Бесплатный автореферат и диссертация по биологии на тему
Теоретическое исследование механизмов функционирования и регуляции цикла Кребса митохондрии и Escherichia coli
ВАК РФ 03.00.02, Биофизика

Автореферат диссертации по теме "Теоретическое исследование механизмов функционирования и регуляции цикла Кребса митохондрии и Escherichia coli"

.t?

МОГИЛЕВСКАЯ Екатерина Александровна

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМОВ ФУНКЦИОНИРОВАНИЯ И РЕГУЛЯЦИИ ЦИКЛА КРЕБСА МИТОХОНДРИИ И ESCHERICHIA COLI

03.00.02-Биофизика

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук

На правах рукописи

Красноярск - 2007

003064734

Работа выполнена в Институте физико-химической биологии им. А.Н. Белозерского МГУ им. М.В. Ломоносова.

Научный руководитель:

кандидат физико-математических наук, старший Олег Владимирович Демин

научный сотрудник Института физико-химической биологии им. А.Н. Белозерского

Официальные оппоненты:

доктор биологических наук, профессор Института теоретической и экспериментальной биофизики РАН

доктор физико-математических наук, ведущий научный сотрудник Института биофизики СО РАН

Мария Николаевна Кондрашова

Юрий Леонидович Гуревич

Ведущая организация: Гематологический научный центр РАМН

Защита диссертации состоится «6 »¿АЖ^/и*, 2007 г. в/£чР0мин. на заседании Диссертационного совета Д 003.007.01 в Институте биофизики СО РАН по адресу: 600036, г. Красноярск, Академгородок, д. 50, стр. 50.

С диссертацией можно ознакомиться в библиотеке Института биофизики СО РАН.

Автореферат разослан «/С» О^У^Ск. 2007 г. Ученый секретарь диссертационного совета,

доктор физико-математических наук Км^!^ Н.С. Кудряшева

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. В последние годы наблюдается существенный прогресс в области молекулярно-биологических и генетических исследований бактерии Escherichia coli и других организмов. Клеточный метаболизм, включающий взаимопревращения тысяч молекул в виде катализируемых ферментами биохимических реакций, - очень активно изучаемая сейчас система. Для большинства биохимических путей в Е. coli известны все молекулы-метаболиты и стехиометрия их взаимопревращений, т.е. имеется так называемая статическая информация о последовательности реакций и о том, какие молекулы и в каких количествах в них участвуют. В данной ситуации может возникнуть иллюзия, что статической информации достаточно для предсказания функционирования биохимических путей при решении фундаментальных и прикладных (например, биоинженерных) задач. Отчасти, это действительно так - в некоторых случаях возможно сделать предсказания на основе только статической информации [JI1], Однако, как правило, такой подход не оправдывает себя, поскольку внутриклеточные процессы определяются не только последовательностью реакций, но и регуляторными влияниями интермедиатов на ферменты, и генетической регуляцией уровней экспрессии ферментов, что позволяет клетке адаптироваться к изменениям внешней среды. Регуляторные механизмы в клетке ответственны за поддержание гомеостаза и переходы между различными физиологическими состояниями метаболизма. Вот почему крайне важно включать в модели регуляторные механизмы метаболических путей. Для построения таких моделей в данной работе был использован подход кинетического моделирования [Л2], который может быть, в частности, применен для изучения побочных эффектов лекарств. На основе данных по стехиометрии и регуляторным механизмам могут быть реконструированы внутриклеточные процессы, на которые

лекарство оказывает негативное действие. Как правило, лекарства имеют множественные эффекты на внутриклеточный метаболизм, например, несколько ферментов могут быть активированы или ингибированы, а также ряд ферментов может быть вовлечен в экскрецию лекарства. Проблема выявления главных и второстепенных механизмов токсического действия лекарств не может быть решена только экспериментально, т. к. анализ различных влияний требует их избирательного выключения, а это, как правило, невозможно сделать в эксперименте. Кинетическое моделирование позволяет исследовать каждый эффект в отдельности и понять, какой из них имеет больший вклад в общий побочный эффект. Цель данной работы заключалась в выявлении и описании с помощью кинетических моделей особенностей функционирования и регуляции цикла Кребса митохондрии и Escherichia coll

Для достижения поставленной цели в рамках настоящей работы решались следующие основные задачи:

1. Разработать кинетические модели цикла Кребса митохондрии, потребляющей глутамат и малат, и Escherichia coli, растущей на ацетате аэробно, основанные на детальном описании функционирования отдельных ферментов.

2. Получить с помощью кинетических моделей цикла Кребса митохондрии и Escherichia coli ответы системы на изменение внешних условий -энергетической и биосинтетической нагрузки клетки.

3. Промоделировать совместное и изолированное влияние отдельных механизмов ингибирования салицилатом цикла Кребса для выявления среди них критических и предложить способы восстановления стационарной скорости в цикле Кребса, сниженной салицилатом.

4. Показать, возможно ли, объединяя в модели in vitro экспериментальные данные из различных источников, описать измеренное in vivo распределение потоков в цикле Кребса Е. coli, потребляющей ацетат как источник углерода.

Научная новнзна. Впервые разработана кинетическая модель сегмента цикла Кребса митохондрии, который функционирует в состоянии повышенной активности митохондрий, на основе информации об отдельных ферментах. Значения кинетических параметров, входящих в уравнения скорости, оценены по in vitro литературным экспериментальным данным. Концентрации ферментов определены из экспериментальных данных по дыханию суспензии митохондрий на глутамате и малате. На модели изучены эффекты салицилата на энергетический метаболизм митохондрии. Было показано, что ингибирование сукцинатдегидрогеназы и а-кетоглутаратдегидрогеназы вносит существенный вклад в общее ингибирующее действие салицилата, тогда как разобщение окислительного фосфорилирования и потребление коэнзима А в реакциях трансформации салицилата незначительно влияют на скорость окисления субстратов в цикле Кребса. Модель позволяет предсказать, что заингибированный салицилатом поток в цикле Кребса может быть увеличен путем перераспределения потоков в цикле увеличением концентраций внемитохондриальных глутамата и малата и снижением концентраций внемитохондриального <х-кетоглутарата и внутримитохондриального глицина. Разработана также детальная кинетическая модель цикла Кребса Escherichia coli, растущей на ацетате аэробно. На основе in vitro данных дано подробное описание функционирования и регуляции ферментов полного цикла Кребса и глиоксилатного шунта, учтена регуляция изоцитратдегидрогеназы путем фосфорилирования. С помощью модели показано, как будет изменяться распределение потоков между циклом Кребса и глиоксилатным шунтом при изменении энергетической и биосинтетической активностей клетки. Практическое значение. С помощью построенной модели сегмента цикла Кребса митохондрии, функционирующей при повышенном энергопотреблении, изучено ингибирующее влияние салицилата на стационарный поток по циклу Кребса и предложены возможные способы

