЛР № 020459 от 10.04.97. Подписано в печать 27.10.2003 Формат бумаги 60x84 1/16. Тираж 90 экз. Заказ 2 "¡> $ . Ивановский государственный химико-технологический университет. 153460, г. Иваново, пр. Ф. Энгельса, 7.

Ответственный за выпуск

Извекова Т.В.

V*

I

Содержание диссертации, кандидата химических наук, Извекова, Татьяна Валерьевна

Содержание.

Введение.

Глава 1 Литературный обзор.

§ 1-1 Санитарно-гигиенические характеристики органических загрязнителей питьевой воды.

§1.2 Источники образования хлорорганических соединений.

§ 1.3 Основные методы подготовки питьевой воды.

Глава 2. Методики и объект экспериментальных исследований.

§2.1 Физико-географическая характеристика района Уводьского водохранилища.

§ 2.2 ОНВС - 1 (м. Авдотьино).

§ 2.3 Методики определения концентраций органических и неорганических соединений.

§ 2.3.1 Взятие проб воды и подготовка к анализу.

§2.3.2 Инструментальные методы исследования ХОС.

§ 2.4 Определение летучих галогенорганических соединений в воде

§2.4.1 Определение хлороформа.

§ 2.4.2 Определение четырёххлористого углерода.

§2.4.3 Определение 1,2-дихлорэтана.

§ 2.4.4 Определение трихлорэтилена.

§ 2.5 Определение хлорорганических пестицидов (у-ГХЦГ, ДЦТ).

§2.5.1 Определение хлорфенолов (ХФ).

§ 2.6 Оценка качества и обработка результатов измерений.

§ 2.7 Определение обобщенных показателей качества воды.

Глава 3. Качество воды в Уводьском водохранилище.

§ 3.1 Основные показатели качества воды в Уводьском водохранилище.

§3.1.1 Влияние изменения рН.

§ 3.1.2 Соотношение взвешенных и растворенных веществ в водоеме.

§3.1.3 Растворенный кислород.

§3.1.4 Изменения БПК5, ХПК.

§ 3.2 Токсические вещества (фенол, нефтепродукты).

§3.2.1 Влияние атмосферных осадков.

§ 3.2.2 Основные источники и стоки углеводородов нефти и фенолов в Уводьском водохранилище.

§ 3.3 Хлорированные углеводороды в воде Уводьского водохранилища.

Глава 4 Взаимосвязь качества воды в источнике водоснабжения и питьевой воды.

§ 4.1 Качество питьевой воды г. Иванова.

§ 4.2 Влияние качества воды в источнике водоснабжения на питьевую воду.

§ 4.3 Качество пресных подземных вод.

Глава 5 Оценка влияния питьевой воды на здоровье населения.

§5.1 Сравнительная оценка риска здоровью населения.

§ 5.2 Оценка риска по сокращению ожидаемой продолжительности жизни. Расчет ущерба здоровью населения по статистической стоимости жизни.

§ 5.4 Обоснование необходимости реконструкции системы водоподготовки на ОНВС - 1.

Введение Диссертация по биологии, на тему "Влияние органических соединений, содержащихся в природных водах, на качество питьевой воды"

Проблема содержания различных органических соединений в питьевой воде привлекает к себе внимание не только исследователей различных областей науки и специалистов водоподготовки, но и потребителей. Ц Содержание органических соединений в поверхностных водах колеблется в широких пределах и зависит от многих факторов, основным из которых является хозяйственная деятельность человека, в результате которой поверхностные стоки и атмосферные осадки загрязнены разнообразными веществами и соединениями, включая и органические. Определенную роль в загрязнении поверхностных природных вод играют сельскохозяйственные стоки, которые по масштабам локальных поступлений экотоксикантов уступают промстокам, но ввиду того, что они распространены практически повсеместно, сбрасывать их со счета не следует. С сельскохозяйственным загрязнением связывается ухудшение качества поверхностных вод малых рек, а также в определенной степени и подземных вод, связанных на уровне верхних водоносных горизонтов с естественными водотоками.

