Бесплатный автореферат и диссертация по биологии на тему
Фрактальные структуры и паттерны у гидробионтов при воздействии антропогенных факторов
ВАК РФ 03.00.18, Гидробиология

Содержание диссертации, кандидата биологических наук, Муравьев, Артем Анатольевич

ВВЕДЕНИЕ.

ГЛАВА 1. ФРАКТАЛОПОДОБНЫЕКТУРЫ, ОБРАЗОВАННЫЕ ГИДРОБИОНТАМИ, В НОРМЕ И ПРИ ВОЗДЕЙСТВИИ АНТРОПОГЕННЫХ ФАКТОРОВ (ОБЗОР ЛИТЕРАТУРЫ).

Современные теории морфогенеза и фракталоподобные структуры.

Способы клеточной миграции в морфогенезе.

Хемотаксис.

Гаптотаксис.

Гальванотаксис.

Контактное ориентирование.

Контактное ингибирование движения при образовании фракталоподобных структур.

Термодинамическая модель клеточных взаимодействий.

Изменения в строении клеточной поверхности.

Регуляция пространственной организации за счет колебательных процессов.

ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЙ.

Исследование фракталоподобных структур на клеточном уровне. исследова11ие фракталов на органном уров1ш.

Материал и методы исследования фракталов на уровне популяций.

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ.

Результаты исследований влияния патогенных факторов на фракталоподобные структуры на клеточном ур0в1 ш.

Моделирование фракталоподобного роста волокон хрусталика и его аномалий при действии неблагоприятных факторов (органный уровень). формирование фракталоподобных структур на надклеточном уровне в норме и при действии антропогенных факторов.

Процессы формирования фракталов на уровне популяций микроорганизмов изучались на примере структур, образованные свободноплавающими хламидомонадами в нормальных условиях и в условиях физико-химического воздействия на культуру.

Влияние техногенных полей, образованных дисплеем, на формирование фракталов.

Формирование паттернов одноклеточными водорослями в солоноватоводных микроэкосистемах при начичии токсикантов.

Рост патогенных микроорганизмов после экспозиции у экрана монитора компьютера и влияние па него автогенератора КВЧ.

ГЛАВА 4. ВЫВОДЫ.

Введение Диссертация по биологии, на тему "Фрактальные структуры и паттерны у гидробионтов при воздействии антропогенных факторов"

В настоящее время проблема охраны рыбохозяйственных водоемов от загрязнений промышленными отходами и защита водных организмов от техногенных полей представляет одну из актуальных проблем в гидробиологии. Наиболее перспективным направлением в этом вопросе можно считать разработку методов биотестирования, которые позволяют оценить вредное воздействие ксенобиотиков и физических техногенных полей на гидробионтов, как в комплексе, так и при действии одного фактора. При создании методов биотестирования исследователи сталкиваются с одной из труднейших задач, связанной скорее не с практическим применением того или иного тест-объекта, а с теоретической концепцией основ биотестирования, которая слабо разработана. На самом деле так и происходит. Можно ли подобрать универсальный, наиболее чувствительный тест-объект для биотестирования последствий воздействия различных физико-химических факторов? При той тенденции, которая взята за основу в настоящее время, - это практически невозможно. Разве можно найти такой универсальный организм, который отвечал бы одинаково на действие самых различных по своей природе физико-химических факторов и был бы к ним наиболее чувствителен? Скорее всего, нет. Видимо, для тестирования надо брать не организм или его индивидуальную функцию, а общий показатель, не зависящий от систематического уровня и субстрата, но чутко улавливающий вредное воздействие токсикантов и техногенных физических полей. Такой тест-системой мы считаем - морфогенез фракталов, который присутствует на всех уровнях организации гидробионтов, и который подается математическому моделированию и обработке с помощью компьютерных программ.

За последние годы наблюдается интеграция научных знаний и формирование новых концепций, лежащих на стыке наук. Одной их таких областей можно считать морфогенез на уровне клеток, органов, организмов и надорганизменных образований. Морфогенез живых организмов происходит при упорядочивании живого вещества за счет перераспределения энергии, колебательных процессов и реализации пространственной наследственной программы. Однако некоторые исследователи отдают предпочтение только одному из перечисленных механизмов развития. Часть из них считает, что резонансные колебательные процессы ответственны за форму развивающегося организма (Гудвин, 1972; Дьюкар, 1976, Иванов, 2000), другие придают большее значение в морфогенезе биосолитонам (Филиппов, 1990; Петухов, 1999).

Проблемы морфогенеза еще далеко не решены. К тому же, это один из сложнейших процессов, которые не во всех случаях могут быть смоделированы с помощью компьютерный программ. Вот почему мы предлагаем исследовать наиболее удобный для математического анализа морфогенез фракталов, теория которых уже достаточно разработана. В лабиринте живых форм мы всегда можем найти и выделить фракталы, так как это одна из составных частей формирования пространственной структуры организмов и надорганизменных образований.

Цель работы - Выявление особенностей морфогенеза и математического моделирования фракталов, образованных гидробионтами на различных уровнях организации, при воздействии антропогенных факторов для создания новых экспресс-методов биотестирования и прогнозирования вредных воздействий на водные организмы.