предотвращения его уменьшения. На модели цикла Кребса Escherichia coli показана возможность объединения in vitro экспериментальных данных по отдельным ферментам для описания поведения системы in vivo. Предложенный подход кинетического моделирования позволяет решать практические фармакологические (показать, как можно уменьшить токсические эффекты уже существующих лекарств, а также предсказать возможные побочные эффекты новых лекарственных веществ, которые находятся в стадии разработки) и биоинженерные задачи. Апробация работы. Результаты диссертации докладывались на 2 съезде токсикологов России (Москва, 2003), на 3 европейской конференции по вычислительной биологии (Глазго, 2004), на 11 и 12 международных конференциях по биотермокинетике (Оксфорд, 2004, Тракай, 2006), на 12 международной конференции «Математика. Компьютер. Образование» (Пущино, 2005), на конференции «Российская биоэнергетика: от молекул к клетке» (Москва, 2005).

Структура и объем диссертации. Работа состоит из введения, пяти глав исследований, заключения и списка литературы. Работа представляет собой рукопись на 166 страницах, включая 57 рисунков и 5 таблиц.

СОДЕРЖАНИЕ РАБОТЫ Глава 1. Обзор литературы

В первой главе представлен обзор литературы, посвященной структуре цикла Кребса, гепатотоксическому действию салицилатов и математическим моделям цикла Кребса митохондрии и Е. coli.

Цикл трикарбоновых кислот - это заключительный общий путь окисления молекул-источников энергии: углеводов, аминокислот и жирных кислот, обеспечивающий генерирование АТР. Кольцевая стехиометрия цикла трикарбоновых кислот была установлена Х.А. Кребсом и У.А. Джонсоном в 1937 году [ЛЗ]. К настоящему времени накоплен большой массив данных, описывающих отдельные стадии цикла. Для всех ферментов имеются экспериментально полученные зависимости скорости реакций от концентраций субстратов, продуктов, изучена регуляция отдельных ферментов интермедиатами цикла. Для многих ферментов предложены возможные механизмы их функционирования, описывающие экспериментальные данные.

Функционирование цикла Кребса в целом также изучалось экспериментально и теоретически. Было установлено, что субстратами цикла Кребса могут быть различные субстраты - сукцинат, глутамат, малат, а-кетоглутарат, а также пируват, жирные кислоты и аминокислоты -источники молекулы ацетил-коэнзима А. Известно, что в состоянии покоя и активности ткани окисление субстратов в митохондриях может идти не по идентичным маршрутам. Один из субстратов ЦТК - янтарная кислота (сукцинат) - по интенсивности окисления и аккумуляции энергии резко превышает остальные. Кинетическое преимущество окисления сукцината особенно важно при энергетических затратах. М.Н. Кондрашовой было показано [Л4], что при активной деятельности происходит переключение на преимущественное использование сукцината. Активация обмена в организме (мышечной нагрузкой, стрессом, введением катехоламинов, гипоксическим или Холодовым воздействием, при пробуждении от спячки)

приводит к избирательному усилению окисления и образования сукцината, в то время как окисление НАД-зависимых субстратов не меняется. Показано, что эффективность использования сукцината, образующегося в митохондриях из а-кетоглутарата, приблизительно в 100 раз выше, чем добавляемого в среду инкубации [JI5]. В 1989 г. М.Н. Кондрашовой [JI4] был рассмотрен путь притока высокоэффективного сукцината через сукцинил-КоА из а-кетоглутарата, образующегося не через участок лимонных кислот ЦТК, а путем переаминирования глутамата и оксалоацетата, осуществляемого глутамат-оксалоацетат трансаминазой. Этот путь является важным путем интенсивного образования сукцината при активации функций митохондрии, в частности при напряжении, связанном с патологическими процессами. Модель именно такого варианта функционирования цикла Кребса была разработана в данной работе для изучения побочных эффектов салицилата. Существование такого укороченного цикла Кребса было показано в митохондриях гепатомы Морриса 3924А [JI6]. В ряде экспериментальных работ [Л7] было также установлено, что митохондриальный цикл Кребса может функционировать в отличном от традиционного варианте.

Функционирование цикла Кребса в бактериях и, в частности, в Escherichia coli, также изучено достаточно полно. При аэробном росте Е. coli на ацетате наблюдается экспрессия всех ферментов цикла Кребса, а также ферментов глиоксилатного шунта [Л8]. В этом случае два атома углерода молекулы ацетата не потребляются полностью в декарбоксилирующих реакциях цикла Кребса, а частично направляются в глиоксилатный шунт для использования в биосинтетических процессах [Л9]. После формирования изоцитрата поток углерода разделяется между изоцитратдегидогеназой и изоцитратлиазой. Распределение изоцитрата между этими двумя реакциями регулируется обратимым фосфорилированием изоцитратдегидрогеназы ее киназой/фосфатазой. Этот белок, в свою очередь, подвержен влиянию ряда центральных

метаболитов, чьи концентрации служат сигналами энергетической и биосинтетической потребностей клетки.