Сложность проблемы заключается в том, что набор органических загряз-^ нителеи, содержащихся в микроколичествах, как в поверхностных водах, так и питьевой воде очень широк и специфичен. Некоторые вещества, такие как пестициды, ПАУ, хлорорганические соединения (ХОС), включая диоксины, даже в микродозах чрезвычайно опасны для здоровья человека [1]. Одной из главных причин неудовлетворительного качества питьевой воды является повышенное содержание в ней именно хлорированных углеводородов. Это обуславливает их приоритетность наряду с другими опасными экотоксикантами и требует ответственного подхода при выборе технологии водоподготовки, мониторинга и контроля качества, как питьевой воды, так и водоисточника.

Большинство исследователей давно пришли к выводу, что для определения конкретных причин и источников образования хлорсодержащих углеводородов, необходимо знание состава органических соединений, содержащихся в природных водах, использующихся в качестве источника водоснабжения. Поэтому, в качестве объекта исследования было выбрано Уводьское водохранилище, являющееся главным источником водоснабжения города Иванова (80 % от общего объема водопотребления), а также питьевой воды после процесса во-доподготовки.

Для большинства ХОС предельно допустимые концентрации (ПДК) установлены на уровне микрограммов на литр и даже меньше, что и вызывает определенные затруднения при выборе методов их контроля [2]. Повышенные концентрации такого рода соединений в питьевой воде чрезвычайно опасны для потребителей. Тетрахлорид углерода, хлороформ и трихлорэтилен подозреваются в канцерогенном действии, а повышенное содержание таких соединений в воде, а, следовательно, и в организме человека, вызывает разрушение печени и почек [1].

Таким образом, изучение причин появления хлорированных углеводородов в питьевой воде в зависимости от источника водоснабжения, определение их концентраций и разработка рекомендаций по снижению риска возникновения канцерогенных и не канцерогенных эффектов у потребителей питьевой воды является актуальным. Именно это и было основной целью данного исследования.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

§ 1.1. Санитарно-гигиенические характеристики органических загрязнителей питьевой воды

По данным Всемирной организации здравоохранения (ВОЗ), из 750 идентифицированных химических загрязнителей питьевой воды 600 - это органические соединения, которые сгруппированы следующим образом [3]:

- природные органические вещества, включающие гуминовые соединения, микробные экссуданты и другие растворённые в воде продукты жизнедеятельности животных и растений;

- синтетические загрязнения, включающие пестициды, диоксины и другие вещества, производимые промышленностью;

- соединения, добавляемые или образующиеся в процессе обработки воды, в частном случае - хлорировании.

Названные группы логично обозначают и пути попадания органических загрязнителей в питьевую воду. В этой же работе отмечено [4], что и эти 600 веществ представляют лишь небольшую часть общего органического материала, присутствующего в питьевой воде. Действительно, прогресс, достигнутый в совершенствовании аналитических методов, позволил в последнее время идентифицировать и занести в память компьютеров около 300 органических соединений, обнаруженных в подземных, поверхностных водах и питьевой воде [5].

На рис. 1 изображены некоторые пути поступления и возможные превращения загрязнителей в поверхностных водах. Загрязнение подземных источников водоснабжения происходит в основном через почву. Так, накопление в почве целенаправленно внесённых хлорорганических пестицидов приводит к постепенному проникновению их в грунтовые воды подземных питьевых источников. По данным работы [6], треть артезианских скважин предназначенных для питьевого водоснабжения, только в США было закрыто по этой причине. Наиболее часто в подземных водах обнаруживаются хлорорганические соединения. По общепринятой международной терминологии они называются DNAPL (dense non-aqueous phase liquids), т.е. тяжелые неводные жидкости (ТНВЖ). Неводность означает, что они образуют отдельную жидкую фазу в воде подобно нефтяным углеводородам. В отличие от углеводородов нефти они плотнее воды. Эти вещества называют также плотными несмешивающимися с водой жидкостями. В то же время их растворимость вполне достаточна, чтобы вызвать загрязнение подземных вод. Попав в подземные воды, ХОС могут сохраняться там десятилетиями и даже столетиями. Они с большим трудом удаляются из водоносных горизонтов и поэтому представляют собой долговременный источник загрязнения подземных вод и окружающей среды в целом.