В соответствии с целью решались конкретные задачи:

1. Выявить воздействие комплекса загрязнителей в реке Селенга на морфогенез меланофоров (фракталоподобные структуры) в раннем онтогенезе байкальского омуля (клеточный уровень).

2. Вскрыть механизмы фракталоподобного роста волокон хрусталика при цито-дифференцировке в линзе глаза травяной лягушки и создать компьютерные модели формирования швов хрусталика (органный уровень).

3. Оценить воздействие вредных физико-химических факторов на хрусталик травяной лягушки, как на фракталоподобную систему.

4. По нарушению морфогенеза фракталов, образованных свободноплавающими хламидомонадами определить степень вредности электромагнитных полей и ряда химических соединений, загрязнителей рыбохозяйственных водоемов (надорганизменный уровень).

5. Выявить действие загрязнителей водной среды на формирование фракталов солоноватоводными водорослями - нефрохлорисом.

6. Оценить действие комплекса физических полей, идущих от монитора компьютера и ЧПУ-станков на формирование фракталоподобных паттернов хламидомонадами, бактериями и дрожжами.

Научная новизна работы. В ходе исследований впервые показано, что на различных уровнях организации (от клеточного - до надорганизменного) гидробионты и их живые структуры способны образовывать фракталы, морфогенез которых обладает высокой чувствительностью к вредным физико-химическим факторам, выступающим как загрязнители окружающей среды.

Впервые на примере хрусталика глаза травяной лягушки показано, что фракталоподобный рост может быть смоделирован с помощью компьютерных программ, и это позволяет вскрыть механизмы формирования фракталов в однообразных клеточных системах. Установлено, что симметричные нарушения прозрачности у заднего шва в хрусталиках -результат воздействия на фракталоподобный рост волокон вредных физико-химических факторов.

Выявлена высокая чувствительность клеток, обладающих фракталоподобным ростом (меланофоры рыб), к неблагоприятным факторам водной среды, в которой проходит ранний онтогенез рыб.

Впервые показана пространственная устойчивость фракталов образованных свободноплавающими хламидомонадами, находящихся в сосудах различной формы. Выявлено действие загрязнителей и техногенных полей, которые в малых дозах выступают как стрессоры и усложняют пространственную структуру фрактала, а в больших дозах приводят к разрушению фракталоподобной структуры паттерна.

Показано комплексное действие малых доз техногенных полей, идущих от экрана монитора, на рост и формирование фракталов свободноплавающими хламидомонадами и выращенными на МПА бактериями и дрожжами.

Практическое значение работы заключается в унификации методов биотестирования и прогнозирования вредного воздействия физических и химических загрязнителей водной среды. Биотестирование предлагается проводить по влиянию исследуемых факторов на фракталы, образованные гидробионтами на различных уровнях структурной организации. По результатам исследований предложен метод биотестирования природных и сточных вод по образованию фракталов свободноплавающими хламидомонадами.

Возникновение симметричных поражений в хрусталиках глаз позволит провести диагностику возникновения катаракт у рыб и амфибий и прогнозировать дальнейшее развитие помутнения хрусталика.

Использование свободноплавающих хламидомонад и, а также бактериальных и дрожжевых культур, дает возможность определить вредное воздействие комплекса полей, идущих от монитора компьютера и ЧПУ, и выявить зоны наиболее опасного нахождения оператора вблизи монитора.

Работа человека на транспорте, в промышленности и в научных лабораториях в настоящее время не обходится без повышенного облучения электромагнитными волнами. Вредное воздействие электромагнитных излучений может быть оказано и в быту, так как оно идет от компьютеров, телевизоров, сотовых телефонов, СВЧ - печей и ряда других приборов. По изменению фракталов и скорости роста микроорганизмов нами испытано действие прибора для защиты от вредного излучения электромагнитных волн, представляющего собой автогенератор КВЧ (Сеит-Умеров, 1998).

Библиография Диссертация по биологии, кандидата биологических наук, Муравьев, Артем Анатольевич, Москва

1. Айла Ф, Кайгер Дж. Современная генетика. М.: Мир, 1987, т 1. 295 с.

2. Балдапова Д.Р., Болотова Т.Т., Копкова Р.П. Результаты инкубирования икры омуля на Селенгинском заводе// Сб.научных трудов ГосНИОРХ., вып. 211. Л. 1984 с.43-49.

3. Белоусов Л.В. Биологический морфогенез. М.: МГУ, 1987. 238 с.

4. Божокин C.B., Паршин Д.А. Фракталы и мультифракталы. М.-Ижевск: РХД. 2001. 128 с.

5. Войтов A.A. Биологическая характеристика и воспроизводство байкальского омуля. // В книге Экология, болезни и развитие байкальского омуля. Новосибирск. 1981, 1.70-75.

6. Гексли Дж., де Бер Р. 1936. Основы экспериментальной эмбриологии. М.-Л. Биомедгиз, 467 с.

7. Гильберт С. Биология развития. М.: Мир, 1995. 350 с.

8. Горбунова Н. П., Ключникова Е. С., Комарницкий Н. А. и др. Малый практикум по низшим растениям. М. Высш. школа, 1976 215 с.

9. Гудвин Б. 1979. Аналитическая физиология клеток и развивающихся организмов. М. Мир, 285 с.

