Бесплатный автореферат и диссертация по биологии на тему
Центры организации микротрубочек в интерфазных и митотических меланофорах шпорцевой лягушки in vivo
ВАК РФ 03.00.11, Эмбриология, гистология и цитология

Содержание диссертации, кандидата биологических наук, Рубина, Ксения Андреевна

ВВЕДЕНИЕ.

ОБЗОР ЛИТЕРАТУРЫ.

1. Структурно-функциональная характеристика центросомы.

2. Центросомный и ядерный циклы.

3. Организация митотического веретена.

4. Особенности ЦОМТ в дифференцированных клетках.

5. Нецентросомальные ЦОМТ.

6. Динамика микротрубочек.

7. Микротрубочки в дифференцированных клетках. Полярность клеток.

8. Регуляция ЦОМТ и микротрубочек в зависимости от внешнего сигнала.

9. Участие микротрубочек в транспорте внутриклеточных органелл.

10. Общая характеристика меланофоров.

11. Строение меланофоров.

МАТЕРИАЛЫ И МЕТОДЫ.

1. Иммунофлуоресцентная микроскопия и компьютерная обработка изображений.

2. Электронная микроскопия.

3. Обработка колцемидом.

4. Трехмерная реконструкция.

РЕЗУЛЬТАТЫ.

1. Иммунофлуоресцентный анализ интерфазных меланофоров.

2. Электронномикроскопический анализ интерфазных и митотических клеток.

1. Интерфазные клетки в состоянии дисперсии.

2. Интерфазные клетки в состоянии агрегации.

3. Митотические клетки.

3. Обработка колцемидом интерфазных меланофоров. Световая микроскопия.

4. Ультраструктура интерфазных меланофоров, обработанных колцемидом.

1. Меланофоры в состоянии агрегации.

2. Меланофоры в состоянии дисперсии.

3. Смена гормонов в присутствии колцемида. Агрегированные меланофоры.

4. Смена гормонов в присутствии колцемида. Дисперсные меланофоры.

5. Трехмерная реконструкция формы клеток.

ОБСУЖДЕНИЕ.

ВЫВОДЫ.

Введение Диссертация по биологии, на тему "Центры организации микротрубочек в интерфазных и митотических меланофорах шпорцевой лягушки in vivo"

Центросома была открыта более ста лет назад, но сегодня, в связи с разработкой новых биохимических, генетических методов в сочетании с электронной и световой микроскопией, она вызывает особый интерес, о чем свидетельствует тот факт, что международный симпозиум по клеточной биологии в 1997 году был полностью посвящен центросоме. До сих пор нет четких ответов на вопросы: Как происходит сборка и организация центросомы? Какова функция центриолей? Каков механизм нуклеации микротрубочек на центросоме? Каково происхождение центриолей и центросомы в эволюционном аспекте? Как центросома влияет на динамику микротрубочек и каков механизм этой регуляции?

Цитоскелет играет важную роль в процессах внутриклеточного транспорта и морфогенезе клеток, реализуя информацию линейного двумерного кода ДНК в трехмерную систему пространственных взаимодействий клеточных компонентов (Andersen, 1999). Микротрубочки являются одним из компонентов цитоскелета; центросома служит основным центром организации микротрубочек (ЦОМТ) в большинстве эукариотических клеток (Brinkley, 1985). Микротрубочки играют важную роль при делении клеток, поляризации и миграции, внутриклеточном транспорте и других процессах. Благодаря своей способности к дисперсии и агрегации пигментных гранул при индукции соответствующими гормонами, меланофоры стали излюбленным объектом при изучении процессов и механизмов внутриклеточного транспорта (Bikle et al., 1966; Schliwa and Bereiter-Hahn, 1973; Schliwa, 1975; Schliwa et al., 1978; McNiven et al., 1984; McNiven and Porter, 1986; Rozdzial and Haimo, 1986a,b; McNiven and Ward 1988; Thaler and Haimo, 1990; Blanchard et al., 1991; Fujii, 1993; Rodionov et al., 1991; Rodionov et al., 1994; Rodionov and Borisy, 1997; Rogers et al., 1997; Rodionov and Borisy, 1998;). Считается, что транспорт меланосом происходит вдоль микротрубочек при участии моторных белков, ассоциированных с микротрубочками (Rodionov et al. 1991; Rodionov and Borisy, 1994; Rogers et al. 1997).

Изменения структуры центросомы и цитоскелета при индукции дисперсии и агрегации описаны на интерфазных меланофорах рыб in vivo и in vitro (Bikle et al., 1966; Schliwa and Bereiter-Hahn, 1973; Schliwa 1978; Schliwa et al. 1978; Schliwa 1986; Rodionov et al., 1991). Имеются данные об организации цитоскелета в культивируемых меланофорах шпорцевой лягушки (Xenopus laevis) (Rollag and Adelman, 1993). Однако мало что известно об организации центросомы и сети микротрубочек в меланофорах Xenopus laevis in vivo.

Дермальные меланофоры головастика шпорцевой лягушки - клетки гигантского размера, со сложно устроенной цитоплазмой и множеством отростков, имеющих сложное пространственное распределение. Известно, что архитектура клеток в системе in vitro и in vivo может существенно различаться, а, следовательно, механизмы клеточного ответа и физиологические реакции клеток в культуре и в ткани тоже могут быть различными (Ingber, 1993). В связи этим одной из задач настоящей работы стал анализ структуры, числа и локализации ЦОМТ, а также системы микротрубочек и формы клеток интерфазных дермальных меланофорах шпорцевой лягушки в различных физиологических состояниях (дисперсии и агрегации) in vivo.

Имеющиеся данные литературы свидетельствуют о том, что меланофоры амфибий способны вступать в митоз (Pehlemann, 1967; Стародубов и Голиченков, 1979; Стародубов и Голиченков, 1979а; Стародубов и Голиченков, 1979b; Ide, 1982; Семерджиева и др., 1992). В отличие от интерфазных меланофоров, митотические меланофоры на стадии метафазы сохраняют отросчатую форму и не отвечают на гормональные стимулы, вызывающие дисперсию и агрегацию в интерфазных клетках (Стародубов и Голиченков, 1979а; Стародубов и Голиченков 1979b; Стародубов и Голиченков, 1988; Ide, 1982).

Подробного анализа особенностей ЦОМТ в митотических меланофорах до сих пор не проводилось. В связи с этим в настоящей работе была поставлена задача провести исследование структуры ЦОМТ, организации микротрубочек и клеточной формы митотических меланофоров Xenopus laevis in vivo.

В литературе имеются противоречивые данные о влиянии антитубулиновых агентов на число и организацию микротрубочек в хроматофорах, а также на возможность транспорта пигментных гранул в таких условиях. Известно, что в ряде клеток обработка колцемидом вызывает разборку микротрубочек, а последующая инкубация в среде без колцемида позволяет выявить число и локализацию ЦОМТ. В определенных условиях колцемид может вызывать инактивацию центросомы (De Brabander et al., 1981). Колцемид может служить хорошим инструментом при анализе числа ЦОМТ, стабильности микротрубочек, формы и функциональной активности центросомы и процессов внутриклеточного транспорта в двух различных физиологических состояниях меланофоров - при дисперсии и агрегации. В связи с этим в настоящей работе была поставлена задача провести анализ влияния разных доз колцемида на структуру и функцию центросомы, на стабильность сети микротрубочек в дисперсных и агрегированных интерфазных меланофорах Xenopus laevis in vivo. Также стояла задача провести светомикроскопическое исследование возможности дисперсии и агрегации меланосом при индукции этих процессов соответствующим гормоном в присутствии колцемида и проанализировать ультраструктуру этих меланофоров.

ОБЗОР ЛИТЕРАТУРЫ

Заключение Диссертация по теме "Эмбриология, гистология и цитология", Рубина, Ксения Андреевна

выводы

1. Центросома интерфазных и митотических меланофоров Xenopus имеет строение, в целом, характерное для центросом большинства соматических клеток in vivo и in vitro.

2. Особенностью центросомы меланофоров Xenopus являются: а), способность центросомы интерфазных клеток образовывать первичную ресничку; б), присутствие в интерфазных и митотических меланофорах множественных центриолей; в), возможность активации всех центриолей клетки в качестве ЦОМТ в интерфазных и митотических меланофорах.

3. Для митотических и интерфазных меланофорв в состоянии агрегации характерен трехзональный тип организации ЦОМТ: центриоли, окруженные ПЦМ; центросфера и астральная лучистость с радиальным расположением органелл вдоль микротрубочек.

4. Микротрубочки обнаруживаются в отростках интерфазных и митотических меланофоров, независимо от присутствия меланосом.

5. Микротрубочки в дисперсных меланофорах существенно стабильнее микротрубочек в агрегированных меланофорах. Самыми стабильными являются центросомные микротрубочки в дисперсных меланофорах.

6. Меланофоры являются отросчатыми клетками; переход клеток из агрегированного состояния в дисперсное в интерфазе и из интерфазы в митоз сопровождается изменением клеточной формы и организации ЦОМТ.

7. Структура центросомы интерфазных меланофоров чувствительна к воздействию возрастающих концентраций колцемида (10"3 М - 10"6 М). Повышение концентрации колцемида до 10° М вызывает коллапс центросомы в агрегированных меланофорах. Колцемид в концентрации 10'6 М не препятствует действию МСГ, который индуцирует дисперсию меланосом, при этом в некоторых клетках наблюдается инактивация центросомы в качестве ЦОМТ. Мелатонин же в присутствие колцемида вызывает аномальную агрегацию, при этом в ряде клеток наблюдается активация центросомы в качестве ЦОМТ.

8. Дополнительных ЦОМТ, отличных от центросомы, в интерфазных меланофорах не обнаружено ни в норме, ни после воздействия колцемидом. Это позволяет считать центросому единственным ЦОМТ.

Библиография Диссертация по биологии, кандидата биологических наук, Рубина, Ксения Андреевна, Москва

1. Абумуслимов С.С., Надеждина Е С., Ченцов Ю.С. (1991) Множественные центры организации микротрубочек в гигантских клетках слюнных желез Chironomus cingulatus. Цитология. 33: 36-40.

2. Абумуслимов С.С., Надеждина Е.С., Ченцов Ю.С. (1994) Электоронномикроскопическое исследование морфогенеза центриолей и центросомы в раннем развитиии мыши. Цитология. 36: 1054-1061.

3. Альберте Б., Брей Д., Льюис Дж., Рэфф М., Роберте К., Уотсон Дж. Молекулярная биология клетки. Изд-во Мир. 1987.

4. Бродский В .Я., Урываева И.В. (1981) Клеточная полиплоидия. Пролиферация и дифференцировка. Изд-во Наука.

5. Вассиф Э.Т., Никерясова E.H., Захарова Л.А., Голиченков В.А. (1989) Изменения размеров дермальных меланофоров в личиночном развитии шпорцевой лягушки. Вестник Моск. ун-та. Биология. 16: 12-18.

6. Голиченков В.А. (1979) Биология меланофоров амфибий. Успехи современной биологии. 87: 442.

7. Голиченкова И.Ф. (1972) Регуляция меланофоров амфибий. Успехи современной биологии. 73: 410.

8. Григорьев И.С., Чернобельская A.A., Воробьев И.А. (1997) Количественный анализ движения гранул в поляризованных фибробластах. Биологические мембраны. 14: 160-173.