В настоящей работе кинетическая модель сегмента цикла Кребса митохондрии, функционирующего при потреблении глутамата и малата, применялась для изучения гепатотоксических эффектов салицилата, который относится к группе нестероидных противовоспалительных средств (НПВС). В то время как механизмы возникновения язвообразования при его применении достаточно хорошо изучены, изменения в клетке, развивающиеся при токсических воздействиях, в частности, на печень, остаются не до конца выясненными. Из литературы известно, что большие дозы аспирина могут приводить к некрозу гепатоцитов, развитию истинной печеночной недостаточности, к последующей эндогенной интоксикации, печеночной коме и смерти [Л 10]. Поражение печени как побочный эффект может проявляться и при применении аспирина и других салицилатов в терапевтических дозах [Л11]. Одной из причин этих тяжелых последствий являются нарушения в функционировании и регуляции энергетического метаболизма гепатоцитов, в частности, цикла Кребса. В процессе метаболизма в печени аспирин и его производные могут ингибировать р-окисление жирных кислот [Л12], уменьшать пул кофермента А [Л13], ингибировать а-кетоглутаратдегидрогеназу и сукцинатдегидрогеназу [Л 14]. Известно также, что салицилаты повышают проницаемость внутренней митохондриальной мембраны для протонов, уменьшая тем самым трансмембранный потенциал [Л15]. Все эти негативные воздействия могут приводить к нарушениям энергетического метаболизма.

Ранее был построен ряд математических моделей разной степени детализации для изучения функционирования цикла Кребса. В работах Е.Е. Селькова и соавт. [Л16], а также в работе Я. ЯатакпБЬпа е1 а1. [Л17], исследовалась лишь стехиометрия системы. В работах группы В.В. Дынника [Л 18] изучались различные регуляторные механизмы в

цикле Кребса. Также были разработаны детальные модели, включающие описание кинетики ферментов [Л 19]. Спектр моделей цикла Кребса Е. соИ не так широк [Л20]. С помощью этих моделей были выявлены особенности работы и регуляции цикла Кребса, однако к их недостаткам можно отнести произвольную запись уравнений скорости, которые не отражают механизмов каталитических циклов ферментов, а также отсутствие учета действия некоторых эффекторов на ферменты. Также в перечисленных работах значения параметров, входящих в уравнения скорости, которые не могут быть измерены в эксперименте, выбираются произвольным образом. Представленный в данной работе подход основан на выводе уравнений скорости ферментов согласно механизмам их работы, учете известных регуляторных связей в цикле Кребса, а также определении неизвестных параметров из литературных экспериментальных данных, что позволяет делать более достоверные выводы и предсказания.

Глава 2. Материалы и методы

2.1 Кинетическая модель сегмента цикла Кребса митохондрии, потребляющей глутамат и малат.

Кинетическая модель представляет собой систему обыкновенных дифференциальных уравнений, которая в каждый момент времени определяет состояние рассматриваемой системы химических реакций, т.е. задает концентрации метаболитов этой совокупности реакций как функции времени [Л22]:

— = F _ у

^ продукцииХ потреблениях (2.1)

Здесь X - концентрация метаболита, Кродукуиих и ^потреблениях - суммарные скорости его продукции и потребления.

Построенная математическая модель сегмента цикла Кребса митохондрии описывает потребление глутамата и малата как субстратов (см. схему цикла на рис. 1). Переменными модели являются: Gluin, Aspin,

OAA, KGin, SucCoA, CoA, Suc, Fum, Malin> SDH, SDH-OAA. Концентрации Glu™,, Aspout, Hout, Hin, Malout, KG0U„ P, ATP, ADP, Ca2+, GTP, GDP, Q, QH2, NAD,

N,

Glu«

r1

CC

As?,

AíPto

OAA

^AspAT^

NADH >

MDH

NAD

JO-

NAD

JCGDH

:a/i i

Vs1 I SucCoA

> 1

I STK

NADH

FEM

SalCoA fSGT

CoA

ЛВ

ит

^GTPl

Fum

**--SDH

- Suc

5Ш-ОАА

Рис 1. Схема сегмента цикла Кребса, потребляющего глутамат и функционировании митохондрий, с учетом влияния салицилата.

Обозначения:

AGC-аспартат-глутаматный переносчик; AspAT-аспартат-аминотрансфераза; KGDH- а-кетоглутаратдегидрогеназа; STK-сукцинаттиокиназа; SDH-сукцинатдегидрогеназа; FUM-фумараза; MDH-малатдегидрогеназа; КМС-а-кетоглутарат-малатный переносчик; lSDH-рсакция связывания оксалоацетата с сукцинатдегидрогеназой; SL-салицил-СоА лигаза; SGT -салицил-СоА-глицин ацилтрансфераза; G!uí„ -внутримитохондриальный глутамат; Asp¡„ -внутримитохондриальный аспартат; ОАА -оксалоацетат, KG¡„ -внутримитохондриальный а-кетоглутарат, SucCoA -сукцинилКоА, СоА - коэнзим A, Suc - сукцинат, Fum -фумарат, Mali„ -внутримитохондриальный малат. Пунктиром обозначены ингибирующие воздействия салицилата (Sal), малат при активном

ИАБН не изменяются со временем, т.е. являются параметрами модели. Модель сегмента цикла Кребса митохондрии описывается системой обыкновенных дифференциальных уравнений (2.1) в соответствии со схемой (Рис. 1). Например, изменение концентрации внутримитохондриального а-кетоглутарата во времени определяется следующим образом:

= Vл¡РЛТ ~ ^каин ~ Уу.мс (2.2)

В системе существует четыре уравнения детального баланса:

Glu,„ + Aspm = NM (сохранение азота аминогрупп);

CoA + SucCoA = СоАш (сохранение коэнзима А);

ОАА + KGm + SucCoA + Suc + Fum + Mal„ + SDH _ OAA = См (сохранение

четырехуглеродного скелета);

SDH + SDH _ OAA = SDHI0, (сохранение сукцинатдегидрогеназы). 2.2 Кинетическая модель цикла Кребса E.coli.

Схема функционирования цикла Кребса Е. coli при аэробном росте на ацетате представлена на Рис. 2. Поскольку при росте Е. coli в таких

Ацетат

Рис. 2. Схема функционирования цикла Кребса E.coli при аэробном росте на ацетате.