10. Дубров А.П. Геомагнитное поле и жизнь. Л.: Гидрометиоиздат, 1974. 175 с.П.Дьюкар. Клеточные взаимодействия в развитии животных. М.: Мир. 1978. 330 с.

11. Иберт Дж. 1968. Взаимодействующие системы в развитии. М. Мир, 192с.

12. Иванов Ю.Н. Ритмодинамика безаплитудных полей. М.: Новый Центр, 2000. 22 с.

13. Иноземцев И.М. Физиологические механизмы вредного влияния электромагнитных излучений на организм человека // Проблемы биовалеотехнологии, 2001,- № 1. С. 24 39.

14. Квитко К. В. 1975. Хламидомонада. В кн. Объекты биологии развития. М. Наука, с. 13-22.

15. Краснощеков С.И. "Биология омуля озера Байкал" М. Наука, 1981, 144с.

16. Левич А. П. 1983. Семиотические структуры в экологии или существует ли экологический код. Человек и биосфера. М. №8, с. 68-77.

17. Муравьев A.A. Симаков Ю.Г. Фракталы в морфогенезе гидробионтов // Водные экосистемы и организмы. Труды научной конференции МГУ им. М.В.Ломоносова. М.: МАКС Пресс, 2004. С. 63 - 64.

18. Палубис С.Э. Оптимизация биотехники искусственного воспроизводства байкальского омуля. // Автореферат диссертации на соискание ученого звания кандидат биологических наук. М. 2001. 24с.

19. Петухов C.B. Биосолитоны. М.: ГП Ким. типогр., 1999. 288 с.

20. Попов В. В., Всеволодов Э. Б., Соколова З.А. 1962. Опыты по травматизации хрусталика после перерезки зрительного нерва у взрослых лягушек. «Докл. АН СССР», 147, № 6, 1503-1506.

21. Пресман A.C. Организация биосферы и ее космические связи. М.: ГЕО-СИНТЕГ. 1997. 239 с.

22. Рэфф Р., Кофмен Т. Эмбрионы. Гены и эволюция. М.: Мир. 1986. 404 с.

23. Сеит-Умеров И.М. Устройство нейтрализации вредных воздействий и способ его изготовления. 1998. A.C. № 3829.

24. Симаков Ю. Г. Информационное поле жизни. Химия и жизнь, 1983 № 3, с. 88-92.

25. Симаков Ю.Г. Морфогенетические перестройки у гидробионтов под влиянием широкополосного электромагнитного излучения. Научно практические разработки в области марикультуры. М.: ВНИРО, 1996, с. 295299.

26. Симаков Ю.Г. Учет генных мутаций // Методические указания по установлению эколого-рыбохозяйственных нормативов. М.: ВНИРО. 1998. С. 92-96.

27. Симаков Ю.Г. Формирование паттернов в популяциях свободноплавающих хламидомонад. Вестник академии наук Узбекистана. Нукус. 1985. №4, с. 14-19.

28. Симаков Ю.Г., Муравьев A.A. Морфогенез фракталов, образованных хламидомонадами, и биотестирование вредных физико-химических факторов // Проблемы биовалеотехнологии. М.: 2004, №1(3). С.21 29.

29. Симаков Ю.Г., Муравьев A.A. Рост патогенных микроорганизмов после экспозиции у экрана монитора компьютера и в присутствии автогенератора КВЧ. Проблемы биовалеотехнологии. М.: 2004, № 3, С. 30 35.

30. Симаков Ю.Г., Муравьев A.A. Фрактальные структуры при оценке токсичности воды // Современные проблемы водной токсикологии. Международная конференция 20-25 сентября 2005 г. Тезисы докладов. Борок, 2005. С. 125- 126.

31. Смирнов В.В., Шумилов И.П. Омули Байкала. Новосибирск. Наука. 1974, 160 с.

32. Смирнов И.В. Внутрипопуляционная изменчивость скорости эмбрионального развития омуля и факторы ее определения. // В кн. Морфология и экология рыб. Новосибирск "Наука" 1987. С.48-64.

33. Смирнов И.В. Морфофункциональные показатели личинок и эмбрионов байкальского омуля в период выклева. // Сб. Динамика продуцирования рыб Байкала. Новосибирск. 1983. 135с.

34. Тринкаус Дж. От клеток к органам. М. Мир, 1972. 283 с.

35. Уоддингтон К. Морфогенез и генетика. М.: Мир, 1964. 261 с.

36. Филиппов А.Т. Многоликий солитон. М.: Наука. 1990. 287 с.

37. Фробишер М. Основы микробиологии. М.: Мир, 1965. 678 с.

38. Холодов Ю.А. Мозг в электромагнитных полях. М.: Наука, 1982. 123 с.

39. Черняев Ж.А. "Эмбриональное развитие байкальского омуля". М. Наука, 1968. 93с.

40. Черняев Ж.А. Контроль эффективности инкубации икры омуля в период эмбрионального развития // В сб. Биологические основы развития лососевого хозяйства в водоемах СССР. М. 1983. С. 246-252.

41. Черняев Ж.А. О механизме действия растворенного в воде железа на икру байкальского омуля. // Вопросы водной токсикологии. М. "Наука" 1970. С.211-213.