Рис. 1. Схема миграции ХОС в непроточном водоеме [5, 6]

В руководстве ВОЗ [4] отмечено, что рекомендуемые величины имеют тенденцию к погрешности в сторону излишней осторожности, что связано с недостаточностью данных и неопределённостями при их интерпретации. Таким образом, рекомендуемые величины допустимых концентраций свидетельствуют о переносимых концентрациях, но не служат регламентирующими цифрами, определяющими качество воды. Так, Агентством по охране окружающей среды США, для содержания хлороформа в питьевой воде была предложена в качестве норматива величина не 30, а 100 мкг/л. Норматив для трихлорэтилена имеет в 5 раз более низкое значение по сравнению с рекомендованным ВОЗ, а для 1,.2дихлорэтана - в 2 раза. В тоже время принятые в США нормативы для четырех-хлористого углерода в 2 раза, а для 1,1-Дихлорэтилена в 23 раза превышают рекомендованные ВОЗ [7]. Такой подход представляется правомерным и с точки зрения экспертов ВОЗ, подчеркивающих, что предлагаемые ими величины носят лишь рекомендательный характер.

Таблица 1.1

Рекомендуемые величины допустимых концентраций загрязняющих воду ХОС, влияющих на здоровье.

Загрязняющее вещество Рекомендуемая допустимая концентрация, мкг/л

Хлороформ 30

1,2 - Дихлорэтан 10

1,1- Дихлорэтилен 0,3

Пентахлорфенол 10

2,4,6 - Трихлорфенол 10

Линдан 3

Гексахлорбензол 0,01

В табл. 1.1 представлены рекомендуемые концентрации загрязнителей в воде установленные на основании токсикологических данных и данных о кан-церогенности с учётом средней массы тела человека (70 кг) и среднесуточного потребления воды (2 л) [4].

Допустимое содержание хлорорганических соединений (ХОС) в природной и питьевой воде по данным Минздрава РФ и их токсикологическая характеристика сведена в табл. 1.2.

Среди многих органических загрязнителей питьевой воды внимание гигиенистов особенно привлекают те соединения, которые являются канцерогенными. Это в основном антропогенные загрязнители, а именно: хлорированные алифатические и ароматические углеводороды, полициклические ароматические углеводороды, пестициды, диоксины. При этом следует отметить, что химические загрязнители в воде способны претерпевать под воздействием комплекса физико-химических и биологических факторов, различные химические превращения, приводящие как к полному их распаду, так и к частичной трансформации. Результатом этих процессов может быть не только снижение неблагоприятного действия органических загрязнителей на качество воды, но порой и его усиление. Например, более токсичные продукты могут появляться при распаде и трансформации некоторых пестицидов (хлорофоса, малатиона, 2,4-Д), полихлорированных бифенилов, фенолов и других соединений [1, 17].

Таблица 1.2.

Допустимые концентрации и токсикологическая характеристика некоторых

Соединение ПДК, мкг/л Класс опасности Характер воздействия на организм человека [9-13]

Питьевая вода[8] Природные воды (р.х.) ОДУ*

Показатель вредности ***

1 2 3 4 5

Хлороформ 200/30** 5/60 2 с.-т. Наркотик, действующий токсически на обмен веществ и внутренние органы (особенно на печень). Вызывает канцерогенный и мутагенный эффекты, раздражает слизистые оболочки.

Тетрахлорид углерода 6/3** отс / 6 2 с.-т. Наркотик. Поражает ЦНС, печень, почки. Обладает местным раздражающим действием. Вызывает мутагенные, канцерогенные эффекты. Высококумулятивное соединение.

1,2-дихлорэтаь 20/10** 100/20 2 с.-т. Политропный яд. Поражает кор-ково-подкорковые отделы головного мозга. Наркотик. Вызывает дистрофические изменения печени, почках и нарушает функции сердечно-сосудистой и дыхательной систем. Оказывает раздражающее действие. Канцероген.

1,1,2,2-тетрахлорэтан 200 отс / 200 4 орг. Наркотик. Повреждает паренхиматозные органы. Обладает раздражающим действием.

Грихлорэтилеь 70/3** 10/60 2 с.-т. Наркотик, обладает нейротокси-ческим и кардиотоксическим действием. Канцероген.

Пентахлорфе-нол 10** отс /10 2 с.-т. Обладает высокой липофильно-стью, накапливаясь в жировых отложениях и очень медленно выводится из организма

Тетрахлорэ-тилен 2/1** отс / 20 2 с.-т. Действует сходно с трихлорэти-леном, угнетает центральную и периферическую нервные системы. Снотворный эффект сильнее, чем у ССЦ. Поражает печень и почки. Обладает раздражающим действием.

Продолжение табл. 1.2.