Обозначения: аск - Ацетаткиназа; pta - Фосфотрансацетилаза; git Л - Цитратсинтаза; асп -Аконитаза; ;cd,IDH - Изоцитратдегидрогеназа; асе К - Киназа/Фосфатаза IDH; sucAB.lpd -2-кетоглутаратдегидрогеназа; sucCD - СукцинилКоА-лигаза; sdhABCD -Сукцинатдегидрогеназа;/ыягЛ - Фумараза; mdh - Малатдегидрогеназа; асеА -Изоцитратлиаза; асеВ - Малатсинтаза; PEPCL - Фосфоенолпируваткарбоксилаза; ME -Малик-фермент; GDH - Глутаматдегидрогеназа; cl - комплекс I; Bs -NADPH потребление на биосинтезы; As - АТР-синтаза; А1 - АТР нагрузка. Пунктирные стрелки с острыми концами обозначают активирующие влияния, а пунктирные стрелки с тупыми концами - ингибирующие влияния метаболитов на ферменты.

условиях экспрессируются ферменты глиоксилатного шунта -изоцитратлиаза (асеА) и малатсинтаза (асеВ) - появляется разветвление на уровне изоцитрата, который потребляется либо изоцитратдегидрогеназой (icd, IDH), либо изоцитратлиазой. Распределение изоцитрата между этими двумя реакциями регулируется киназой/фосфатазой IDH (асеК). Если большая часть IDH фосфорилирована, т.е. является неактивной (IDHP), изоцитрат в основном направляется в глиоксилатный шунт для пополнения сукцината (Suc) и маната (Mal), расходуемых на биосинтезы. С другой стороны, если IDH находится в нефосфорилированной (активной) форме, изоцитрат поступает в нижний сегмент цикла Кребса и дважды декарбоксилируется ферментами ЮН и KGDH. В последнем случае цикл Кребса реализует свою энергетическую функцию, обеспечивая восстановительными эквивалентами дыхательную цепь.

Функционирование асеК как киназы/фосфатазы, в свою очередь, регулируется уровнями таких центральных метаболитов как AMP, пируват (Руг), 3-фосфоглицерат (PG) [Л23]. Также в модель входят оттоки из малата - малик-фермент (ME), оксалоацетата -фосфоенолпируваткарбоксилаза (PEPCL), 2-кетоглутарата (KG) -глутаматдегидрогеназа (GDH). Учтены также реакции окисления NADH дыхательной цепью, потребление NADPH на биосинтезы, синтез АТР АТР-синтазой и потребление АТР на клеточные нужды. Переменными модели являются АсР, АсСоА, СоА, ОАА, Cit, Асо, iCit, KG, NADP, NADPH, IDH, IDHP, сукцинил-КоА (SucCoA), NAD, NADH, ADP, ATP, Sue, фумарат (Fum), Mai, глиоксилат (Glx). Концентрации протонов (H), P, Q, QH2, PEP, PG, AMP, Руг не изменяются со временем, т.е. являются постоянными параметрами модели. Модель цикла Кребса Е. coli описывается системой обыкновенных дифференциальных уравнений (2.1), в которой изменение во времени каждой переменной определяется в соответствии со схемой (Рис. 2). Например, уравнение, определяющее концентрацию оксалоацетата, записывается следующим образом:

dOAA dt

CS ' PEPCK

(2.3)

В системе содержатся пять уравнений детального баланса:

АТР + ADP = Аш (сохранение адениновых нуклеотидов);

NAD + NADH - NADKI (сохранение пиридиновых нуклеотидов);

АсСоА + СоА + SucCoA = СоАю (сохранение кофермента А);

NADP + NADPH = NADPU, (сохранение фосфорилированных пиридиновых

lot

lol

lol

нуклеотидов);

ЮН + ЮНР = 1DH,0, (сохранение изоцитратдегидрогеназы).

2.3 Методы описания ферментов цикла Кребса в моделях. Для описания механизмов функционирования отдельных ферментов использовались литературные экспериментальные данные по изучению очищенных ферментов in vitro. Вывод уравнений скорости реакций ферментов основывался на принципах квазистационарного состояния и/или быстрого равновесия [JI24] и состоял из нескольких этапов:

1) Построение каталитического цикла фермента;

2) Вывод уравнения стационарной скорости реакции, катализируемой ферментом, с использованием параметров каталитического цикла (констант скоростей и констант диссоциации/равновесия отдельных элементарных реакций каталитического цикла);

3) Вывод соотношений, связывающих кинетические параметры ферментативной реакции (константы Михаэлиса, константы ингибирования, каталитические константы и др.) с параметрами каталитического цикла;

4) Вывод уравнения скорости с использованием классических кинетических параметров ферментативной реакции.

После того как уравнения скорости были выведены, определялись значения фигурирующих в них кинетических параметров. Этот процесс также состоял из нескольких этапов:

1) В литературе были найдены все доступные экспериментальные данные по исследованию кинетических свойств данного фермента in vitro. Эти данные представляют собой либо зависимости начальной скорости работы фермента от концентраций субстратов, продуктов, эффекторов, либо зависимости изменения концентраций субстратов и/или продуктов рассматриваемой ферментативной реакции от времени, а также данные по изотопному обмену, происходящему в присутствии фермента;

2) Для количественного описания экспериментов строилась кинетическая минимодель с использованием выведенного уравнения скорости работы фермента. Например, для описания экспериментально полученных зависимостей начальных скоростей от концентраций субстратов, продуктов и эффекторов минимоделью являлось выведенное ранее уравнение скорости, а для описания экспериментальных зависимостей субстратов (продуктов) ферментативной реакции от времени в качестве минимодели использовалась система обыкновенных дифференциальных уравнений, в правую часть которой входило уравнение скорости рассматриваемого фермента;

3) Значения параметров уравнения скорости определялись из условия наилучшего совпадения экспериментальных данных с соответствующими им результатами численного решения минимоделей. Для этого использовалась программа DBSolve7.0 [Л25], в которой реализована идентификация параметров по алгоритму Hook-Jeeves [Л26].