42. Чижевский A.JI. Земное эхо солнечных бурь. М.: Мысль, 1973. 352 с.

43. Abraham E.R. The fractal branching of an arborescent sponge // Marine Biology, 2001, pp. 503-510.

44. Alados C.L., Pueyo Y., Giner M.L., Navarro Т., Escos J., Barroso F., Cabezudo В., Emlen J.M. // Quantitative characterization of the regressive ecological succession by fractal analysis of plant spatial patterns // Ecological Modelling, 2003, pp. 1-17

45. Allaerts W. Fifty years after Alan M. Turing An extraordinary theory of morphogenesis // Belgian Journal of Zoology, 2003, pp. 3-14.

46. Allen K., Roberts S., Murray J.W. Fractal grain distribution in agglutinated foraminifera//Paleobiology, 1998, pp. 349-358.

47. Ames B.N., McCann J., Yamasaki E. Methods for detecting cancirogens and mutagens with Salmonella mammalian microsome mutagenisity test // Mut. Res.-1975. V.31 -№3.-P. 203-268.

48. Armstrong P.B. The control of cell motility during embriogenesis// Cancer Metas. Rev., 1985,4, p 59 80/

49. Arouh S., Levine H. Nutrient chemotaxis suppression of a diffusive instability in bacterial colony dynamics // Physical Review E, 2000, pp. 1444-1447.

50. Backhouse D., Nehl D.B. Fractal geometry and soil wetness duration as tools for quantifying spatial and temporal heterogeneity of soil in plant pathology // Australasian Plant Pathology, 2000, pp. 27-33.

51. Basillais E. Functional role of the fractal morphology of corals: a full model of the nutrient turbulent diffusion fluxes to a coral reef // Comptes Rendus De L Academie Des Sciences Serie Iii-sciences De La Vie-life Sciences, 1998, pp. 295298

52. Baveye P. Comment on "Evaluation of biofilm image thresholding methods" // Water Research, 2002, pp. 805-806

53. Bellows J. F. Congenital Opacities of the Anterior Pole of the Lens. Cataracts and Anomalies of the Lens. St. Luis, pp. 287-292. Davidson F.N. 1965. Hormones and Genes. «Scient. Amer.», 1944, 6, No. 212, 36-45.

54. Beloussov L.V. Integrating self-organization theory into an advanced course on morphogenesis at Moscow State University // International Journal of Developmental Biology, 2001, pp. 177-181.

55. Ben-Jacob E. Bacterial wisdom, Godel's theorem and creative genomic webs // Physica A, 1998, pp. 57-76.

56. Ben-Jacob E., Cohen I., Golding I., Gutnick D.L., Tcherpakov M., Helbing D., Ron I.G. Bacterial cooperative organization under antibiotic stress // Physica A, 2000, pp. 247-282.

57. Boddy L. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments // Mycologia, 1999, pp. 13-32.

58. Bulianitsa A.L., Bogomolova E.V., Bystrova E.Y., Kurochkin V.E., Panina L.K. The model of formation of the spatial-temporal periodic patterns in mycellial fungi colonies // Zhurnal Obshchei Biologii, 2000, pp. 400-411.

59. Cardone P., Ercole C., Breccia S., Lepidi A. Fractal analysis to discriminate between biotic and abiotic attacks on chalcopyrite and pyrolusite // Journal of Microbiological Methods, 1999, pp. 11-19

60. Cavalcanti S., Fontanazzi F. Deterministic model of ion channel flipping with fractal scaling of kinetic rates // Annals of Biomedical Engineering, 1999, pp. 682-695

61. Champion S., Imhof B.A., Savagnier P., Thiery J.-P. The embryonic thymus produces chemotactic peptides involved in the homing of hemopoietic precursors// Cell, 1986,44, p.781-790.

62. Chertoprood M.V., Azovsky A.I. Multiscale spatial heterogeneity of macrobenthos of the White Sea tidal zone // Zhurnal Obshchei Biologii, 2000, pp. 47-63

63. Civelekoglu G., Tardy Y., Meister J.J. Modeling actin filament reorganization in endothelial cells subjected to cyclic stretch // Bulletin of Mathematical Biology, 1998, pp. 1017-1037.

64. Coey J.M.D., Hinds G., Lyons M.E.G. Magnetic-field effects on fractal electrodeposits // Europhysics Letters, 1999, pp. 267-272.

65. Cohen I., Golding I., Kozlovsky Y., Ben-Jacob E., Ron I.G. Continuous and discrete models of cooperation in complex bacterial colonies // Fractals-complex Geometry Patterns and Scaling In Nature and Society, 1999, pp. 235-247.

66. Cohen I., Golding I., Ron I.G., Ben-Jacob E. Biofluiddynamics of lubricating bacteria // Mathematical Methods In the Applied Sciences, 2001, pp. 1429-1468.

67. Craciunescu O.I., Das S.K., Poulson J.M., Samulski T.V. Three-dimensional tumor perfusion reconstruction using fractal interpolation functions //lee Transactions On Biomedical Engineering, 2001, pp. 462-473

68. Cui Y.Q., Okkerse W.J., van der Lans R.G.J.M., Luyben K.C.A.M. Modeling and measurements of fungal growth and morphology in submerged fermentations // Biotechnology and Bioengineering, 1998, pp. 216-229.