9. Зиновкина Л.А., Надеждина Е.С. (1996) Белки центросомы. Биохимия. 61: 1347-1361.

10. Леонова Е.В. (1989) Исследование строения цитоскелета меланофоров и роли его элементов во внутриклеточном транспорте. Диссер. на соискание уч. степ. канд. биол. наук.

11. Москвин-Тарханов М.И., Онищенко Г.Е. (1978) центриоли в мегакариоцитах костного мозга мыши. Цитология. 20:1436-1440.

12. Никерясова E.H., Голиченков В.А. (1983) Изменение ультраструктуры дермальных меланофоров в процессе миграции пигментных гранул. Цитология. 25: 972.

13. Никерясова E.H., Голиченков В. А., Дорфман Я.Г. (1984) Динамика перераспределения пигментных гранул в дермальных меланофорах безхвостых амфибий. Онтогенез. 15: 616-625.

14. Никерясова E.H., Голиченков В.А. (1989) Влияние колхицина на миграцию пигментных гранул в дермальных меланофорах шпорцевой лягушки. Вестник МГУ. 16(2): 32-38.

15. Онищенко Г.Е. (1978) О соответствии числа центриолей плоидности гепатоцитов в печени мыши. Цитология. 20: 355.

16. Онищенко Г.Е., Быстревская В.Б., Ченцов Ю.С. (1979) Многополюсные митозы в клетках культуры ткани в норме и при эксперимертальной индукции 2-меркаптоэтанолом. Докл. Акад. Наук СССР. 248: 1443-1446.

17. Онищенко Г.Е., Волкова JI.B. (1983) Центриолярный комплекс в гибридах соматических клеток (мышь х китайский хомячок). Цитология. 25: 508.

18. Онищенко Г.Е., Петращук О.М. (1994) Центриолярный комплекс гетерофазных гомокарионов в интерфазе и митозе. Цитология. 36: 1192-1199.

19. Онищенко Г.Е., Ченцов Ю.С. (1986) Строение центриолярного комплекса в гепатоцитах интактной и регенирирующей печени. Цитология. 28: 403-408.

20. Петращук О.М. Онищенко Г.Е. (1988) Нарушения ультраструктуры митотического аппарата при действии цитохалазина В. Цитология. 30: 1418-1425.

21. Родионов В.И. (1993) Исследование функции белков, ассоциированных с микротрубочками, с помощью специфических антител. Диссер. на соискание уч. степ, доктора биол. наук.

22. Семерджиева С.И., Никерясова Е.Н., Стародубов С.М., Городскова НЕ., Голиченков В.А. (1992) Ультраструктура дермальных меланофоров личинок Xenopus laevis в митозе. Докл. Акад. Наук СССР, 324: 685-686.

23. Стародубов С.М., Голиченков В.А. (1979) Митотическое деление дермальных меланофоров личинок бесхвостых амфибий. Докл. Акад. Наук СССР. 246: 721-732.

24. Стародубов С.М., Голиченков В.А. (1988) Перемещение пигмента в дермальных меланофорах личинок амфибий в интерфазе и во время митоза. Онтогенез. 19: .

25. Узбеков Р.Э., Воробьев И А., Драчев В. А. (1989) Влияние лазерного микрооблучения клеточного центра на подвижность нейтрофилов. Цитология. 31: 874-881.

26. Хэм А., Кормак Д. (1983) Гистология. Т.1, 4, 5. Москва, Изд-во Мир.

27. Ченцов Ю.С. (1984) Общая цитология. Изд-во Московского Университета.

28. Abumuslimov S.S., Nadezhdina E.S., Chentsov Yu.S. (1994) Morphogenezis of centrioles and centrosomes in the early mouse development: the electron microscopic study. Tsitologia. 36: 1054-1061.

29. Ahmad F.J., Baas P.W. (1995) Microtubule release from the neuronal centrosome are transported into the axon. J. Cell Sci. 108: 2761-2769.

30. Ahmad F.J., Echeverri C.J., Vallee R.B., Baas P.W. (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol. 140: 391-401.

31. Akiyama T., Matsumoto J. (1983) The blockade of pigment displacement in swordtail erythrophores by microinjection of antiactin antibody. J. Exp. Zoo1. 227: 405-411.

32. Albrecht-Buehler G., Bushnell A. (1978) The orientation of centrioles in migrating 3T3 cells. Exp. Cell Res. 120: 111-118.

33. Albrecht-Buehler G. (1990) The iris diaphragm model of centriole and basal body formation. Cell Motil. Cytoskel. 17: 197-217.

34. Albrecht-Buehler G. (1992) Function and formation of centrioles and basal bodies. In: The Centrosome. V. I. Kalnins, ed., Academic Press, San Diego, CA. pp.70-102.

35. Alieva I.B., Nadezhdina E.S., Vaisberg E.A., Vorobjev I.A. (1992) Microtubule and intermediate filament pattern around the centrosome in interphase cells. In: The Centrosome. V. I. Kalnins, ed., Academic Press, San Diego, CA. pp. 103-129.

36. Alieva I.B., Vorobjev I. A. (1997) Stereoscopic analysis of microtubule pattern around the centrosome in interphase PK cells after treatment with taxol and nocodazole. Membr. Cell Biol. 11: 17-29.

37. Allan V.J., Vale R.D. (1991) Cell cycle control of microtubule-based membrane transport and tubule formation in vitro. J. Cell Biol. 113: 347-359.

38. Alpin A., Jasionowski Y., Tuttle D.L., Lenk S.E., Dunn W.A. (1992) Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J. Cell Phys. 152: 458-466.

39. Andersen S.S. (1999) Molecular characteristics of the centrosome. Int. Rev. Cytol. 187: 51-109.

40. Andreasen PR., Margolis R.L. (1994) Microtubule dependency of p34cdc2 inactivation and mitotic exit in mammalian cells. J. Cell Biol. 127: 789-802.

41. Ault J.G., Rieder C.L. (1994) Centrosome and kinetchore movement during mitosis. Curr. Opin. Cell Biol. 6: 41-49.

42. Baas P.W., Joshi H.C. (1992) y-tubulin distribution in the neuron: implications for the origins of neuritic microtubules. J. Cell Biol. 119: 171-178.

43. Baas P.W., Ahmad F.J. (1993) The transport properties of axonal microtubules establish their polarity orientation. J. Cell Biol. 120: 1427-1437.

44. Bagnara J.T. (1966) Cytology and cytophysiology of nonmelanophore pigment cells. Int. Rev. Cytol. 20: 173-205.

45. Bagnara J.Y., Hadley M.E. (1973) Chromatophores and color change. Prontice-Hall., Englewood. Cliffs, New York. p. 128.

46. Bailly E., McCaffrey M., Touchot N., Zahraoui A., Goud B., Bornens M. (1991) Phosphorylation of two small GTP-binding proteins of the Rab family by p34cdc2. Nature. 350: 715-718.

47. Bailly E., Pines J., Hunter T., Bornens M. (1992) Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistent compartment and with the centrosome. J. Cell Sci. 101: 529-545.

48. Bajer A.S. (1982) Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J. Cell Biol. 93: 33-48.

49. Balczon R. (1996) The centrosome in animal cells and its functional homologs in plant and yeast cells. Int. Rev. Cytol. 169: 25-82.

50. Baluska F., Parker J.S., Barlow P.W. (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation inroots of maize (Zea mays L). J. Cell Sci. 103: 191-200.

51. Banerjee S., Margulis L. (1973) Mitotic arrest by melatonin. Exp. Cell Res. 78: 314-318.

52. Baron A.T. Greenwood T.M., Bazinet C.W., Salisbury J.L. (1992) Centrin is a component of the pericentriolar lattice. Biol. Cell. 76: 383-388.

53. Baron A.T., Salisbury J.L. (1992) Role of centrin in spindle pole dynamics. In: The Centrosome. V. I. Kalnins, ed., Academic Press, San Diego, CA. pp.167-195.

54. Bau M.Y., Bloom G.S. (1994) Microtubule and kinesin-dependent formation of Golgi derived membrane tubule networks. Mol. Biol. Cell. 5: 423a.

55. Beckerle M.C., Porter K.R. (1983) Analysis of the role of microtubules and actin in erythrophore intracellular motility. J. Cell Biol. 96: 354-362.

56. Belmont L.D., Hyman K.E., Sawin K.E., Mitchison T.J. (1990) Real-time visualization of cell cycle-dependent shanges in microtubule dynamics in cytoplasmic extracts. Cell. 62: 579589.

57. Benitez-King G., Huerto-Delgadillo L., Anton-Tay F. (1990) Melatonin effects on the cytoskeletal organization of MDCK and neuroblastoma N1E-115 cells. J. Pineal. Res. 9: 209220.

58. Benitez-King G., Huerto-Delgadillo L., Anton-Tay F. (1991) Melatonin modifies calmodulin cell levels in MDCK and N15-115 cell lines and inhibits phosphodiesterase activity. Brain Res. 557: 289-292.

59. Bernhardt R., Matus A. (1982) Initial phase of dendrite growth: Evidence for the involvement of high molecular weight microtubule-associated proteines (HMWP) before the appearance of tubulin. J. Cell Biol. 92: 589.

60. Berns M.W., Rattner J. B., Brenner S., Meredith S. (1977) The role of the centriolar region in animal cell mitosis. J. Cell Biol. 72: 351-367.

61. Bickle D., Tilney L.G., Porter K.R. (1966) Microtubules and pigment migration in the melanophores of Fundulus heteroclitusL. Protoplasma. 61: 605-613.

62. Blanchard P.D., Angus R.A., Morrison R.L., Frost-Mason S.K., Sheetz J.H. (1991) Pigments and ultrastructures of pigment cells in xanthic sailfin mollies (Poecilia latipinna). Pigment Cell Res., 4: 240-246.

63. Blocker A., Griffiths G., Olivo J.-C., Hyman A.A., Severin F.F. (1998) A role fro microtubule dynamics in phagosome movement. J. Cell Sci. Ill: 303-312.

64. Bloom G.S., Vallee R.B. (1983) Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J. Cell Biol. 96: 1523.

65. Bobinnec Y., Khodjakov A., Mir L.M., Rieder C.L., Edde B., Bornens M. (1998) Centriole disassembly in vivo and its effect on the centrosome structure and function in vertebrate cells. J. Cell Biol. 143: 1575-1589.

66. Bogenschutz H. (1965) Untersuchungen uber den Lichtbedington Farbwechsel der kaulquappen. J. Vergl. Physiol. 50: 598-614.

67. Boleti H., Karsenti E., Vernos I. (1996) Xklp2, a novel Xenopus centrosomal kinesin-like protein required fro centrosome separation during mitosis. Cell. 84: 49-59.

68. Bornens M. (1991) Cell polarity: Intrinsic or externally imosed? New Biologist. 3: 627636.

69. Bornens M. (1992) Structure and function of isolated centrosomes. In: The Centrosome. V. I. Kalnins, ed., Academic Press, San Diego, CA. pp. 1-43.

70. Bornens M., Paintrand M., Bergers J., Marty M.C., Karsenti E. (1987) Structural and chemical characterization of isolated centrosomes. Cell Motil. Cytoskel. 8: 238-249.