1 2 3 4 5

2-хлорфенол 1 отс / 1 4 орг. Обладают умеренными кумулятивными свойствами. Нарушают функцию почек и печени.

2,4-дихлорфенол 2 отс /2 4 орг.

2,4,6-три-хлорфенол 4/10** отс /4 4 орг.

Гамма ГХЦГ 2 / отс** отс /4 1 с.-т. Высокотоксичный нейротроп-ный яд, обладающий эмбрио-токсическим и раздражающим действием. Поражает кроветворную систему. Вызывает канцерогенные и мутагенные эффекты.

ДДТ 2 / отс* * отс /100 2 с.-т. - ориентировочно-допустимые уровни содержания вредных веществ в воде водоемов хозяйственно-питьевого водопользования [14]. - "ориентирующие" нормативы, установленные в соответствии с рекомендациями ВОЗ

15] и Директивой 80/778 ЕС по качеству питьевой воды ЕС [16]. - лимитирующий признак вредности вещества, по которому установлен норматив:

- с.-т. — санитарно-токсикологический показатель вредности; орг. - органолептический показатель вредности.

Наиболее распространенными механизмами разрушения ХОС в окружающей среде можно считать фотохимические реакции и, главным образом, процессы метаболического распада с участием микроорганизмов. Фотохимическое разложение ХОС в молекулах, которых содержатся ароматические кольца и ненасыщенные химические связи, происходит в результате поглощения солнечной энергии в ультрафиолетовой и видимой областях спектра. Однако, не все вещества склонны к фотохимическому взаимодействию, например линдан (у-ГХЦГ) при УФ-облучении лишь изомеризуется в а-ГХЦГ. Схема предполагаемого механизма фотохимического превращения ДДТ показана рис.2а [17].

Скорость фотохимического распада, а также состав конечных продуктов этой реакции зависят от среды, в которой происходит данный процесс. Лабораторные исследования [18] показали, что после облучения УФ-излучением (А. = 254 нм) в течение 48 ч до 80 % ДДТ разлагается, а среди продуктов найдены ДДЭ (основное количество), ДЦД и кетоны. Дальнейшие эксперименты показали, что ДДД очень устойчив по отношению к УФ-излучению, а ДДЭ постепенно превращается в целый ряд соединений, среди которых обнаружены ПХБ. Метаболизм ХОС микроорганизмами, основанный на использовании ими органического углерода в качестве пищи, практически всегда катализируется биологическими ферментами.

С^ С С.

С1—С-С1 а

С1— с— С1

ДДЕ сг! а-чОъсчОъо—

Днхлорбензофенон

С1— С — С1 I н ддд а) б)

Рис. 2. Схема предполагаемого механизма фотохимического (а), метаболического (б) превращения ДДТ.

В результате довольно сложных последовательно идущих химических реакций образуются различные метаболиты, которые могут оказаться либо безвредными веществами, либо более опасными для живых организмов, чем их предшественники. Распространенная схема метаболического превращения ДДТ, которая в принципе верна и для других ХОС, приведена на рис. 26 [19].

Необходимость введения в каждой стране стандартов контроля содержания неорганических и органических загрязнителей в питьевой воде часто определяется особенностями землепользования в водном бассейне, характером водоисточника (поверхностные и подземные воды) и наличием в них токсичных соединений промышленного происхождения. Поэтому, необходимо принимать во внимание целый ряд различных местных географических, социально-экономических, промышленных факторов, а также факторов связанных с питанием населения. Всё это может обуславливать значительное отклонение национальных стандартов от рекомендуемых ВОЗ величин концентраций различных токсикантов.

Заключение Диссертация по теме "Экология", Извекова, Татьяна Валерьевна

Основные результаты и выводы

1. Установлено, что изменение содержания органических соединений в Уводь-ском водохранилище во времени имеет тенденцию к уменьшению, хотя концентрации нефтепродуктов и летучих фенолов по-прежнему значительно выше нормируемых величин до 42 и 4 ПДКр.х. соответственно.

2. Показано, что уменьшение содержания органических соединений в результате процесса разбавления на последовательно расположенных станциях («Рожново», «Микшино», «Иванково») не происходит. Явление разбавления характерно только для фенолов, а для нефтепродуктов, хлороформа и трихло-рэтилена отмечается явный рост концентраций, что связано с дополнительными источниками поступления (диффузия из иловых вод, поверхностный сток).