69. Cooper M.S., Schliwa M. Electrical and ionic controlsof tissuecell locomotion in DC electric fields// J. Neurosci., Res., 1985, 13,223-244.

70. Crawford K., Stocum D. L., Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axoloti limbs, Dev. Biol., 1988, 5, p. 123 -130.

71. Curtis A.S. The measurement of cell adhesiveness by an absolut method// J. Embriol. Exp. Morphol., 1969, 22, p. 305 325.

72. Dachs J., Bayona J.M. On the occurrence of microscale chemical patches in fractal aggregates // Ecological Modelling, 1998, pp. 87-92.

73. Dallon J.C., Sherratt J.A. A mathematical model for fibroblast and collagen orientation//Bulletin of Mathematical Biology, 1998, pp. 101-129.

74. Dallon J.C., Sherratt J.A., Maini P.K. Mathematical modelling of extracellular matrix dynamics using discrete cells: Fiber orientation and tissue regeneration // Journal of Theoretical Biology, 1999, pp. 449-471.

75. Dobson F.S., Zinner B., Silva M. Testing models of biological scaling with mammalian population densities // Canadian Journal of Zoology-revue Canadienne De Zoologie, 2003, pp. 844-851.

76. Dokoumetzidis A., Macheras P. A model for transport and dispersion in the circulatory system based on the vascular fractal tree // Annals of Biomedical Engineering, 2003, pp. 284-293.

77. Edelman G.M. Surfase modulation in cells recognition end growth// Science, 1976, 192, p. 218-226.

78. El-Lakkani A. Dielectric response of some biological tissues //Bioelectromagnetics, 2001, pp. 272-279.

79. Ernoult A., Bureau F., Poudevigne I. Patterns of organisation in changing landscapes: implications for the management of biodiversity // Landscape Ecology, 2003, pp. 239-251

80. Ferreira S.C., Martins M.L., Vilela M.J. A growth model for primary cancer // Physica A, 1998, pp. 569-580.

81. Ferrenq I., Tranqui L., Vailhe B., Gumery P.Y., Tracqui P. Modelling biological gel contraction by cells: Mechanocellular formulation and cell traction force quantification // Acta Biotheoretica, 1997, pp. 267-293.

82. Fleury V. A possible connection between dendritic growth in physics and plant morphogenesis // Comptes Rendus De L Academie Des Sciences Serie Iii-sciences De La Vie-life Sciences, 1999, pp. 725-734.

83. Francois J. Les propriétés antigeniques des proteines cristalliniennes. «Bull. Soc. beige ophtal", 1936, 73, 121-128.

84. Francois J. L'influence des facturs immulogiques sur la production des opacités cristalliniennes cangenitales. «Louvain. These d'Agregtion», 1941, pp. 141-148.

85. Ginovart M., Lopez D., Valls J., Silbert M. Individual based simulations of bacterial growth on agar plates // Physica A, 2002, pp. 604-618.

86. Godde R., Kurz H. Structural and biophysical simulation of angiogenesis and vascular remodeling // Developmental Dynamics, 2001, pp. 387-401.

87. Golding I., Kozlovsky Y., Cohen I., Ben-Jacob E. Studies of bacterial branching growth using reaction-diffusion models for colonial development // Physica A, 1998, pp. 510-554. '

88. Goodwill B. A model of early amphibian development// Brit. Soc. exp. Biol. Symposium 25 (D. D. Davies and M. Balls, eds.), 1971, pp. 417-428, Cambridge University Press.

89. Grasman J., Brascamp J.W., Van Leeuwen J.L., Van Putten B. The multifractal structure of arterial trees // Journal of Theoretical Biology, 2003, pp. 75-82

90. Guan J., Waite T.D., Amal R. Rapid structure characterization of bacterial aggregates // Environmental Science & Technology, 1998, pp. 3735-3742.

91. Guan J., Waite T.D., Amal R., Bustamante H., Wukasch R. Rapid determination of fractal structure of bacterial assemblages in wastewater treatment: Implications to process optimisation // Water Science and Technology, pp. 9-15.

92. Hammer O. A theory for the formation of commarginal ribs in mollusc shells by regulative oscillation // Journal of Molluscan Studies, 2000, pp. 383-391.

93. Harris F.K. Bechavior of cultured cells on substrate of various adhesiveness// Exp. Cell. Res., 1973, 77, p. 285 297.

94. Heid P.J., Voss E., Soli D.R. 3D-DIASemb: A computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo // Developmental Biology, 2002, pp. 329-347.

95. Herman P., Kocsis L., Eke A. Fractal branching pattern in the pial vasculature in the cat // Journal of Cerebral Blood Flow and Metabolism, 2001, pp. 741-753.

96. Hernandez-Bermejo B., Fairen V., Sorribas A. Power-law modeling based on least-squares minimization criteria // Mathematical Biosciences, 1999, pp. 8394.

97. Heymans O., Fissette J., Vico P., Blacher S., Masset D., Brouers F. Is fractal geometry useful in medicine and biomedical sciences? // Medical Hypotheses, 2000, pp. 360-366.