2.4 Методы исследования поведения моделей цикла Кребса. Модели цикла Кребса исследовались также с помощью программы DBSolve 7.0 [Л25], которая, используя методы численного интегрирования, по заданной системе дифференциальных уравнений, описывающей модель, и заданным начальным условиям позволяет получать зависимости переменных от времени. Изучалась также зависимость стационарной скорости цикла от различных параметров.

Глава 3. Описание кинетики ферментов цикла Кребса

В этой главе дается подробное описание кинетики ферментов цикла Кребса митохондрии и Е. coli, вывод уравнений скорости работы ферментов и определения параметров, входящих в уравнение, согласно алгоритму, приведенному в Главе 2. Учтено влияние ингибиторов и активаторов на ферменты. Для тех ферментов цикла Кребса Е. coli, по которым в литературе имелись данные о зависимости их активности от pH, мы вводили в уравнение скорости pH-зависимость, что позволило объединять разнородные экспериментальные данные по исследованию фермента in vitro при разных pH. Например, функционирование 2-кетоглутаратдегидрогеназы Е. coli описывалось в соответствии с необратимым механизмом Ping Pong. Субстратное ингибирование фермента 2-кетоглутаратом [Л27] было описано с помощью введения в модель двух центров связывания 2-кетоглутарата, между которыми существует кооперативное взаимодействие. Схема каталитического цикла приведена на Рис. 3. Кроме того, мы описали

Е i-KG2

KG^fcj?

Обозначения:

JJ иол Еь Ег, Еэ

1 состояния фермента;

Ei.o-

депротонированная форма фермента Ei;

k3^*E3-NAD *-'S Ef^ Eu-дважды

протонированная форма фермента Ei.

Рис. 3. Схема каталитического цикла 2-кетоглутаратдегидрогеназы Е. coli.

зависимость активности фермента от рН, исходя из классического предположения [Л24], что фермент может протонироваться в активном центре, причем активной является единожды протонированная форма, а депротонированная и дважды протонированные формы являются неактивными. На Рис. 3 показано протонирование свободной формы фермента Е]; таким же образом происходит протонирование всех других

форм фермента. Уравнение скорости фермента было выведено согласно каталитическому циклу (Рис. 3) в следующем виде:

тон

кгк,

Кй СоА ШР .

,ка уСал тгыло № Ь'

л. л.

кв

„ к? я . , ш

(1 н--н--тг) (

и У"

н к"

_ СоА АГАР

ум 1-ка ^ уСол ^шо Лл К, К,

(к2к, +к,к, + к2кл) + клк,

СоА

+ *2«« „Со/1

ЫАР

КО СоА КАР

ъгка I „см „»ш + + *г*1.1 +

Лл Л^ Л;

Л^О ..СоА. СоА_1иР

+ Кша + 2 1 Кс„л ) + ^мо +

+ (1 +

№ J

СоА,

-^Х^Л^сСоЛ ♦ + к^исСоА *

КО1

(3.1)

+ к.гк^исСоА * ЫАРН) + (1 +

л^ л.

Константы отщепления ионов водорода от их комплекса с ферментом были определены по экспериментальным данным [Л28] (см. Рис. 4).

% максимальной активностиКОБН

Рис. 4. Зависимость максимальной активности 2-кетоглутаратдегидрогеназы от рН, представленная экспериментальными точками [Л28], и описываемая кривой согласно уравнению скорости (3.1) при 1=25°С.

Ряд неизвестных параметров определялся из экспериментальных данных [Л27] (см. Рис. 5).

V, мМ/мин

Концттр ация 2-кетоглутар атэ, мМ

СоА=0.5 мМ; ЫАО=3 мМ; КООН=5.3 нМ; рН7.0; 1=4°С

Рис. 5. Зависимость начальной скорости 2-кетоглутаратдегидрогеназной реакции от концентрации 2-кетоглутарата, представленная экспериментальными точками [Л27] и описываемая теоретической кривой согласно уравнению скорости (3.1).

Глава 4. Исследование функционирования цикла Кребса при повышенной активности митохондрий и влияния на него салицнлата с помощью модели

После того как модель сегмента цикла Кребса митохондрии, в котором потребляются глутамат и малат, была построена, исследовались ответы системы. на изменение внешних условий. Было показано, как зависит скорость работы такого укороченного цикла Кребса от АТРазной нагрузки и степени восстановленности пиридиновых нуклеотидов.

Для описания эффекта салицилата на энергетический метаболизм использовались литературные экспериментальные данные. Были найдены данные о том, как изменяется трансмембранный потенциал и рН в митохондрии при воздействии салицилата. Константы ингибирования салицилатом двух ферментов цикла Кребса (а-кетоглутаратдегидрогеназы и сукцинатдегидрогеназы) определялись из описания полной моделью экспериментальных данных по влиянию салицилата на дыхание суспензии митохондрий (см. Рис. 6). Для того чтобы оценить вклад каждого из

О,, мнкраЛ/мг ткмш

L

1)KGou1=10mM, pHout =7.4, T=30°C; (белые квадраты)

2) KGout=10 мМ, pHout =7.4, T=30°C, Sal=6,7 мМ (черные

0 5 10 15 20 25 30 35 40 45 50 Время, mihi

квадраты).

Рис. 6. Ингибирование салицилатом скорости дыхания митохондрий на а-кетоглутарате, описываемая моделью и экспериментальными точками [JI14].