71. Bouckson-Castaing V., Moudjou V., Ferguson M., Mucklow S., Belkaid Y., Milon G., Crocker P. (1996) Molecular characterization of ninein, a new coiled-coil protein of the centrosome. J. Cell Sci. 109: 179-190.

72. Bre M.H., Karsenti E. (1990) Effects of brain microtubule-associated proteins on microtubule dynamics and the nucleating activity of the centrosomes. Cell Moti. Cytoskel. 15: 88-98.

73. Bright G.R., Fisher G.W., Rogowska J., Taylor D.L. (1989) Fluorescence ratio imaging microscopy. In: Methods in Cell Biology. D.L. Taylor and Wang Y.-L. Eds. Academic Press., San-Diego California, 30: 157-192.

74. Brinkley B.R. (1985) Microtubule organizing centers. Ann. Rev.Cell Biol. 1: 145-172.

75. Brinkley B.R., Cox S.M., Pepper D.A., Wible L., Brenner S.L., Pardue R.L. (1981) Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. J. Cell. Biol. 90: 554-562.

76. Brown D.L., Knox J.D., Paulin-Levasseur M. (1992) The lymphocyte centrosome. In: The Centrosome. V. I. Kalnins, ed., Academic Press, San Diego, CA. pp. 261-286.

77. Buendia B., Antony C., Verde F., Bornens M., Karsenti E. (1990) A centrosomal antigen localized on intermediate filaments and mitotic spindle poles. J. Cell Sci. 97: 259-271.

78. Burns R.G. (1991) a-, P~ and y-tubulins: sequence comparisons and structural constraints. Cell Motil. Cytoskel. 20: 181-189.

79. Burton P.R., Himes R.H. (1978) Electron microscope studies of pH effects on assembly of tubulin free of associated proteins. J. Cell Biol. 77: 120.

80. ButmanB.T., Obika T., Chen T., Taylor J.D. (1979) Hormone-induced translocations in amphibian dermal iridophores in vitro. Changes in cell shape. J. Cell Biol. 208: 17.

81. ByersH.R., Porter K.R. (1977) Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. J. Cell Biol. 75: 541.

82. Byers H.R., Fujiwara K., Porter K.R. (1980) Visualization of microtubules of cells in situ by indirect immunofluorescence. Proc. Natl. Acad. Sci. USA. 77: 6657-6661.

83. Calarco-Gilliam P.D., Seibert M.C., Hubble R., Mitchison T., Kirschner M. (1983) Centrosome development in early mouse embryos as defined by auto-antibody against pericentriolar material. Cell. 35: 621-629.

84. Cambray-Deakin M.A., Burgoyne R.D. (1987) Acetylated and detyrosinated a-tubulins are co-localized in stable microtubules in rat meningeal fibroblasts. Cell Motil. Cytoskel. 8: 284291.

85. Campenot R.B., Lund K., Senger D.L. (1996) Delivery of newly synthesized tubulin to rapidly growing distal axons of rat sympathetic neurons in compartmented cultures. J. Cell Biol. 135: 701-709.

86. Cardinali D.P., Molecular biology of melatonin: Assessment of the "microtubule hypothesis of melatonin action". In Melatonin: current status and perspectives. N. Birau and W. Schloot, eds. Pergamon Press, New York, 1981, pp. 247-256.

87. Carlier M., Pantaloni D. (1981) Kinetic analsis f guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry. 20: 1918-1924.

88. Cartier L., Rankin L.L., Allen R.E., Kato Y., Fusetani N., Karaki H., Watabe S., Hartshorne D.J. (1991) Calyculin-A increases the level of protein phosphorylation and changes the shape of 3T3 fibroblasts. Cell Motil Cytoskel. 18: 26-40.

89. Centronze V.E., Borisy G.G. (1990) Nucleation of microtubules from mitotic centrosomes is modulated by a phosphorylated epitope. J. Cell Sci. 95: 405-411.

90. Chen L.B., Summerhayes I.C., Johnson L.V., Walsh M.L., Bernal S.D., Lampidis T.J. (1981) Probing mitochondria in living cells with rodamin 123. Cold Spring Harbor Symp. Quant. Biol. 46: 141-155.

91. Chen J. Kanai Y., Cowan N.J. Hirokawa N. (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature. 360: 674-677.

92. Chen J.-S., Wang S.-M. (1993) The role of microtubules in pigment translocation in goldfish xanthophores. Arch. Histol. Cytol. 56: 451-458.

93. Chretien D., Fuller S.D., Karsenti E. (1995) Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129: 1311-1328.

94. Chretien D., Buendia B., Fuller S.D., Karsenti E. (1997) Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120: 117-133.

95. Clark T.G., Rosenbaum J.L. (1984) Energy requirements for pigment aggregation in Fundulus melanophores. Cell Motil. Cytoskel. 4: 431-441.

96. Collot M., Louvard D., Singer S.J. (1984) Lysosomes are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc. Natl. Acad. USA. 81: 788-792.

97. ComptonD.A. (1998)Focusing on spindle poles. J. Cell Sci. Ill: 1477-1481.

98. Coomber B.L. (1993) Centrosome reorientation in regenerating endothelial monolayers requires bFGF. J. Cell. Biochem. 52: 289-296.

99. Coue M., Lombillo V.A., Mcintosh J.R. (1991) Microtubule depolimerization promotes particle and chromosome movement in vitro. J. Cell Biol. 1991. 112: 1165.

100. Cozzi B., Rollag M.D. (1992) The protein-phosphatase inhibitor okadaic acid mimics MSH-induced and melatonin-reversible melanosome dispersion in Xenopus laevis melanophores. Pigment Cell Res. 5: 148-154.

101. Dane P.J., Tucker J.B. (1986) Supracellular microtubule alignments in cell layers associated with the secretion of certain fish scales. J. Cell Sci. Suppl. 5: 273-291.

102. Daniolos A., Lerner A.B., Lerner M.R. (1990) Action of light on frog pigment cells in culture. Pigment Cell Res. 3: 38-43.

103. Debec A., Szollosi A., Szollosi D. (1982) A Drosophila melanogaster cell line lacking centrioles. Biol. Cell. 44: 133-138.

104. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc. Natl. Acad. Sci. USA. 78: 5608-5612.

105. Deery W.J., Brinkley. (1983) Cytoplasmic microtubule assembly-disassembly from endogenous tubulin in aBrij-lysed cell model. J. Cell Biol. 96: 1631.

106. DeGraan P.N.E., Molenaar R., van de Veerdonk F.C.G. (1983) A new in vitro melanophore bioassay for MSH using tail-fins of Xenopus tadpoles. Mol. Cell Endocrinol. 32: 271-284.

107. Desai A., Mitchison T.J. (1995) A new role for motor proteins as couplers to depolymerizing microtubules. J. Cell Biol. 128: 1-4.

108. Dhamodharan R., Jordan M.A., Thrower D , Wilson L., Wadsworth P. (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol. Biol. Cell. 6: 1215-1229.

109. Dirksen E.R. (1991) Centriole and basal body formation during ciliogenesis revisited. Biol. Cell. 72: 31-38.

110. Doane K.J., Roisen F.J. Wilson F.J. (1992) The effect of nerve growth factor and dibutyryl cyclic AMP on cytoskeletal densities in cultured sensory ganglia. Tissue Cell. 24: 367-378.

111. Doxsey S.J., Stein P., Evans L., Calarco P.D., Kirscher M. (1994) Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell. 76: 639-650.

112. Du Shane G.P. (1935) An experimental study on the origin of pigment cells in amphibian. J. Exp. Zool.

113. Eckert B.S., Daley R.A., Parysek L.M. (1982) Assembly of keratin onto PtKl cytoskeletons: evidence for an intermediate filament organizing center. J. Cell Biol. 92: 575.

114. Eckert B.S. (1986) Alteration of the distribution of intemediate filaments in PtKl cells by acrilamide II: Effect on the organization of cytoplasmic organells. Cell Motil. Cytoskel. 6: 15-24.

115. Erickson H.P., Stoffler D. (1996) protofilaments and ring, two conformations of the tubulin family conserved from bacterila FtsZ to alpha/beta and gamma tubulin. J. Cell Biol. 135: 5-8.

116. Espreafico E.M., Coling D.E., Tsakraklides V., Krogh K, Wolenski J.S., Kalinec G., Kachar B. (1998) Localization of myosin-V in the centrosome. Proc. Natl. Acad. Sci USA. 95: 8636-8641.

117. Euteneuer U., Jachson W.T., (1982) Mcintosh J.R. Polarity of spindle microtubules in Haemanthus endosperm. J. Cell Biol. 94: 644.

118. Euteneuer U., Mcintosh J.R. (1980) Polarity of midbody and phragmoplast microtubules. J. Cell Biol. 87: 509-515.

119. Euteneuer U., Mcintosh J.R. (1981) Structural polarity of kinetochore microtubules in PtKl cells. J. Cell Biol. 89: 338.

120. Euteneuer U., Schliwa M. (1992) Mechanism of the centrosome positioning during the wound response in BSC-1 cells. J. Cell Biol. 116: 1157-1166.

121. Evans L., Mitchison T., Kirschner M. (1985) Influence of the centrosome on the structure of nucleated microtubules. J. Cell Biol.

122. Farrell K.W., Jordan M.A., Miller H., Wilson L. (1987) Phase dynamics at microtubule ends: the coexistence of microtubule length changes and treadmilling. J. Cell Biol. 104: 10351046.

123. Felix M.-A., Antony C., Wright M., Maro B. (1994) Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation. J. Cell Biol. 124: 19-31.

124. Fijiwara K., Pollard T.D. (1978) Simultaneous localization of myosin tissue culture cells by double antibody staining. J. Cell Biol. 77: 182.

125. Fingerman M., Fingerman S.M., Lambert D.T. (1975) Colchicine, cytochalasin B and pigment movements in ovarian and integumentary erythrophores of the prawn Palaemonetes vulgaris. Biol. Bull. 149: 165-167.

126. Fisher M., Lyerla T.A. (1973) The effect of Cytochalasin B on pigment dispersion and aggrigation in perfused Xenopus laevis tailfin melanophores. J. Cell Biol. 83: 117-130.

127. Fitzgerald T.J., Veal A. (1975) Melatonin antagonizes colchicineOinduced mitotic arrest. Experientia. 32: 372-373.

128. Fitzpatrich T.B., Quevedo W.C., Levene A.L., McGovern V.J., Mishima S., Oette A.G. (1966) Terminology of vertebrate melanin-containing cells. Science. 152: 88.

129. Fleury A., Le Guyader H., Iftode F., Laurent M., Bornens M. (1993) A scaffold for basal body patterning revealed by monoclonal antibody in the hypotrich ciliate Paraurostyla weissei. Devel. Biol., 157: 285-302.

130. Franke W.W. (1971) Cytoplasmic microtubules linked to endiplasmic reticulum with cross-bridges. Exp. Cell. Res. 66: 486-489.

131. Fujii R. (1993) Cytophysiology of fish chromatophores. Int. Rev Cytol. 143: 191-255. Fukuzawa T., Ide H. (1983) Prolifiration in vitro of melanophores from Xenopus laevis. J. Exp. Zool. 226: 239-244.

132. Fuller M.T. (1995) Riding the polar winds: chromosomes motor down east. Cell.81: 5-8. Fuller G.M., Artus C.S., Ellison J.J. (1976) Calcium as a regulator of cytoplasmic microtubules assembly and disassembly. J. Cell Biol. 70: 68a.