98. Ho P.F., Wang C.Y. Cluster growth by mitosis // Mathematical Biosciences, 1999, pp. 139-146.

99. Holmes M.J., Sleeman B.D. A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects // Journal of Theoretical Biology, 2000, pp. 95-112.

100. Hoop B., Peng C.K. Fluctuations and fractal noise in biological membranes //Journal of Membrane Biology, 2000, pp. 177-185.

101. Igoshin O.A., Mogilner A., Welch R.D., Kaiser D., Oster G. Pattern formation and traveling waves in myxobacteria: Theory and modeling //Proceedings of the National Academy of Sciences of the United States of America, 2001, pp. 14913-14918.

102. Itoh H., Wakita J., Matsuyama T., Matsushita M. Periodic pattern formation of bacterial colonies // Journal of the Physical Society of Japan, 1999, pp. 1436-1443.

103. Itoh H., Wakita J., Watanabe K., Matsuyama T., Matsushita M. Periodic colony formation of bacteria due to their cell reproduction and movement // Progress of Theoretical Physics Supplement, 1999, pp. 139-151.

104. Jackson T.L., Byrne H.M. A mechanical model of tumor encapsulation and transcapsular spread // Mathematical Biosciences, 2002, pp. 307328.

105. JaffeL.F. The role of ionic current in establishing developmental pattern// Philos. Trans. R. Soc. Lond. 1981 B, 295, 553-566.

106. Justen P., Paul G.C., Nienow A.W., Thomas C.R. A mathematical model for agitation-induced fragmentation of Pénicillium chrysogenum // Bioprocess Engineering, 1998, pp. 7-16.

107. Karch R., Neumann F., Neumann M., Szawlowski P., Schreiner W. Voronoi polyhedra analysis of optimized arterial tree models // Annals of Biomedical Engineering, 2003, pp. 548-563.

108. Keymer J.E., Marquet P.A., Johnson A.R. Pattern formation in a patch occupancy metapopulation model: A cellular automata approach // Journal of Theoretical Biology, 1998, pp. 79-90.

109. Kostylev V., Erlandsson J. A fractal approach for detecting spatial hierarchy and structure on mussel beds // Marine Biology, 2001, pp. 497-506.

110. Lagergren R., Lord H., Stenson J.A.E. Influence of temperature on hydrodynamic costs of morphological defences in zooplankton: experiments on models of Eubosmina (Cladocera) // Functional Ecology, 2000, pp. 380-387.

111. Landman K.A., Pettet G.J., Newgreen D.F. Mathematical models of cell colonization of uniformly growing domains // Bulletin of Mathematical Biology, 2003, pp. 235-262.

112. Lega J., Passot T. Hydrodynamics of bacterial colonies: A model -art. no. 031906 // Physical Review E, 2003, pp. 1906-1906.

113. Lejeune R., Baron G.V. Modeling the exponential growth of filamentous fungi during batch cultivation // Biotechnology and Bioengineering, 1998, pp. 169-179.

114. Lennon J.J., Kunin W.E., Hartley S. Fractal species distributions do not produce power-law species-area relationships // Oikos, 2002, pp. 378-386.

115. Loefer J. B Mefferd P. B. 1952. Conceration the pattern formation by free-swimminflay microorganisms. Am. Nat., 86, p. 325-329.

116. Lopez J.M., Jensen H.J. Generic model of morphological changes in growing colonies of fungi art. no. 021903 // Physical Review E, 2002, pp. 19031903.

117. Mabille F., Abecassis J. Parametric modelling of wheat grain morphology: a new perspective // Journal of Cereal Science, 2003, pp. 43-53.

118. Mandelbrot B.B. The fractal geometry of nature. San Francisco, Freeman, 1982. 246 p.

119. Maree A.F.M., Hogeweg P. Modelling Dictyostelium discoideum morphogenesis: the culmination // Bulletin of Mathematical Biology, 2002, pp. 327-353.

120. Martonen T.B., Hwang D., Guan X., Fleming J.S. // Supercomputer description of human lung morphology for imaging analysis // Journal of Nuclear Medicine, 1998, pp. 745-750.

121. Martonen T.B., Schroeter J.D., Hwang D.M., Fleming J.S., Conway J.H. Human lung morphology models for particle deposition studies // Inhalation Toxicology, 1998, pp. 109-121.

122. McDougall S.R., Anderson A.R.A., Chaplain M.A.J., Sherratt J.A. Mathematical modelling of flow through vascular networks: Implications for ibmour-induced angiogenesis and chemotherapy strategies // Bulletin of Mathematical Biology, 2002, pp. 673-702.

123. Melendez R., Melendez-Hevia E., Canela E.I. The fractal structure of glycogen: A clever solution to optimize cell metabolism // Biophysical Journal, 1999, pp. 1327-1332.

124. Meskauskas A., Frazer L.N., Moore D. Mathematical modelling of morphogenesis in fungi: a key role for curvature compensation ('autotropism') in the local curvature distribution model // New Phytologist, 1999, pp. 387-399.

125. Meskauskas A., Moore D., Frazer L.N. Mathematical modelling of morphogenesis in fungi: spatial organization of the gravitropic response in the mushroom stem of Coprinus cinereus // New Phytologist, 1998, pp. 111-123.