3. Впервые из уравнения баланса установлены основные источники и стоки углеводородов нефти и фенола в водохранилище, а именно:

• основными источниками поступления углеводородов нефти в Уводьское водохранилище является канал Волга-Уводь и сток реки Уводь (примерно по 50 %), атмосферные выпадения и талые воды не оказывают большого влияния на содержание нефтепродуктов в воде водохранилища;

• для фенолов основными источниками являются все рассматриваемые каналы поступления: канал Волга-Уводь — 36 %, дождевой сток — 26 %, сток р. Уводь — 23 %, талые воды -15%;

• определены основные каналы выведения: для фенолов - гидродинамический вынос (~ 50 %); для нефтепродуктов - гидродинамический вынос, испарение и биохимическая трансформация — 34, 30, 29 % соответственно.

4. Показано, что концентрации ХОС в питьевой воде взаимосвязаны как с процессами внутри водоема, так и с процессом обеззараживания воды — хлорированием.

5. Суммарное содержания хлорорганических соединений (в пересчете на СГ) после хлорирования воды из Уводьского водохранилища в среднем увеличивается в 7 раз, а при хлорировании воды из подземного источника (Горинский водозабор) только в 1,3 раза.

6. Установлена корреляция между содержанием хлорфенолов и взвешенных органических веществ в воде Уводьского водохранилища и концентраций 2,4-дихлорфенола и 2,4,6-трихлорфенола после хлорирования питьевой воды.

7. Современное состояние потребляемой населением г. Иванова питьевой воды, приводит к ухудшению его здоровья и как следствие сокращению продолжительности жизни (мужчины — 5 лет, женщины - 8 лет, 2001 г.). Величина финансовых потерь оценивается 0,3 млрд. €/год, а, исходя из статистической стоимости жизни, в 0,96 млрд. €/год.

8. Показано, что хлорфенолы в воде Уводьского водохранилища находятся преимущественно в составе взвешенного вещества, поэтому рекомендовано для снижения их концентрации в питьевой воде улучшить процесс её фильтрования, а так же осуществлять водозабор с контролируемой глубины, особенно в весенне-летний период.

9. Выявлено, что основной вклад в значение величины экологического риска вносят ХОС, поэтому рекомендовано заменить первую ступень хлорирования (ОНВС-1) на озонирование.

Библиография Диссертация по биологии, кандидата химических наук, Извекова, Татьяна Валерьевна, Иваново

1. Кузубова Л.И., Морозов C.B. Органические загрязнители питьевой воды: Аналит. Обзор / ГПНТБ СО РАН, НИОХ СО РАН. Новосибирск, 1993. -167 с.

2. Исаева Л.К. Контроль химических и биологических параметров окружающей среды. СПб.: "Эколого-аналитический информационный центр »Союз»", 1998.-869 с.

3. Randtke S.J. Organic contaminant removal by coagulation and related process combinations // JAWWA. 1988. - Vol. 80, № 5. - P. 40 - 56.

4. Руководство по контролю качества питьевой воды. Т.1. Рекомендации, ВОЗ. -Женева, 1986.- 125 с.

5. Warthington P. Organic micropollutants in the aqueous environment // Proc. 5 Int. Conf. "Chem. Prot. Environ." 1985. Leaven 9-13 Sept. 1985. Amsterdam, 1986.

6. Юданова Л.А. Пестициды в окружающей среде. Новосибирск: ГПНТБ СО АН СССР, 1989.-140 с.

7. Эльпинер Л.И., Васильев B.C. Проблемы питьевого водоснабжения в США. -М., 1984.

8. СанПиН 2.1.2.1074-01. Санитарные правила и нормы "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.", утвержденные Госкомсан-эпиднадзором России. М., 2000 г.

9. Вредные вещества в промышленности. 4.1.Изд. 6-е, испр. Л., Изд-во "Химия", 1971 г., 832 с.

10. Канцерогенные вещества: Справочник/Пер. с англ./ Под ред. B.C. Турусова. М., 1987, 333 с.

11. Вредные химические вещества. Углеводороды. Галогенпроизводные углеводородов. Справ, изд./ Под ред. В.А. Филова- Л.: Химия, 1989.-732 с.

12. Г. Фелленберг Загрязнение природной среды. Введение в экологическую химию; Пер. с нем. М.: Мир, 1997. - 232 с.