133. Fuller S.D., Gowen B.E., Reinsch S., Sawyer A., Buendia B., Wepf R., Karsenti E. (1995) The core of the mammalian centriole contains gamma-tubulin. Curr. Biol. 5: 1384-1393.

134. Fulton C., Centrioles. Origin and countinuity of cell organells. Ed. By J. Reinert, H. Uspring. Berlin: Springer Verlag, New York, Heidelberg, 1971, pp. 170-221.

135. Funakoshi T., Takeda S., Hirokawa N. (1996) Active transport of photoactivated tubulin molecules in growing axons revealed by a new electron microscopic analysis. J. Cell Biol. 133: 1347-1353.

136. Gaglio T., Saredi A., Bingham J.B., Hasbani M.J., Gill S.R., Schroer T.A., Compton D A. (1996) Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J. Cell Biol. 135: 399-414.

137. Gard D.L., Hafezi S., Zhang T., Doxsey S.J. (1990) Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Cell Biol. 110: 2033-2042.

138. Gelfand V.I. Bershadsky A.D. (1991) Microtubule dinamics: mechanizm, regulation, and function. Annu. Rev. Cell Biol. 7: 93-116.

139. Gelfand V.I., Scholey J.M. (1992) Every motion has its motor. Nature. 359: 480-482.

140. Ghosh S., Paweletz N. (1993) Mitosis: dissociability of its events. Int. Rev. Cytol. 144: 217-258.

141. Giansanti M.G., Bonaccorsi S., Williams B., Williams E.V., Santolamazza C., Goldberg M.L., Gatti M. (1998) Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes Develop. 12: 396-410.

142. Glover D.M. Ohkura H., Tavares A. (1996) Polo kinase: the choreographer of the mitotic stage? J. Cell Biol. 135: 1681-1684.

143. Goldstein L.S.B. (1993) Functional redundancy in mitotic force generation. J. Cell Biol. 120: 1-3.

144. Gordon S.R., Buxar R. (1997) Inhibition of cytoskeletal reorganization stimulates actin synthesis during injury-induced cell migration in the corneal epithelium. J. Cell Biochem. 67: 409-421.

145. Gotlieb A.I., McBurnie May L., Subrahmanyan L., Kalnins V.I. (1981) Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J. Cell Biol. 91: 589-594.

146. Gould R.R., Bority G.G. (1977) The pericentriolar material in Chinese hamster ovary cells nucleate microtubule formation. J. Cell Biol. 73: 601-615.

147. Gudima G.O., Vorovjev I.A., Chentsov Yu.S. (1988) Centriolar localization during blood cell spreading and motion in vitro: An ultrastructural analysis. J. Cell Sci. 89: 225-241.

148. Gueth-Hallonet C., Antony C., Aghion J., santa-Maria A., Lajoie-Mazenc I., Wright M., Maro B. (1993) y-tubulin is present in acentriolar MTOCs during early mouse development. J.Cell Sci. 105: 157-166.

149. Gundersen G.G., Bulinski J.C. (1988) Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl. Acad. Sci. USA.85: 5946-5950.

150. Gurland G., Gundersen G.G. (1995) Stable, detyrosinated microtubules function to localize vimentin intermediated filaments in fibroblasts. J. Cell Biol. 131: 1275-1290.

151. Gyoeva F.L., Gelfand V.I. (1991) Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature. 353: 445-448.

152. Hamm-Alvarez S.F., Prieto J., Gierow J.P., Yang T., Bekmezian A., Walker R.A., Mircheff A.K. (1994) Kinezin is localized to endosomal and secretory membranes in acinar cells. Mol. Cell Biol. 5: 31a.

153. Hardham A.R., Gunning B.E.S. (1978) Structure of cortical microtubule arrays in plant cells. J. Cell Biol. 77: 14-34.

154. Harris P., Osborn M., Weber K. (1980) Distribution of tubulin-containing structures in the egg of sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage. J. Cell Biol. 84: 668-679.

155. Hayden J.H., Allen R.D. (1984) Detection of single microtubules, in living cells: particle transport can occur in both directions along the same microtubule. J.Cell Biol. 99: 1785-1793.

156. Hays T.S., Salmon E.D. (1986) The stabilization of microtubules in isolated spindles by tubulin-colchicine complex. Cell Motil. Cytoskel. 6: 282-290.

157. Heald R., Tournebize R., Blank T., Sandaltzopoulos R., Becker P., Hyman A., Karsenti E. (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature. 382: 420-425.

158. Heald R., Tournebize R., Habermann A., Karsenti E., Hyman A. (1997) Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138: 615-628.

159. Heggeness M.H., Simon M., Singer S.J. (1978) association of mitochondria with microtubules in cultured cells. Proc. Natl. Sci. USA. 75: 3863-3866.

160. Heidelmann S.R., Mcintosh J.R. (1980) Visualization of the structure polarity of microtubules. Nature (Lond.) 286: 517-519.

161. Heinemann R., Shelanki ML., Liem R.K.H. (1985) Microtubule-assotiated proteins bind specifically to the 70 kDa nerofilament protein. J. Biol. Chem. 260: 12160-12166.

162. Hirokawa N. (1994) Microtubule organization and dynamics depend on microtubule-associated proteins. Curr. Opin. Cell Biol. 6: 74-81.

163. Hirokawa N., Noda Y., Okada Y. (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10: 60-73.

164. Ho W.C., Allan V.J., van Meer J., Berger E.G., Kreis T.E. (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur. J. Cell Biol. 48: 250-263.

165. Hogben L., Slome D. (1931) The pigmentary effector system. The duel character of endocrine coordination in amphibian color change. Proc. Roy. Soc. London B. 108: 10.

166. Horio T., Hotani H. (1986) Vizualization of the dynamic instability of individual microtubules by darkOfield microscopy. Nature. 321: 605-607.

167. Horio T., Uzawa S., Jung M.K., Oakley B.R., Tanaka K., Yanagida M. (1991) The fission yeast y-tubulin is essential for mitosis and is localized at microtubule-organizing centers. J. Cell Sci. 99: 693-700.

168. Hoyt M.A. (1994) Cellular roles of kinesin and related proteins. Curr. Biol. 6: 63-68.

169. Hsu L.-C., White R. (1998) BSCA1 is associated with the centrosome during mitosis. Proc. Natl. Acad. USA. 95: 12983-12988.

170. Huchon H., Jessus C., Thibier C., Ozon R. (1988) Presence of microtubules in isolated cortices of prophase I and metaphase II oocytes in Xenopus laevis. Cell Tissue Res. 254: 415-420.

171. Hunt C., Stebbings H. (1994) Role of MAPs and motors in the bundling and shimmering of native microtubules from insect ovarioles. Cell Motil. Cytoskel. 27: 69-78.

172. Jande S.S. (1966) Fine stricture of tadpole melanophores. Anat. Res. 154: 533.

173. Jensen C.G. (1982) Dinamics of spindle microtubule organization: kinetochore fiber microtubules of plant endosperm. J. Cell Biol. 92: 540.

174. Johnson K.A., Rorter M.E., Shimizu T. (1984) Mechanism of force production for microtubule-dependent movements. J. Cell Biol. 99: 132.

175. Joshi H.C. (1994) Microtubule-organizing centers and y-tubulin. Curr. Opin. Cell Biol. 6: 54-62.

176. Joshi H.C. (1998) Microtubule dynamics in living cells. Curr. Opin. Cell Biol. 10: 35-44.

177. Joshi H.C., Baas P.W. (1993) A new perspective on microtubules and axon growth. J. Cell Biol. 121: 1191-1196.

178. Joshi H.C., Palacios M.J., McNamara L., Cleveland D.W. (1992) y-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 356: 8083.

179. Julian M., Tollon Y., Lajoie-Mazenc I., Moisand A., Mazarguil H., Puget A., Wright M. (1993) Gamma-tubulin participates in the formation of the midbody during cytokinesis in mammalian cells. J. Cell Sci. 105: 145-156.

180. Kalinins V.I., Rogers K.A. (1992) The centrosome in stationay and migrating endothelial cells. In: The Centrosome. V. I. Kalnins, ed., Academic Press, San Diego, CA. pp. 287-312.

181. Kalt A., SchliwaM. (1993) Molecular components of the centrosome. Trends Cell Biol. 3: 118-128.

182. Karsenti E., Newport J., Kirschner M. (1984) Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol. 99: 47-54.

183. Keating T.J., Peloquin J.G., Rodionov V.I., Momcilovic D., Borisy G.G. (1997) Microtubule release from the centrosome. Proc. Natl. Acad. Sci. USA. 94: 5078-5083.

184. Kellog D R., Field C.M., Alberts B.M. (1989) Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo. J. Cell Biol. 109: 2977.

185. Kellog D.E., Moritz M., Alberts B.M. (1994) The centrosome and cellular organization. Annu. Rev. Biochem. 63: 639-374.

186. Keryer G., Ris H., Borisy G.G. (1984) Centriole distribution during tripolar mitosis in Chinese hamster ovary cells. J. Cell Biol. 98: 2222-2229.

187. Keryer G., Rios R.M., Landmark B.F., Skalhegg B., Lohmann S., Bornens M. (1993) A high-affinity binding protein for the regulatory subunit of cAMP-dependent protein kinase II in the centrosome of human cells. Exp. Cell Res. 204: 230-240.

188. Khawaja S., Gundersen G.G., Bulinski J.C. (1988) Enhanced stabilization of microtubules enriched in detyrosinated tubulin is not direct function of detyrosination. J. Cell Biol. 106: 141150.

189. Khodjakov A., Lizunova E.M., Minin A. A., Koonce M.P., Gyoeva F.K. (1998) A specific light chain of kinesin associates with mitochondria in cultured cells. Molec. Biol., Cell. 9: 333343.

190. Khodjakov A., Gabashvili I.S., Rieder C.L. (1999) "Dumb" versus "smart" kinetochore models for chromosome congression during mitosis in vertebrate somatic cells. Cell Motil. Cytoskel. in press.

191. Khodjakov A., Rieder C.L. (1999) The sudden recruitment of y-tubulin to the centrosome at the onset of mitosis, and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol, in press.

192. Kimble M., Kuriyama R. (1992) Functional components of microtubule-organizing centers. Int. Rev. Cytol. 136: 1-50.

193. King-Smith C., Paz P., Burnside B. (1994) Pigment granule transport is isolated retinal pigmented epithelial (RPE) cells does not require microtubules, but is blocked by cytochalasin. Mol. Biol. Cell. 5: 41a.

194. King-Smith C., Chen P., Garcia D., Rey H., Burnside B. (1996) Calcium-independent regulation of pigment granule aggregation and dispersion in teleost retinal pigment epithelial cells. J. Cell Sci. 109: 33-43.

195. Kippenberger S., Bernd A., Bereiter-Hahn J., Ramirez-Bosca A., Kaufmann R. (1997) Melanocytes in vitro: how do they undergo mitosis? Pigment Cell Res., 10: 85-87.