вышеперечисленных механизмов ингибирования салицилатом потока по описываемому сегменту цикла Кребса, рассматривалось влияние как отдельных механизмов ингибирования, так и их совместное действие на стационарный поток. На рис. 7,а показано, как скорость потребления глутамата зависит от его внемитохондриальной концентрации при отсутствии салицилата (кривая 1), при учете отдельных механизмов влияния салицилатов (кривые 2 - 5) и при совместном учете всех механизмов (кривая 6). Анализируя полученные результаты (рис. 7,а), можно заключить, что присутствие реакций, потребляющих СоА, -салицил-СоА лигазы и ацил-СоА-глицин ацилтрансферазы, практически не изменяет потока в цикле Кребса (см. Рис. 7,а, кривая 2). Разобщение окислительного фосфорилирования салицилатами (Рис. 7,а, кривая 3) оказывает незначительный эффект. Тогда как включение по отдельности остальных механизмов значительно снижает поток в цикле. В самом деле, принимая во внимание ингибирование либо а-кетоглутаратдегидрогеназы (Рис. 7,а, кривая 4), либо сукцинатдегидрогеназы (Рис. 7,а, кривая 5), получаем снижение скорости окисления глутамата практически в 20 раз. Включение всех возможных ингибирующих влияний салицилатов снижает поток почти до нулевого уровня (Рис. 7,а, кривая 6). Таким образом,

а)

VACC, мМ/мш1

б)

180

140

100

60

20 0

5 10 15 20

Концентрация внеммтохондриального глутамата, мМ

V, мМ/мив

1) влияние салицилатов не учитывается;

2) потребление СоА в процессе биотрансформации салицилатов; 3) разобщающее действие салицилатов;

4)ингибирование салицилатом а-кетоглутаратдегидрогеназы;

5)ингибирование салицилатом сукцинатдегидрогеназы;

6) учтены все влияния салицилатов (Sal = 5 мМ)

VV. ___'^АСС

у? кмс

УкСР]!**-^._

GlUoUt=20 мМ; KGout=0; Malout-0.5 мМ; Aspout=0

Концентрация салицилата, иМ

0.1

Рис. 7. а) Значимость различных механизмов ингибирования салицилатами цикла Кребса митохондрии, функционирующего на глутамате и манате. Зависимости скорости потребления глутамата от его внемитохондриальной концентрации соответствуют моделям, в которых учтены различные механизмы влияния салицилатов; б) Зависимость величины потоков через аспартат-глутаматный переносчик (АОС), а-кетоглутаратдегидрогеназу (а-КОБН) и а-кетоглутаратмалатный переносчик (а-КМС) от концентрации салицилата.

сравнение различных механизмов ингибирующего эффекта салицилата позволяет заключить, что главным образом этот эффект создается путем ингибирования сукцинатдегидрогеназы и а-кетоглутаратдегидрогеназы. На рис. 7,6 показано, как меняется стационарное распределение потоков в рассматриваемом сегменте цикла Кребса при добавлении салицилата. Видно, что в контроле при нулевой концентрации салицилата практически весь а-кетоглутарат поглощается а-кетоглутаратдегидрогеназой (см. схему на Рис. 1), тогда как при увеличении концентрации салицилата

поток через а-кетоглутаратдегидрогеназу (Vkgdh) падает, а поток через а-кетоглутаратмалатпый переносчик (Vkmc) увеличивается. Это происходит из-за ингибирования салидилатом двух ферментов нижнего сегмента цикла Кребса (см. Рис. 1), что приводит к перенаправлению потока через а-кетоглутаратмалатный шунт.

Предсказание возможных способов предотвращения снижения скорости потребления глутамата в цикле Кребса при воздействии салицилата.

В этом разделе ставится вопрос: возможно ли найти такие изменения концентраций внемитохондриальных субстратов, которые бы позволили увеличить потребление глутамата в цикле Кребса и компенсировать ингибирующее действие салицилата? Для решения этой задачи все влияния салицилатов были включены в полную модель (Рис. 1). На рис. 8 показано, что одновременное увеличение концентрации внешнего малата (с 0.495 мМ до 10 мМ), снижение концентрации внешнего а-кетоглутарата (с 0.54 мМ до нуля) и снижение концентрации внутримитохондриального глицина (с 1 мМ до 1е-4 цМ) приводит к значительному восстановлению стационарной скорости потребления глутамата аспартатглутаматным переносчиком. Этот результат может быть объяснен следующим образом. Как было показано выше, все механизмы влияния салицилата, кроме разобщающего, воздействуют на нижнюю часть описываемого сегмента цикла Кребса (реакции KGDH, STK, SDH, FUM на Рис. 1) и не влияют на верхнюю часть (реакции AspAT, MDH и KMC). Это означает, что перенаправление потока в цикле Кребса из нижней его части в реакцию-шунт, осуществляемую а-кетоглутаратмалатным переносчиком, может повлечь повышение потока в цикле Кребса, заингибированном салицилатом. На рис. 8,6 показано, что повышение суммарного потока аспартатглутаматного переносчика осуществляется именно за счет перераспределения потоков в пользу а-кетоглутаратмалатного шунта.

а)

б)

О 2 4 б 8 10 12 14 16 18 20 Концентрация внемитохондриального глутамата, мМ

V, мМ/мнн

Концентрация салицилата, мМ

1 - Sal=5 мМ; KGOU,=0.54 мМ; Malout=0.495 мМ; Aspout=0; Gly=l мМ;

2 - Sal=5 мМ; KGou,=0; Maloul=10 мМ; Aspom=0; Gly=0,l цМ.

GlUoU,=20 мМ; KGou,=0; Malout=10 мМ; AspOut=0; Gly=0,l цМ

Рис. 8. а) Влияние изменения концентраций внемитохондриальных метаболитов на стационарный поток в цикле Кребса при воздействии салицилата; б) Зависимость величины потоков через аспартат-глутаматный переносчик (АОС), а-кетоглутаратдегидрогеназу (а-КХЗОН) и а-кетоглутаратмалатный переносчик (а-КМС) от концентрации салицилата при реактивации их изменением концентраций метаболитов.