126. Meyer-Hermann M. A mathematical model for the germinal center morphology and affinity maturation // Journal of Theoretical Biology, 2002, pp. 273-300.

127. Michonova-Alexova E.I., Sugar I.P. Component and state separation in DMPC/DSPC lipid bilayers: A Monte Carlo simulation study // Biophysical Journal, 2002, pp. 1820-1833.

128. Mistr S., Bercovici D. A theoretical model of pattern formation in coral reefs // Ecosystems, 2003, pp. 61-74.

129. Moran D.M., Ames B.N. Revised methods for the Salmonella mutagenisity test // Mutat. Res.- 1983.- V 113.-№ 3 4. P. 173 - 215.

130. Muko S., Kawasaki K., Sakai K., Takasu F., Shigesada N. Morphological plasticity in the coral Pontes sillimaniani and its adaptive significance // Bulletin of Marine Science, 2000, pp. 225-239.

131. Murray J.D. Pattern formation in integrative biology a marriage of theory and experiment // Comptes Rendus De L Academie Des Sciences Serie Iii-sciences De La Vie-life Sciences, 2000, pp. 5-14.

132. Myerscough M.R., Maini P.K., Painter K.J. Pattern formation in a generalized chemotactic model // Bulletin of Mathematical Biology, 1998, pp. 126.

133. Nicolson G.L. Transmembrane control of the receptors on normal and tumor cells// Biochim Biophys. Acta, 1976,457, p. 57-108.

134. Nakayama H., Kiatipattanasakul W., Nakamura S., Miyawaki K., Kikuta F., Uchida K., Kuroki K., Makifuchi T., Yoshikawa Y., Doi K. Fractal analysis of senile plaque observed in various animal species // Neuroscience Letters, 2001, pp. 195-198.

135. Nordmann J. Cataracts congénitales de l'animal. Biologie du cristallin. Paris, 1954. pp. 478-480.

136. Novikova T.V. Role of information in a biological system // Izvestiya Akademii Nauk Seriya Biologicheskaya, 1999, pp. 98-104.

137. Newman S.A. Lmeage and pattern in the developing vertebrate limb// Trends Genet., 1988,4, 329-332.

138. Nuccitelli R., Erickson C. A. Embryonic cell motility canbe guided by physiological electric fields, Exp. Cell Res., 1983,147, 195-201.

139. Olsen L., Maini P.K., Sherratt J.A., Dallon J. Mathematical modelling of anisotropy in fibrous connective tissue // Mathematical Biosciences, 1999, pp. 145-170.

140. Olsen L., Sherratt J.A., Maini P.K., Arnold F. A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis // Ima Journal of Mathematics Applied In Medicine and Biology, 1997, pp. 261-281.

141. Owen M.R., Sherratt J.A., Wearing H.J. Lateral induction by juxtacrine signaling is a new mechanism for pattern formation // Developmental Biology, 2000, pp. 54-61.

142. Parkinson I.H., Fazzalari N.L. Methodological principles for fractal analysis of trabecular bone // Journal of Microscopy-oxford, 2000, pp. 134-142.

143. Passy S.I. Environmental randomness underlies morphological complexity of colonial diatoms // Functional Ecology, 2002, pp. 690-695.

144. Patt J. R: Bioconvectlon patterns in cultures of free-swimmlnQpf orqanisms. Science, 1961. 133, p. 1766-1767.

145. Ponomarev V.O., Shikhovtseva E.S. The mechanism of B-A transition in DNA molecule: Elastic interactions between sugars and nitrous bases // Biofizika, 2000, pp. 27-31.

146. Poole T.J., Steinberg M.S. Evidence for the guidanceof pronephric duct migration by a craniocaudally travelingadhesive gradient// Dev. BioL, 1982, 92, p.144-158.

147. Qian H., Raymond G.M., Bassingthwaighte J.B. Stochastic fractal behavior in concentration fluctuation and fluorescence correlation spectroscopy //Biophysical Chemistry, 1999, pp. 1-5.

148. Radice G.P. The spreading of epithelial cells duringwound closure in Xenopus laevis// Dev. BioL, 1980, 76, 26 -32.

149. Ramakrishnan A., Sadana A. A mathematical analysis using fractals for binding interactions of nuclear estrogen receptors occurring on biosensor surfaces // Analytical Biochemistry, 2002, pp. 78-92.

150. Regalado C.M. Roles of calcium gradients in hyphal tip growth: a mathematical model // Microbiology-uk, 1998, pp. 2771-2782.

151. Regalado C.M., Sleeman B.D. Aggregation and collapse in a mechanical model of fungal tip growth // Journal of Mathematical Biology, 1999, pp. 109-138.

152. Robbins W. J. Patterns formed by matile Euqlena qracllls var. bacillarls. Bull. Torrey Bat. club. 1952,79, p. 107-109.

153. Rosavio R. A., Delouvee A., Yamada K.M., Timpl R., Thiery J.P. Neural crest cell migration: Requirements for exogenous fibronectin and high cell density// J. Cell BioL, 1983, 96, p. 462-473.

154. Sadana A. A fractal analysis of protein to DNA binding kinetics using biosensors // Biosensors & Bioelectronics, 2003, pp. 985-997.