196. Kirscher M.W. (1978) Microtubule assembly and nucleation. Int. Rev. Cytol. 54: 1-71.

197. Kirschner M., Mitchison T. (1986) Beyond self-assembly: From microtubules to morphogenesis. Cell. 45: 329-342.

198. Knop M., Schiebel E. (1997) Spc97p and Spc98p of the yeast y-tubulin complex mediate binding to the spindle pole body via their interaction with SpcllOp. EMBO (Eur. Mol. Biol. Organ.) J. 16: 6985-6995.

199. Komarova Yu.A., Vorobjev I. A. (1994) Fine structure of the cell center insmall intenstine enterocytes of mouse embryos and newborn mice. Ontogene. 25; 76-88.

200. Komesli S., Tournier F., Paintrand M., Margolis R.L., Job D., Bornens M. (1989) Mass isolation of calf thymus centrosomes: identification of a specific configuration. J. Cell Biol. 109: 2869-2878.

201. Kondo H., Ide H. (1983) Long-term cultivation of amphibian melanophores. In vitro agening and spontaneous transformation to a continuous cell line. Exp. Cell Res. 149: 247-256.

202. Koonce M.P., Schliwa M. (1985) Bidirectional organelle transport can occur in cell processes that contain single microtubules. J. Cell Biol. 100: 322.

203. Koshland D. (1994) Mitosis: back to the basics. Cell. 77: 951-954.

204. Kreis T.E. (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 6: 2597-2606.

205. Kotz K.J., McNiven M.A. (1994) Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores. J. Cell Biol. 124: 463-474.

206. Kreis T.E., Allan V.J., Matteoni R., Ho W.C. (1988) Interaction of elements of the Golgi apparatus with microtubules. Protoplasma. 145: 153-159.

207. Krioutchkova M.M., Onishchenko G.E. (1999) Structural and functional characteristics of the centrosome in gametogenesis and early embryogenesis of animals. Int. Rev Cytol. 185:107155.

208. Kuriyama R., Borisy G.G. (1981) Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J. Cell Biol. 91: 822-826.

209. Malawista S.E. (1971a) The melanocyte model. Colchicine-like effects of other antimitotic agents. J. Cell Biol. 49: 848.

210. Malawista S.E. (1971b) Cytochalasin B reversibly inhibits melanin granule movement in melanocytes. Nature. 234: 354.

211. Manandhar G., Onishchenko G.E. (1995) Centriolar cycle of fused cells. J. Cell Sci. 108. 667-673.

212. Mandelkow E-M., Lange G., Jagla A., Spann U., Mandelkow E. (1988) Dinamics of the microtubule oscillator: role of nucleotides and tubulin-MAP interactions. J. EMBO J. 7: 357.

213. Mandelkow E-M., Mandelkow E., Milligan R.A. (1991) Microtubule dinamics and microtubule caps: a time resolved cryo-electron microscopy study. J. Cell Biol. 114: 977-991.

214. Mandelkow E., Mandelkow E.-M. (1994) Microtubule structure. Curr. Opin. Struct. Biol. 4: 171-179.

215. Mandeville E.C., C.L. Rieder. (1990) Keratin filaments restrict organelle migration into the forming spindle of newt pneumocytes. Cell Motil. Cytoskel. 15: 111-120.

216. Maniotis A., Schliwa M. (1991) Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell. 67: 495-504.

217. Marco M., Leith A., Parsons D. (1988) Three-dimensional reconstruction of cells from serial sections and whole-cell mounts using multilevel contouring of stereo micrographs. J. Electron Microscopy Technique. 9: 393-411.

218. Marco M., Leith A. (1996) Sterecon three-dimensional reconstruction from stereoscopic contouring. J. Struct. Biol. 116: 93-98.

219. Maro B., Howie S.K., Webb M. (1985) Non-spindle MTOCs in metaphase II-arrested mouse oocytes. J. CellBiol. 101: 1665-1672.

220. Marschall L.G., Jeng R.L., Mulholland J., Stearns T. (1996) Analysis of Tub4p, y-tubulin-like protein: implication for microtubule-organizing center function. J. Cell Biol. 134: 443-454.

221. Martin O.C., Gunawardane R.N. Iwamatsu A., Zheng Y. (1998) Xgrip 109: a y-tubulin-associated protein with an essential role in gammatubulin ring complex (y-TuRC) assembly and centrosome function. J. Cell Biol. 141: 675-687.

222. Mayerson P.L., Brumbaugh J.A. (1981) Lavender, a chick melanocyte mutant with defective melanosome translocation: a possible role for lOnm filaments and microfilaments but not microtububules. J. Cell Sci. 51: 25-51.

223. Mays R.W., Beck K.A., Nelson W.J. (1994) Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery. Curr. Opin. Cell Biol. 6: 16-24.

224. Mazia D., Harris P.J., Bibring T.(1960) The multiplicity of mitotic centers and the time-course of their duplication and separation. J.Biophys.Cytol., 7:1-20.

225. Mazia D., Paweletz N., Sluder G., Finze E.M. (1981) Cooperation of kinetochores and pole in the establishment of monopolar mitotic apparatus. Proc. Natl. Acad. Sci. USA. 78: 377-381.

226. Mazia D. (1984) Centrosomes and mitotic poles. Exp. Cell Res. 153: 1-15.

227. Mazia D. (1987) The chromosome cycle and the centrosome cycle in the mitotic cycle. Int. Rev. Cytol. 100: 49-92.

228. McGill M., Brinkley B.R. (1975) Human chromosomes and centrioles as nucleating sites for the in vitro assembly of microtubules from bovine brain tubulin. J. Cell Biol. 67: 189-199.

229. Mcintosh J.R. (1983) The centrosome as an organizer of the cytoskeleton. Modern Cell Biology/Spatial Organization ofEukaryotic Cells. J.R. Mcintosh editor. A symposium in honor of K.R.Porter. 2: 115-142.

230. Mcintosh J.R., McDonald K.L., Edwards M.K., Ross B.M. (1979) Three-dimensional structure of the central mitotic spindle of Diatoma vulgare. J. Cell Biol. 83: 428.

231. Mcintosh J.R., Pfarr C.M. (1991) Mitotic motors. J. Cell Biol. 115: 577-585.

232. McNiven M.A., Porter K.R. (1984) Chromatophores models for studying cytomatrix translocations. J. Cell Biol. 99:152-157.

233. McNiven M.A., Wang M., Porter K.R. (1984) Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically served melanophore arms. Cell., 37:753765.

234. McNiven M.A., Porter K.R. (1986) Microtubule polarity confers direction to pigment transport in chromatophores. J. Cell Biol. 103: 1546.

235. McNiven M.A., Porter K.R. (1988) Organization of microtubules in centrosome-free cytoplasm. J. Cell Biol. 106: 1593-1605.

236. McNiven M.A., Ward J.B. (1988) Calcium regulation of pigment transport in vivo. J. Cell Biol. 106: 111-125.

237. McNiven M.A., Porter K.R. (1992) The centrosome: contributions to cell form. In: The Centrosome. Kalnins V.G., Acad. Press (Ed.), San Diego, CA, pp. 313-329.

238. Merdes A., Cleveland (1997) Pathways of spindle formation: different mechanisms; conserved components. J. Cell Biol. 138: 953-956.

239. Mignot J.P., Brugerolle G., Didier P., Bornens M. (1993) Basal-body-associated macromolecules: a continuing debate. Trends Cell Biol. 3: 220-223.

240. Miller K.E., Joshi H.C. (1996) Tubulin transport in neurons. J. Cell Biol. 133: 1355-1366.

241. Miller M., Solomon F. (1984) Kinetics and intermediates of marginal band reformation: evidence for peripheral determinants of microtubule organization. J. Cell Biol. 99:70.

242. Minin A.A. (1997) Dispersal of Golgi apparatus in nocodazole-treated fibroblasts is a kinesin-driven process. J. Cell Sci. 110: 2495-2505.

243. Mitchison T. (1992) Self organization of polymer-motor system in the cytoskeleton. Phil. Trans. R. Soc. Lond. 336: 99-106.

244. Mitchison T. (1993) Localization of an exchangeable GTP binding site at the plus end of microtubules. Science. 261: 1044-1047.

245. Mitchison T., Kirschner M. (1984) Microtubule assembly nucleated by isolated centrosomes. Nature. 312: 232-236.

246. Montejo de Garcini E., de la Luna S., Domingues J.E. Avila J. (1994) Overexpression of tau protein in COS-1 cells results in the stabilization of centrosome-independent microtubules and extension of cytoplasmic processes. Mol. Cell Biol. 130: 187-196.

247. Morris R.L., Hollenbeck P.J. (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell Biol. 1315-1326.

248. Moritz M., Braunfeld MB., Sedat J.W., Alberts B., Agard D.A. (1995) Microtubule nucleation by y-tubulin-containing rings in the centrosome. Nature.378: 638-640.

249. Moritz M., Zheng B.M., Alberts B.M., Oegema K. (1998) Recruitment of the y-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142: 775-786.

250. Moskvin-Tarkhanov M.I., Onishchenko G.E. (1978) Centrioles in megakaryocytes of mouse bone marrow. Cytology. 20: 1436-1440.

251. Moudjou M., Lanotte M., Bornens M. (1989) The fate of the centrosome-microtubule network in monocyte-derived giant cells. J. Cell Sci. 94: 237-244.

252. Moudjou M., Bornens M. (1994) Isolation of centrosomes from cultured animal cells. In: Cell Biology: A Laboratory Handbook. Academic Press, Inc. Pp. 595-604.

253. Moudjou M., Bordes N., Paintrand M., Bornens M. (1996) Gamma-tubulin in mammalian cells: the centrosomal and cytosolic forms. J. Cell Sci. 109: 875-887.

254. Muresan V., Joshi H.C., Besharse J.C. (1993) y-tubulin in differentiated cell type: localization in the vicinity of basal bodies in retinal photoreceptors and ciliated epithelia. J. Cell Sci. 104: 1229-1237.

255. Muresan V., Godek C.P., Reese T.S., Schnapp B.J. (1996) Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules. J. Cell Biol. J. Cell Biol. 135: 383-397.

256. Murphy D.B., Tilney L.G. (1974) The role of microtubules in the movement of pigment granules in melanophores. J. Cell Biol. 61: 757-779.

257. Murphy S.M., Urbani L., Stearn T. (1998) The mammalian y-tubulin complex contains homologues of the yeast spindle pole body components Spc97p and Spc98p. J. Cell Biol. 141: 663-674.

258. Nangaku M., Sato-Yoshitake R., Okada Y., Noda Y., Takemura R., Yamazaki H , Hirikawa N. (1994) KIF1B: a new monomeric anterograde motor for mitochondrial transport. Mol. Biol. Cell. 5: 33a.

259. Negishi S. (1985) Light response of cultured melanophores of a teleost adult fish, Oryzias latipes. J. Exp. Zool. 236: 327-333.

260. NicklasR.B. (1997) How cells get the right chromosomes. Science.275: 632-637.

261. Niclas J., Allan V.J., Vale R.D. (1996) Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport. J. Cell Biol. 133: 585- 593.

262. Nieuwkoop P.D., Faber J., Normal table of Xenopus laevis (Dandin). Amsterdam: North-Holland, Publ. Co., 1956, p. 243.

263. Nigg E.A. (1998) Polo-kinase: positive regulators of cell division from start to finish. Curr. Opin. Cell Biol. 10: 776-783.