Глава 5. Описание с помощью модели цикла Кребса E.coli in vivo данных и предсказания модели

Значения тех свободных параметров модели цикла Кребса Е. coli, функционирующего на ацетате в аэробных условиях, которые не могли быть определены из имеющихся экспериментальных данных, а именно константы равновесия для фосфоенолпируваткарбоксилазы, малик-фермента, киназы/фосфатазы изоцитратдегидрогеназы и константы скорости для суммарной биосинтетической нагрузки, были оценены из in

vivo данных по распределению стационарных потоков в цикле Кребса [JI21] как такие значения перечисленных параметров, которые позволили воспроизвести на модели экспериментальные данные. Для этого также пришлось увеличить концентрации изоцитратлиазы,

фосфоенолпируваткарбоксилазы и глутаматдегидрогеназы, которые ранее были вычислены по специфической активности клеточного экстракта Е. coli. На рис. 9 представлено сравнение распределения потоков, измеренного in vivo (Рис. 9,а) и рассчитанного с помощью модели (Рис. 9,6). Видно, что модель хорошо воспроизводит экспериментально измеренное распределение потоков в цикле Кребса. Также с помощью модели было изучено поведение системы в зависимости от АТРазной и биосинтетической нагрузок и от интенсивности работы дыхательной цепи.

а)

ATP ADP

А цетат V7 Л , ДсР 100%

СоА

1-ув/ ХсСа4

PEF * Atfl Оксалоацетат

PBPCL рИД

NADH / 8

NAD MB

СоА

Пврудст а^ у Малат

73

щпрат

4 Ц«-- АсСоА

73 %\ асг3 IЬтА

Фумар ат

^sdhABCD

NADP. / icd\SS%

SíADPH%o3 2-кетоглутарат

CvKmmaí

NADH

-O,

Сукщпшл- СоА

ATP

/Ü^Cy™

б)

ATP д0р

Ацетат ЧУ^АсР ,

100% ^LP^TcoA

15% Р-*—\77%

PEP « р р^-Оксалоацетат*** \ - Г

* вгр^'Оксалоацетат^» 1 i Цитрат

Ття /

-у ИзОцитрат

Г, ME СоА .

ЬЪлах 4 АССОА J^ADPJ

7J J г-?^Глиоксш^Г / ,еЛ»К

Фумарат / . \ 2

7S\sdhABCD / 2-кетоглутарат

Сташшат^ -- —-Т^ИД

дТР^А^ысСХ! y^NADH

у. Сукцинил-СоА

Рис. 9. Распределение потоков в цикле Кребса £. со//, растущей на ацетате аэробно, измеренное экспериментально [Л21] (а) и полученное на модели цикла Кребса Е. coli (б). Обозначения как на Рис. 2.

ВЫВОДЫ

1. Построены кинетические модели сегмента цикла Кребса митохондрии, потребляющей глутамат и малат, и цикла Кребса Escherichia coli, растущей на ацетате аэробно, основанные на детальном описании функционирования отдельных ферментов.

2. С помощью модели сегмента цикла Кребса митохондрии получены ответы системы на изменение внешних условий энергетической и биосинтетической нагрузки клетки. На модели цикла Кребса E.coli получены зависимости стационарных концентраций метаболитов и стационарных потоков от концентрации субстрата ацетата, уровня биосинтетической и АТРазной нагрузки и от уровня потребления NADH комплексом I дыхательной цепи.

3. Показано, что при воздействии салицилата подавление функции митохондрий обусловлено главным образом ингибированием сукцинатдегидрогеназы и а-кетоглутаратдегидрогеназы. Модель позволяет предсказать, что одновременное увеличение концентрации малата и глутамата и снижение концентрации а-кетоглутарата в цитозоле, а также снижение концентрации внутримитохондриалыгого глицина приводит к значительному восстановлению стационарной скорости потребления глутамата в результате перераспределения потоков в сегменте цикла Кребса.

4. Модель цикла Кребса E.coli, построенная на основе in vitro экспериментальных данных из различных источников, позволяет описать экспериментальное распределение потоков в цикле при условии увеличения концентраций ферментов изоцитратлиазы, фосфоенолпируваткарбоксилазы и глутаматдегидрогеназы относительно концентраций этих ферментов, рассчитанных из соответствующих специфических активностей экстракта клеток E.coli, выращенных на ацетате.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Могилевская (Зобова) Е.А. Исследование гепатотоксичности салицилатов и поиск способов ее предотвращения с помощью кинетической модели цикла трикарбоновых кислот // Открытый всероссийский конкурс на лучшую научную студенческую работу в разделе медицинские науки. - М. - 2002. - С. 59.

2. Могилевская (Зобова) Е.А. Исследование механизмов гепатотоксичности салицилатов с помощью кинетической модели цикла трикарбоновых кислот / Могилевская (Зобова) Е.А., Демин О.В. // Тезисы докладов 2-го съезда токсикологов России. - М. - 2003. — С. 453.

3. Могилевская Е.А. Кинетическая модель функционирования 2-кетоглутаратдегидрогеназы Escherichia coli / Могилевская Е.А., Лебедева Г.В., Демин О.В. II Российский Биомедицинский журнал Medline.ru - Электрон, журнал. - 2006. - Т. 7, Ст. 44. - С. 442-449.

4. Могилевская Е.А. Кинетическая модель функционирования и регуляции изоцитратдегидрогеназы Escherichia coli / Могилевская Е.А., Лебедева Г.В., Горянин И.И., Демин О.В. // Биофизика. - 2007. - Т. 52, В. 1. - С. 47-56.

5. Могилевская Е.А. Кинетическая модель функционирования цитратсинтазы Е. coli / Могилевская Е.А., Лебедева Г.В., Демин О.В. // Математика, Компьютер, Образование. Труды XII международной конференции. - Т. 3. - Пущино, 2005. - С. 934-944.

6. Могилевская (Зобова) Е.А. Кинетическая модель цикла Кребса E.coli / Могилевская (Зобова) Е.А., Лебедева Г.В., Демин О.В. // Математика, Компьютер, Образование. Тезисы XII международной конференции. -Пущино, 2005. - С. 187.

7. Могилевская (Зобова) Е.А., Демин О.В. Кинетическая модель цикла Кребса митохондрии / Могилевская (Зобова) Е.А., Демин О.В. // Российская биоэнергетика: от молекул к клетке. Тезисы конференции. -Москва, 2005. - С. 68.

8. Mogilevskaya Е.А. Application of mitochondrial Krebs cycle kinetic modeling to investigate salicylate hepatotoxic effect // Systems Biology: redefining BioThermoKinetics. Trakai. - 2006. - P. 57.