155. Sadana A. An analysis of analyte-receptor binding kinetics for biosensor applications: influence of the fractal dimension on the binding rate coefficient // Biosensors & Bioelectronics, 1998, pp. 1127-1140.

156. Sadana A., Vo-Dinh T. A kinetic analysis using fractals of cellular analyte-receptor binding and dissociation // Biotechnology and Applied Biochemistry, 2001, pp. 17-28.

157. Salazar-Ciudad I., Garcia-Fernandez J., Sole R.V. Gene networks capable of pattern formation: From induction to reaction-diffusion // Journal of Theoretical Biology, 2000, pp. 587-603.

158. Sanchez-Cabeza J.A., Pujol L. Study on the hydrodynamics of the Ebro river lower course using tritium as a radiotracer // Water Research, 1999, pp. 2345-2356.

159. Sataric M., Zdravkovic S., Tuszynski J.A. DNA dynamics and endogeneous fields // Biosystems, 1999, pp. 117-125.

160. Shimizu N., Ogino C., Kawanishi T., Hayashi Y. Fractal analysis of Daphnia motion for acute toxicity Bioassay // Environmental Toxicology, 2002, pp. 441-448.

161. Smolle J. Fractal tumor stromal border in a nonequilibrium growth model // Analytical and Quantitative Cytology and Histology, 1998, pp. 7-13.

162. Stopak D., Harris A. K. Connective tissue morphogenesis by fibroblast traction. 1. Tissue culture observations// Dev. , BioL, 1982, 90, p. 383398.

163. Tan Z.J., Zou X.W., Jin Z.Z. Extended DDA model: deposition, diffusion and aggregation with a power-law adsorption // Physics Letters A, 2001, pp. 121-124.

164. Tan Z.J., Zou X.W., Zhang W., Jin Z.Z. Pattern formation on nonuniform surfaces by correlated random sequential absorptions art. no. 057201 // Physical Review E, 2002, pp. 7201-7201.

165. Tchuraev R.N., Galimzyanov A.V. Modeling of actual eukaryotic control gene subnetworks based on the method of generalized threshold models // Molecular Biology, 2001, pp. 933-939.

166. Trincaus J.P. Further thoghts on directional cell movement during morphogenesis// J. Neurosci. 1985, Res., 13, p. 1 19.

167. Turcotte D.L., Pelletier J.D., Newman W.I. Networks with side branching in biology// Journal of Theoretical Biology, 1998, pp. 577-592.

168. Ukena T.E., Berlin R.D. Effects of colchicine and vin-blastine on the topological separation of membrane functions//J. Exp. Med., 1972, 136, 1-7.

169. Umeda T., Inouye K. Possible role of contact following in the generation of coherent motion of Dictyostelium cells // Journal of Theoretical Biology, 2002, pp. 301-308.

170. Unlenhuth P. T. Zur Lehre von der unterschiedener Eiweissarten mit Hilfespezifischer Sera. Festshr. zum. 60. Geburtstag Rob. Koch. Jena, 1903. SS. 49-74.

171. Vasiev B., Weijer C.J. Modeling chemotactic cell sorting during Dictyostelium discoideum mound formation // Biophysical Journal, 1999, pp. 595605.

172. Wagle M.A., Tranquillo R.T. A self-consistent cell flux expression for simultaneous chemotaxis and contact guidance in tissues // Journal of Mathematical Biology, 2000, pp. 315-330.

173. Wakita J., Rafols I., Itoh H., Matsuyama T., Matsushita M. Experimental investigation on the formation of dense-branching-morphology-like colonies in bacteria // Journal of the Physical Society of Japan, 1998, pp. 36303636.

174. Wakita J., Shimada H., Itoh H., Matsuyama T., Matsushita M. // Periodic colony formation by bacterial species Bacillus subtilis // Journal of the Physical Society of Japan, 2001, pp. 911-919.

175. Wearing H.J., Owen M.R., Sherratt J.A. // Mathematical modelling of juxtacrine patterning// Bulletin of Mathematical Biology, 2000, pp. 293-320.

176. West G.B., Woodruff W.H., Brown J.H. Allometric scaling ofmetabolic rate from molecules and mitochondria to cells and mammals // Proceedings of the National Academy of Sciences of the United States of America, 2002, pp. 2473-2478.

177. Wille J., Ehret C. F. Pattern Formation In Populations of Free-Swimming, Organism. J. Protozool. 1968. N 4, p. 789-792.

178. Wood A., Thorogood P. An ultrastructural and morpho-metric analysis of an in vivo contact guidance system// Development, 1987, 101, p. 363-381.

179. Young I.M., Crawford J.W. Protozoan life in a fractal world // Protist, 2001, pp. 123-126.

180. Young I.M., Ritz K. Tillage, habitat space and function of soil microbes // Soil & Tillage Research, 2000, pp. 201-213.

181. Zackson S.L., Steinberg M.S. Chemotaxis or adhesion gradient? Pronephric duct elongation does not depend on distant sources of guidance information, Dev. BioL, 1987, 124, 418-422.

182. Zigmod S.H. Chemotaxis by polymorphonuclear leukocytes// J. Cell Biol., 1978, 77, p. 269-287.