264. Nilsson H., Rutberg M., Wallin M. (1996) Localization of kinesin and cytoplasmic dynein in cultured melanophores from Atlantic cod, Gadus morhua. Cell Motil. Cytoskel. 33: 183-196.

265. Nilsson H., Wallin M. (1997) Evidence for several roles of dynein in pigment transport in melanophores. Cell Motil. Cytoskel. 38: 397-409.

266. Nilsson H., Wallin M. (1998) Microtubule aster formation by dynein-dependent organelle transport. Cell Motil. Cytoskel. 41: 254-263.

267. Oakley B.R. (1992) y-tubulin: the microtubule organizer? Trends Cell Biol. 2: 1-5.

268. Oakley B.R. (1995) A nice ring to the centrosome. Nature. 378: 555.

269. Oakley C.E., Oakley B.R. (1989) Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergilus nidulans. Nature. 338: 662-664.

270. Oakley B.R., Oakley C.E., Yoon Y., Jung M.K. (1990) y-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergilus nidulans. Cell. 61: 1289-1301.

271. Obika M. (1975) The changes in the cell shape during pigment migration in melanophores of a teleost, Oryzias latipes. J. Exp. Zool. 191: 427-432.

272. Obika M., Turner W.A., Negishi J.S., Menter D.G., Tchen T.T., Taylor J.D. (1978) The effect of luminocolchicine, colchicine and vinblastine on pigment migration in fish chromatophores. J. Exp. Zool. 205: 95-110.

273. Obika M., Negishi S. (1985) Effects of hexilene glycol and nocodazole on microtubules and melanosome translocation in melanophores of the medaka Oryzias latipes. J. Exp. Zool. 235: 55-63.

274. Obika M., Meyer-Rochow V.B. (1990) Dermal and epidermal chromatophores of the Antarctic teleost Trematomus bernacchii. Pigment Cell Res. 3: 33-37.

275. Obika M., Fukuzawa T. (1993) Cytoskeletal architecture of dermal chromatophores of the freshwater teleost Oryzias latipes. Pigment Cell Res. 6: 417-422.

276. Oegema K., Whitfield W.G.F., Alberts B. (1995) The cell cycle-dependent localization of the CP 190 centrosomal protein is determined by the coordinate action of two separate domains. J. Cell Biol. 131: 1261-1273.

277. Oegema K., Wiese C., Martin O.C., Iwamatsu A., Mitchison T.J., Zheng Y. (1999) Characterization of two related Drosophila y-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144: 721-733.

278. Ohba T., Nakamura M., Nishitani H., Nishimoto. (1999) Self-organization of microtubule asters induced inXenopus egg extracts by GTP-bound Ran. Science. 284: 1356-1358.

279. Okabe S., Hirokawa N. (1993) Do photobleached fluorescent microtubules move?: Reevaluation of fluorescence laser photobleaching both in vztro and in growing Xenopus axon. J. Cell Biol. 120: 1177-1186.

280. Olmsted J.B., Cox J.V., Asnes C.F., Parysek L.M., Lyon H.D. (1984) Cellular regulation of microtubule organization. J. Cell Biol. 99: 28.

281. Onishchenko G.E. (1978) On the consistence between the number of centrioles and the ploidy in hepatocytes in the mouse liver. Tsitologiya. 20: 395-399.

282. Onishchenko G.E., Bystrevskaya V.B., Chentsov Yu.S. (1979). Multipolar mitosis of culture cells in normal and under experimental induction with 2-mercaptoethanol. Dokl. Akad. Nauk SSSR., 248:1443-1446.

283. Onishchenko G.E., Chentsov Yu.S. (1986) The structure of the centriolar complex in hepatocytes of intact and regenirating mouse liver. Tsitologiya., 4:403-407.

284. Onishchenko G.E., Petrashchuk O.M. (1994) The centriolar complex of heterophasic homokaryons in interphase and mitosis. Tsitologia., 36:1192-1199.

285. Oshima N., Inagak H., Manabe T. (1990) Evidence for invovlement of dynein-tubulin system in pigment aggregation within tilapia melanophores. Comp. Biochem. Physiol. 4: 517523.

286. Owellen R.J., Hartke C.A., Dickerson R.M., Hains F.O. (1976) Inhibition of tubulin-microtubule polymerization by drugs of the Vinca alkaloid class. Cancer Res. 36: 1499-1502.

287. Paintrand M., Moudjou M., Delacroix H., Bornens M. (1992) Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108: 107-128.

288. Palacios M.P., Joshi H.C., Simerly C., Schatten G. (1993) Dynamic reorganization of y-tubulin during mouse fertilization and early mouse development. J. Cell Sci. 104: 383-389.

289. Paoletti A., Giocanti N., Favaudon V., Bornens M. (1997) Pulse treatment of interphase HeLa cells with nanomolar doses of docetaxel affects centrosome organization and leads to catastrophic exit of mitosis. J. Cell Sci. 110: 2403-24165.

290. Patil S., Jain A.K. (1996) Effects of colchicine and nocodazole on adrenaline induced melanosome aggregation within Labeo melanophores. Natl. Acad.Sci.Lett. India. 19: 162-166.

291. Pehlemann F.-W. (1967) Der morphologische farbwechsel von Xenopus laevis larven. Zeitschrift fur Zellforschung. 78: 484-510.

292. Pehlemann F.-W. (1973) Regulation of differentiation and cell division of melanophores in Xenopus laevis larvae. In: Pigmentation. It's genesis and biological control. N.Y.P: Appleton -Century Crofts., pp.,295-305.

293. Pereira G., Schiebel E. (1997) Centrosome-microtubule nucleation. J.Cell Biol. 110: 295300.

294. Perret E., Moudjou M., Geraud M.L., Derancourt J., Soyer-Gobillard M.-O., Bornens M. (1995) Identification of an HSP70-related protein associated with the centrosome from dinoflagellates to human cells. J. Cell Sci. 108: 721-725.

295. Peterson S.P., Berns M.W. (1979) Mitosis in flak PtK2 human hybrid cell. Exp.Cell Res., 120: 223-236.

296. Petrashchuk O.M., Onishchenko G.E. (1988) Distinctions in mitotic apparatus ultrastructure during cytochalasin B action. Tsitologia., 30: 1418-1425.

297. Pihan G.A., Purohit A., Wallance J., Knecht H., Woda B., Quesenberry P., Doxsey S.J. (1998) Centrosome defects and genetic instability in malignant tumors. Canser Res. 58: 39743985.

298. Piperno G., LeDizet M., Chang X.J. (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 104: 289-302.

299. Poffenbarger M., Fuller G.M. (1976) Is melatonin a microtubule inhibitor? Exp. Cell. Res. 103: 135-141.

300. Porta G. (1980) Recent advances in the chemistry of melanogenesis in mammals. J. Invest. Derm. 75: 122-127.

301. Porter K.R., McNiven M.A. (1982) The cytoplast: a unit structure in chromatophores. Cell. 29: 23-32.

302. Raes M. (1991) Involvement of microtubules in modifications assotiated with cellular aging. Mutation Res. 256: 149-168.

303. Raff J.W., Kellogg R., Alberts B.M. (1993) Drosophila y-tubulin is part of a complex containing two previously identified centrosomal MAPs. J. Cell Biol. 121: 823-835.

304. Raff J.W. (1996) Centrosome and microtubules: wedded with a ring. Trends Cell Biol. 6: 248-251.

305. Rattner J.B. (1992) Ultrastructure of centrosome domains and identification of their protein components. Kalnins V.G., Acad. Press. (Ed.). In: The centrosome. pp. 45-67.

306. Rattner J.B., Phillips S.G. (1973) Independence of centriole formation and DNA synthesis. J. Cell Biol. 57: 359-372.

307. Rieder C.L. (1979) Ribonucleoprotein staining of centrioles and kinetochores in newt lung cell spindles. J. Cell Biol. 80: 1-9.

308. Rieder C.L. (1997) Mitosis and checkpoints that control progression through mitosis in vertebrate somatic cells. In: Progress in Cell Cycle Research. Meijer L., Guidet S., Philippe M., eds., Plenum Press, new York, USA. 3: 301-312.

309. Rieder C.L. Borisy G.G. (1982) The centrosome cycle in PtK2 cells: asymmetric distribution and structural change in the pericentriolar material. Biol. Cell. 44: 117-132.

310. Rieder C.L., Khodjakov A., Paliulis L.V., Fortier T.M., Cole R.W., Sluder G. (1997) Mitosis in vertebrate somatic cells with two spindles: implication for the metaphase/anaphase transition checkpoint and cleavage. Proc. Natl. Acad. USA. 94: 5107-5112.

311. Rickards G.K. (1975) Prophase chromosome movements in living house crichet spermatocytes and their relation to prometaphase, anaphase, and granule movements. Chromosoma. 49: 407.

312. Ring D., Hubble R., Kirschner M. (1982) Mitosis in a cell with multiple centrioles. J. Cell Biol. 94: 549-556.

313. Robbins E., Jentzsch G., Micali A. (1968) The centriole cycle in synchronized HeLa cells. J. Cell Biol. 36: 329-339.

314. Robison W.G., Charlton J.S. (1973) Microtubules, microfilaments and pigment granule movement in the chromatophores of Palaemonetes vulgaris (Crustacea). J. Exp. Zool. 186: 279304.

315. Rodionov V.I., Gyoeva F.K., Gelfand V.I. (1991) Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proc. Natl. Acad. Sci. USA. 88: 4956-4960.

316. Rodionov V.I., Gyoeva F.K., Tanaka E., Bershadsky A.D., Vasiliev J.M., Gelfand V.I. (1993) Microtubule-dependent control of the cell shape and pseudopodila activity is inhibited by the antibody to kinesin motor domain. J. Cell Biol. 123: 1811-1820.

317. Rodionov V.I., Borisy G.G. (1994) Self activity of the cytoplasm. Molecular Biology of the Cell. The American Society for Cell Biology. 34 Annual Meeting., P.44 (Abstract).

318. Rodionov V.l., Lim S.S., Gelfand V.l., Borisy G.G. (1994) Microtubule dynamics in fish melanophores. J. Cell Biol. 126: 1455-1464.

319. Rodionov V.l., Borisy G.G. (1997) Microtubule treadmilling in vivo. Science. 275: 215218.

320. Rodionov V.l., Borisy. (1998) Self-centering in cytoplasmic fragments of melanophores. Mol. Biol. Cell. 9: 1613-1615.

321. Rodionov V., Nadezhdina E., Borisy G.G. (1999) Centrosomal control of microtubule dynaimcs. Proc. Natl. Acad. Sei. USA. 96: 115-120.

322. Rogers S.I., Karcher R., Gelfand V.l. (1998) Cell cycle regulation of myosin-based organelle transport in vitro. Mol. Biol. Cell. 9: 406a.

323. Rogers R.A., Mckee N.H., Kalinins V.l. (1985) Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment. Proc. Natl. Acad. Sei. USA. 82: 3272-3276.

324. Rogers S.L., Tint I.S., Fanapour P.C., Gelfand V.l. (1997) Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proc. Natl. Acad. Sei. USA. 94: 3720-3725.

325. Rollag M.D., Adelman M.R. (1993) Actin and tubulin arrays in cultured Xenopus melanophores responding to melatonin. Pigment Cell Res. 6: 365-371.

326. Rozdzial M.M., Haimo L.T. (1986a) Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell., 47:10611070.

327. Rozdzial M.M., Haimo L.T. (1986b) Reactivated melanophore motility: differential regulation and nucleotide requirements of bidirectional pigment granule transport. J. Cell Biol. 103: 2755-2764.

328. Sammak P.J., Gorbsky G.J., Borisy G.G. (1987) Microtubule dynamics in vivo: a test of mechanisms of turnover. J. Cell Biol. 104: 395-405.

329. Sammak P.J., Borisy G.G. (1988) Detection of single fluorescent microtubules and methods for determining their dynamics in living cells. Cell Motil. Cytoskelet. 10: 237-245.

330. Sammak P J., Adams S. R., Harootunian A.T., Schliwa M„ Tsien R.Y. (1992) Intracellular cyclic AMP, not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescent ration imaging. J. Cell Biol. 117: 57-72.

331. Sanders M.A., Salisbury J.L. (1994) Centrin plays an essential role in microtuble severing during flagellar excision in Chlamydomonas reinhardtii. J. Cell Biol. 124: 795-805.

332. Sandoval I.V., Bonifacino J.S., Klausner R.D., Henkart M„ Wehland J. (1984) Role of microtubules in the the Golgi apparatus. J. Cell Biol. 99: 113.

333. Sawin K.E., Scholey J.M. (1991) Motor proteins in cell division. Trends in Cell Biol. 1: 122-129.

334. Schaar B.T., Chan G.K.T., Maddox P., Salmon E.D., Yen T.J. (1997) CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139: 1373-1382.

335. Schatten H., Schatten G., Mazia D., Balczon R., Simerly C. (1986) Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc. Natl. Sci. USA. 83: 105-109.

336. Schliwa M., Bereiter-Hahn J. (1973) Pigment movements in fish melanophores: morphological and physiological studies. II Cell shape and microtubules. Z. Zellforsch. Microsk. Anat. 147: 107-125.

337. Schliwa M. (1975) Microtubule distribution and melanosome movements in fish melanophores. In: Microtubules and microtubule inhibitors. M.Borgers and M.de Brabander editors. North-Holland Publishing Co., Amsterdam., pp.215-228.

338. Schliwa M. (1978) Microtubular apparatus of melanophores. Three-dimensional organization. J.Cell Biol. 76: 605-614.

339. Schliwa M., Euteneuer U. (1978a) A microtubule independent component may be involved in granule transport in pigment cells. Nature. Lond. 273: 556-558.

340. Schliwa M., Euteneuer U. (1978b) Quantitative analysis of the microtubule system in isolated fish melanophores. J. Supramol. Struct. 8: 177-190.

341. Schliwa M., Osborn M., Weber K. (1978) Microtubule system of isolated melanophores as revealed by immunofluorescence microscopy. J. Cell Biol. 78: 229-236.

342. Schliwa M. (1979) Stereo high voltage electron microscopy of melanophores. Matrix transformations during pigment movements and the effect of cold and colchicine. Exp. Cell Res. 118: 323-240.

343. Schliwa M., Euteneuer U., Herzog W., Weber K. (1979) Evidence for rapid structural and functional changes of the melanophore microtubule-organizing center upon pigment movement. J. Cell Biol. 83: 623-632.

344. Schliwa M. (1982) Chromatophores: Their use in understanding microtubule-dependent intracellular transport. Methods Cell Biol. 25: 285-312.

345. Schliwa M., Pryzwansky KB., Euteneuer U. (1982) Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility. Cell. 81: 705-717.

346. Schliwa M. (1986) The Cytoskeleton. Springer-Verlag, New York, 326 pages.

347. Schliwa M. (1992) Cell polarity and centrosomes. In: The centrosome. Kalnins V.G., Acad. Press (Ed.) New York, pp.331-351.

348. Schnackenberg B.J., Khodjakov A., Rieder C.L., Palazzo R.E. (1998) The disassembly and the reassemly of functional centrosomes in vitro. Proc. Natl. Acad. Sci. USA. 95: 9295-9300.

349. Schnapp B.J., Vale R.D., Sheetz M.P., Reeses T.S. (1995) Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell. 40: 455-462.

350. Schraeder M., Burkhardt J., Baumgart E., Luers G., Volkl A., Fahimi H.D. (1994) Interaction of peroxisomes with microtubules in vivo and in vitro. Mol. Biol. Cell. 5: 476a.

351. Schroeder C.C., Fok A.K., Allen R.D. (1990) Vesicle transport along microtubular ribbons and isolation of cytoplasmic dynein from Paramecium. J. Cell Biol. Ill: 2553-2562.

352. Schulze E., Kirschner M. (1987) Dynamic and stable population of microtubules in cells. J. Cell Biol. 104: 277-288.

353. Schulze E., Kirschner M. (1988) New features of microtubule behavior observed in vivo. Nature. 334: 356-359.

354. Schulze E., Asai D.J., Bulinski J.C., Kirschner M. (1997) Posttranslational modification and microtubule stability. J. Cell Biol. 105: 2167-2177.

355. Seldenrijk R., Hup D.R.W., de Graan P.N.E, van de Veerdonk F.C.G. (1979) Morphological and physiological aspects of melanophores in primary culture from tadpoles of Xenopus laevis. Cell Tissue Res. 198: 397-409.

356. Seldenrijk R., Berendsen W., de Graan P.N.E., van de Veerdonk F.C.G. (1980) The morphology of cultured melanophores from tadpoles of Xenopus laevis: Scanning electron. Cell Tissue Res. 211: 179-189.

357. Sharp D.J., Yu W., Baas P.W. (1995) Transport of dendritic microtubules establishes their nonuniform polarity orientation. J. Cell Biol. 130: 93-103.

358. Shelden E., Wadsworth P. (1993) Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J. Cell Biol. 120: 935-945.

359. Sherline P., Yu-Chiang Lee , Jacobs L.S. (1977) Binding of microtubules to pituitary secretory granule membranes. J. Cell Biol. 72: 380-388.

360. Sherline P., Mascardo R.N. (1982) Epidermal growth factor induces rapid centrosomal separation in HeLa and 3T3 cells. J. Cell Biol. 93: 507-511.

361. Sherline P., Mascardo R. (1984) Co-ordinate control of the centrosomal separation and DNA synthesis by growth regulators. Exp. Cell Res. 153: 109-120.

362. Shibaoka H., Nagai R. (1994) The plant cytoskeleton. Curr. Opin. Cytoskel. 6: 10-15.

363. Shu H.-B., Joshi H.C. (1995) y-tubulin can both nucleate microtubule assembly and self-assemble into novel tubular structures in mammalian cells. J. Cell Biol. 130: 1137-1147.

364. Sluder G., Rieder C.L. (1985) Centriole number and the reproductive capacity of spindle poles. J.Cell Biol., 100: 887-896.

365. Sluder G., Miller J.F., Rieder C.L. (1986) The reproduction of centrosomes: nuclear versus cytoplasmic controls. J. Cell Biol. 103: 1873-1881.

366. Sluder G., Lewis K. (1987) Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs. J. Exp. Zool. 244: 89-100.

367. Sluder G., Miller J.F., Rieder C.L. (1989) Reproductive capacity of sea urchin centrosomes without centrioles. Cell Motil. Cytoskel. 13: 264-273.

368. Sluder G., Miller J.F., Cole R., Rieder C.L. (1990) Protein synthesis and cell cycle: centrosome reproduction in sea urchin eggs is not under translational control. J. Cell Biol. 110: 2025-2032.

369. Sluder G. (1992) Control of chromosome inheritance in echinoderm development. In: The centrosome. Kalnins V.G., Acad. Press., San Diego (Ed.), pp. 235-259.

370. Smirnova E.A., Bajer A.S. (1992) Spindle poles in higher plant mitosis. Cell Motil. Cytoskel. 23: 1-7.

371. Smirnova E.A., Bajer A.S. (1994) Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil. Cytoskel. 27: 219-233.

372. Smirnova E.A., Bajer A.S. (1995) Antibody against phosphorylated proteins (MPM-2) recognizes mitotic microtubules in endosperm cells of higher plant Haemanthus. Cell Motil. Cytoskel. 31: 34-44.

373. Snyder J.A., Mcintosh J.R. (1975) Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J. Cell Biol. 67: 744-760.

374. Snyder J.A., Mcintosh J.R. (1979) Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J. Cell Biol. 67: 744.

375. Sobel S.G., Snyder M. (1995) A highly divergent y-tubulin gene is essential for cell growth and proper microtubule organization in Saccharomyces cerevisiae. J. Cell Biol. 131: 1775-1788.

376. Spiegelman B.M., Lopata M.A., Kirschner M.W. (1979a) Multiple sites for the initiation of microtubule assembly in mammalian cells. Cell. 16: 239-252.

377. Spiegelman B.M., Lopata M.A., Kirschner M.W. (1979b) Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells. Cell. 16:253-263.

378. Starodubov S.M., Golichenkov V.A. (1979a) Division of dermal melanophores of Anura larva. Dokl.Akad.Nauk SSSR., 246:721-723.

379. Starodubov S.M., Golichenkov V.A. (1979b) The movements of melanosomes and the division of dermal amphibian melanophores. Acta protozool., 18:1-8.

380. Starodubov S.M., Golichenkov V.A. (1988) Pigment migration in dermal melanophores of amphibian larvae at the interphase and during mitosis. Ontogenesis., 19:279-283.

381. Stearns M.E. (1984) Cytomatrix in chromatophores. J. Cell Biol. 99: 144-151.

382. Stearns M.E., Ochs R.L. (1982) A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores. J. Cell Biol. 94: 727-739.

383. Stearns T., Evans L., Kirschner M. (1991) y-tubulin is a highly conserved component of the centrosome. Cell.65: 825-836.

384. Stearns T., Kirschner M. (1994) In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell. 76: 623-637.

385. Stearns M.E., Wang M. (1987) Polarized pigment granule transport occurs in the absence of microtubules in squirrelfish erythrophores: studies of the effect of estamustine. J.Cell Sei. 87: 565-580.

386. Stearns T., Winey M. (1997) The cell center at 100. Cell. 91:303-309.

387. Stebbings H. (1997) Direct evidence for the nature of the binding of mitochondria to microtubules inovarian nutritive tubes of an hemipteran insect. Cell Tissue Res. 289: 333-337.

388. Steinert P.M., Jones J.C.R., Goldman R.D. (1984) Intermediate filaments. J. Cell Biol. 99:22.

389. Strauss A. (1932) Ueber die bleichung des melanins. Zeitschrift fur wissenschaftliche Mikroskopie und fur mikroscopische Technik. 49: 123-125.

390. Stubblefield E., Brinkley B.R. (1966) Cilia formation in Chinese hamster fibroblasts in vitro as a response to colcemid treatment. J. Cell Biol. 30: 645-652.

391. Sugden D. (1991) Aggregation of pigment granules in single cultured Xenopus laevis melanophores by melatonin analogues. Brit. J. Pharmacol. 104: 922-927.

392. Sugden D., Rowe S.J. (1992) Protein kinase C antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores. J. Cell Biol. 119: 1515-1521.

393. Summers R.G., Musial C.E., Cheng P.-C., Leith A., Marco M. (1991) The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division. J. Electron Microscopy Technique. 18: 24-30.

394. Sunkel C.E., Gomes R., Sampaio P., Perdigaio J., Gonzalez C. (1995) y-tubulin is required for the structure and function of the microtubule-organizing centre in Drosophila neuroblasts. EMBO (Eur. Mol. Biol. Organ.) J. 14: 28-36.

395. Suprehant K.A., Dentler W.L. (1982) Association between endocrine pancreatic secretory granules and in v/Yro-assembled microtubules is dependent upon microtubule-associated proteins. J.Cell Biol. 93: 164-174.

396. Swan J. A., Solomon F. (1984) Reformation of the marginal band of avian erythrocytes in vitro using calf-brain tubulin: peripheral determinants of microtubule form. J. Cell Biol. 99: 2108-2113.

397. Swanson J.A., Locke A., Ansel P., Hollenbeck P.J. (1992) Radial movement of lysosomes along microtubules in permeabilized macrophages. J. Cell Sci. 103: 201-209.

398. Swanson J.A. (1993) Pure thoughts with impure proteins: permeabilized cell models of organelle motility. BioEssays. 15: 715-722.

399. Szollozi D., Callarco P.G. Donahue (1972) Absence of the centrioles in the first and second meiotic spindles mouse oocytes. J. Cell Sci. 11: 521-541.

400. Tassin A.M., Maro B., Bornens M. (1985a) Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100: 35-46.

401. Tassin A.M., Paintrand M., Berger E.E., Bornens M. (1985b) The Golgi apparatus remains associated with microtubule-organizing centers during myogenesis. J. Cell Biol. 101: 630-638.

402. Taylor J.D. (1992) Does the introduction of a new player, the endoplasmic reticulum, create more or less confusion inunderstanding the mechanism(s) of pigmentary organelle translocations? Pigment Cell Res. 5: 49-57.

403. Tavosanis G., Llamazares S., Goulielmos G., Gonzalez C. (1997) Essential role for y-tubulinin the acentriolar female meiotic spindle of Drosophila. EMBO J. 16: 1809-1819.

404. Terasaki M. Chen L.B., Fujiwara K. (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol. 103: 1557-1568.

405. Thaler C.D., Haimo L.T. (1990) regulation of organelle transport in melanophores by calcineurin. J.Cell Biol., 111:1939-1948.

406. Thyberg J., Moskalewski S. (1985) Microtubules and the organization of the Golgi complex. Exp. Cell Res. 159: 1-16.

407. Tiney L.G., Bryan J., Bush D.J., Fujiwara K., Mooseker M.S., Murphy D.B., Snyder D.H. (1973) Microtubules: evidence for 13 protofilaments. J. Cell Biol. 59: 267-275.

408. Tournier F., Bornens M. (1994) Cell cycle regulation of centrosome function. In: Microtubules. Wiley-Liss, Inc. pp. 303-324.

409. Travis J.L., Allen R.D. (1991) Studies on the motility of the Foraminifera. 1 .Ultrastructure of the reticulopodial network ofAllogromia laticollaris (Arnold). J.Cell Biol. 90: 211. i

410. Tucker R.W., Pardee A.B., Fujiwara K. (1979) Centriole ciliation is related to quiesence and DNA synthesis in 3T3 cell. Cell. 17: 527-535.

411. Tucker J.B. (1984) Spatial organization of microtubule-organizing centers and microtubules. J. Cell Biol. 99: 55-62.

412. Tuma M.C.B., Josefsson L., Castrucci A.M.L. (1995) Cytoskeleton and PCH-induced pigment aggregation in Macrobrachium potiuna erythrophores. Pigment Cell Res. 8: 215-220.

413. Tuma M.K., Gelfand V.I. (1999) Molecular mechanisms of pigment transport in melanophores. Pigment Cell Res. 12: 283-294.

414. Ueda M., Graf R., MacWilliams H.K., Schliwa ML, Euteneuer U. (1997) Centrosome positioning and directionality of cell movements. 94: 9674-9678.

415. Vale R.D., Schnapp B.J., Mitchison T., Steuer E., Reese T.S., Sheetz M.P. (1985) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 43: 623-632.

416. Vallee R.B. (1982) A taxol-dependant procedure for isolation of microtubules and microtubule-associated proteines (MAPs). J. Cell Biol. 92: 435.

417. Vallee R.B., Bloom G.S.,Theurkauf W.E. (1984) Microtubule-associated proteins: subunits of the cytomatrix. J. Cell Biol. 99: 38.

418. Vaisberg E.A., Koonce M.P., Mcintosh J.R. (1993) Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cee Biol. 123: 849-858.

419. Vasiliev J.M., Gelfand I.M., Domnina L.V., Ivanova O.Y., Komm S.G., Olshevskaja L.V. (1970) Effect of colcemid on the locomotory behavior of fibroblasts. J. Embryol. Exp. Morphol. 24: 625-640.

420. Vasquez R.J., Howell B., Yvon A.-M. C. Wadsworth P., Cassimeris L. (1997) Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol. Biol. Cell. 8: 973-985.

421. Verde F., Berrez J.M., Antony C., Karsenti E. (1991) Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112: 1177-1187.

422. Verlhac M.H., de Pennart H, Maro B., Cobb M.H., Clarke H.J. (1993) MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev. Biol. 158: 330-340.

423. Visconti M.A., De Lauro Castrucci M.A. (1985) Microtubule- and microfilament-disrupting drugs and melanosome migration in melanosome migration in melanophores of Papiliochromis ramirezi (Cichlidae, Teleostei). Ann. Acad. Brasil. Cienc. 57: 233-237.

424. Vogel J.M., Stearns Y., Rieder C.L., Palazzo R.E. (1997) Centrosomes isolated from Spisula solidissima oocytes contain rings and an unusula stoichiometric ratio of a/p tubulin. J. Cell Biol. 137: 193-202.

425. Vorobjev I.A., Chentsov Yu. S. (1982) Centrioles in the cell cycle. I. Epithelial cells. J. Cell. Biol. 93: 338-342.

426. Vorobjev I.A., Chentsov Yu. S. (1983) The dynamics of reconstitution of microtubules around the cell center after cooling. Eur. J. Cell. Biol. 30: 149-153.

427. Vorobjev I.A., Nadezhdina E.S. (1987) The centrosome and its role in the organization of microtubules. Int. Rev. Cytol. 106: 227-293.

428. Vorobjev I. A., Svitkina T.M. Borisy G.G. (1997) Cytoplasmic assembly of microtubules in cultured cells. J. Cell Sci. 110: 2635-2645.

429. WadsworthP., McGrail. M. (1990) Interphase microtubule dynamics are cell-type specific. J. Cell Sci. 95: 23-32.

430. Walker R.A., Inoue S., Salmon E.D. (1989) Asymmetric behavior of served microtubule ends after ultraviolet-mirobeam irradiation of individual microtubules in vitro. J. Cell Biol. 108: 931-937.

431. Wang E., Cross R.K., Choppin P.W. (1979) Involvement of microtubules and 10-nm filaments in the movement and positioning of nuclei in syncytia . J. Cell Biol. 83: 320-337.

432. Wang S.-M., Chen J.-S., Fong T.-H., Hsu S.-Y., Lim S.-S. (1997) Characterization of a novel filament system in goldfish xanthophores. Cell Motil. Cytoskeleton. 36: 216-227.

433. Weber W., Gras H. (1980) Ultrastructural observations on changes in cell shape in chrornatophores of the sea urchin Centrostephanus iogispinus. Cell Tissue Res. 266: 21.

434. Wehland J., Henkart M., Klausner R.D., Sandoval I.V. (1983) Role of microtubule in the distribution of the Goldi apparatus: effect of taxol and microinjected anti-a-tubulin antiodies. Proc. Natl. Acad. Sci. USA. 80: 4286-4290.

435. Weihing R.R. (1979) The cytoskeleton and plasma membrane. Meth. Achiev. Exp. Pathol. 8: 42-109.

436. Weisshaar B., Doll T., Matus A. (1992) Reorganization of the microtubulear cytoskeleton by embryonic microtubule-assotiated proteins 2 (MAP2C). Development. 116: 1151-1161.

437. Wheatley D.N. (1982) Centriole: The central enigma of cell biology. Amsterdam: Elsevier, North Holland Biomedical Press, p. 224.

438. Wheatley S.P., Wang Y.-l. (1996) Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J. Cell Biol. 135: 981-989.

439. Wikswo M.A., Novales R.R. (1972) Effect of coclchicine on microtubules in the melanophores of Fundulus heteroclitus. J. Ultrastruct. Res. 41: 189-201.

440. Wilde A., Zheng Y. (1999) Stimulation of microtubule aster formation and spindle assembly by th small GTPase Ran. Science. 284: 1359-1362.

441. Winston ML, Johnson E., Kelleher J.K., Banerjee S., Margulis L. (1974) Melatonin: cellular effects in live stentors correlated with the inhibition of colchicine-binding to microtubule protein. Cytobios. 9: 237-243.

442. Wise W. (1980) Ultrastructure of amphibian melanophores after light-dark adaptation and hormonal treatment. J. Ultrastr. Res. 266: 21.

443. Witt P.L., Borisy G.G. (1980) Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma. 81: 483-505.

444. Wood K.W., Sakowicz R., Goldstein L.S.B., Cleveland D.W. (1997) CENP-E is a plus end-directed kinetochore motor required fro metaphase chromosome alignment. Cell. 91: 357366.

445. Yao X., Anderson K.L., Cleveland D.W. (1997) The microtubule-dependent motor centromere-associated protein (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J. Cell Biol. 139: 435-447.

446. Yu F.-X., Taylor J.D., Tchen T.T. (1990) Actin-dependent carotenoid droplet dispersion in permeabilized cultured goldfish xanthophores. Cell Motil. Cytoskel. 15: 139-146.

447. Yu W., Centronze V.E., Ahmad F.J., Baas P.W. (1993) Microtubule nucleation and release from the neuronal centrosome. J. Cell Biol. 122: 349-359.

448. Yu W., Schwei M.J., Baas P.W. (1996) Microtubule transport and assembly during axon growth. J. Cell Biol. 133: 151-157.

449. Yu W., Toyoshima I., Steuer E.R., Sheetz M.P. (1992) Kinesin and cytoplasmic dynein binding to brain microsomes. J. Biol. Chem. 116: 367-376.

450. Yvon A.M., Wadsworth P. (1997) Non-ceentrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells. J. Cell Sci. 110: 2391-2401.

451. Zeligs J.D., Wollman S.H. (1979) Mitosis in rat thyroid epithelial cell in vivo. 2. Centrioles and pericentriolar material. J.Ultrastruct.Res., 66:97-108.

452. Zhai Y., Kronebusch P.J., Simon P.M., Borisy G.G. (1996) Microtubule dynamics at G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol. 135: 201-214.

453. Zheng Y., Jung M.K., Oakley B.R. (1991) y-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell.65: 817-823.

454. Zheng Y., Wong M.L., Alberts B., Mitchison T. (1995) Nucleation of microtubule assembly by a y-tubulin-containing complex. Nature. 378: 578-583.

455. Ф фокусы схождения микротрубочек ПР - первичная ресничка X - хромосомы к - коллаген4

456. Рис. 1. Световая микроскопия. Перемещение пигмента в меланофорах при агрегации под действием мелатонина (А-Д) и при дисперсии под действием а-МСГ (Е-Ж). Масштабный отрезок: 100 ¡лт.