9. Mogilevskaya E.A. Cellular kinetic modeling of the microbial metabolism / Goryanin I.I., Lebedeva G.V., Mogilevskaya E.A., Metelkin E.A., Demin O.V. // Methods Biochem. Anal. - 2006. - V. 49- P. 437-488.

10. Mogilevskaya (Zobova) E.A. Kinetic Model of E.coli Krebs Cycle / Mogilevskaya (Zobova) E.A., Lebedeva G.V., Demin O.V. II Developing

Concepts for Systems Biology. 11th Workshop of the BioThermoKinetics Study Group. - Oxford, 2004. - P.55.

11. Mogilevskaya (Zobova) E.A. Kinetic Model of E.coli Krebs Cycle / Mogilevskaya (Zobova) E.A., Lebedeva G.V., Demin O.V. // 12th Internationa] Conference on Intelligent Systems for Molecular Biology, 3rd European Conference on Computational Biology. - Glasgow, 2004. - P.217.

12. Mogilevskaya E.A. Kinetic Model of Mitochondrial Krebs Cycle: Unraveling the Mechanism of Salicylate Hepatotoxic Effects / Mogilevskaya E.A., Demin O.V., Goryanin I. // Journal of Biological Physics. - 2006. - V. 32.-P. 245-271.

13. Mogilevskaya (Zobova) E.A. Kinetic Modelling as a Modern Technology to Explore and Modify Living Cells / Demin O.V., Lebedeva G.V., Kolupaev A.G., Mogilevskaya (Zobova) E.A., Plyusnina T.Yu., Lavrova A.I., Dubinsky A., Goryacheva E.A., Tobin F., Goryanin I.I. // Modelling in Molecular Biology. Natural Computing Series. - Springer, 2004. - P. 59-103.

14. Mogilevskaya (Zobova) E.A. Kinetic modelling of the E. coli metabolism / Demin O.V., Plyusnina T.Y., Lebedeva G.V., Mogilevskaya (Zobova) E.A., Metelkin E.A., Kolupaev A.G., Goryanin I.I., Tobin F. // Topics in Current Genetics. - Springer, 2005. - P. 31-67.

ЛИТЕРАТУРА

[Л1] Edwards J.S., Ibarra R.U., Palsson B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data // Nat. Biotechnol. - 2001. - V.19. -P.125-130.

[Л2] Demin O.V., Lebedeva G.V., Kolupaev A.G., Zobova E.A., Plyusnina T.Yu., Lavrova A.I., Dubinsky A.Yu., Goryacheva E.A., Tobin F., Goryanin I.I. Kinetic Modelling as a Modern Technology to Explore and Modify Living Cells // Modelling in Molecular Biology. Natural Computing Series. - Springer, 2004. - P.59-103. [ЛЗ] Krebs H.A., Johnson W.A. The role of citric acid in intermediate metabolism in animal tissues // Enzymologia. - 1937. - N.4. - P.148-156.

[JI4] Кондрашова М.Н. Структурно-кинетическая организация цикла трикарбоновых кислот при активном функционировании митохондрий // Биофизика. - 1989. - Т. 34, вып. 3. - С.450-457.

[Л5] Chance B.C., Hollunger G. The Interaction of Energy and Electron Transfer Reactions in Mitochondria. I. GENERAL PROPERTIES AND NATURE OF THE PRODUCTS OF SUCCINATE-LINKED REDUCTION OF PYRIDINE NUCLEOTIDE //J. Biol. Chem. - 1961. - V. 236. - P.1534-1543. [Л6] Parlo R.A., Coleman P.S. Enhanced Rate of Citrate Export from Cholesterol-rich Hepatoma Mitochondria // J. Biol. Chem. - 1984. - V. 259, N. 16. - P.9997-10003. [Л7] Reitzer L.J., Wice B.M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells II J. Biol. Chem. - 1979. - V. 254. -P.2669-2676; Yudkoff M„ Nelson D., Daikhin Y., Erecinska M. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle // J. Biol. Chem. - 1994. -V. 269, N.44. -P. 27414-27420.

[JI8] Cronan J.E., LaPorte D. Tricarboxylic acid cycle and glyoxylate bypass // E.coli and Salm.typhimurium: Cellular and Molecular Biology. - ASM Press, 1996. - P.206-216.

[Л9] Kornberg H.L. and Krebs H.A. Synthesis of cell constituents from C2-units by a

modified tricarboxylic acid cycle // Nature. - 1957. - V. 179. - P.988-991.

[Л10] Temple A,R. Acute and chronic effects of aspirin toxicity and their treatment //

Archives of Internal Medicine. - 1981. -V. 141. - P. 364-369.

[Л11] Prescott L.F. Effects of non-narcotic analgesics on the liver // Drugs. - 1986. -

V. 32.-P. 129-147.

[Л12] Fromenty В., Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity // Pharmacological Therapeutics. - 1995,- V. 67. - P. 101-154.

[Л13] Vessey D.A., Hu J., Kelly M. Interaction of salicylate and ibuprofen with the carboxylic acid: CoA ligases from bovine liver mitochondria // Journal of Biochemical Toxicology. - 1996. - V. 11. - P. 73-78.

[JIM] Kaplan E.H., Kennedy J., Davis J. Effects of salicylate and other benzoates on oxidative enzymes of the tricarboxylic acid cycle in rat tissue homogenates // Archives of Biochemistry. - 1954. - V. 51. - P. 47-61.

fJI15] Haas R., Parker W.D., Stumpf Jr.D., Erugen L.A, Salicylate-induced loose coupling: protonmotive force measurements // Biochemical Pharmacology. - 1985. -V. 34. - P. 900-902.

[JI16] Bohnensack R., Sel'kov E.E. Stoichiometric regulation in the citric acid cycle. I. Linear interactions of intermediates // Studia biophysica. - 1977. - V.65. - P. 161-173; Bohnensack R., Sel'kov E.E. Stoichiometric regulation in the citric acid cycle. II. Nonlinear interactions // Studia biophysica. - 1977. - V.66. - P. 47-63. [JI17] Ramakrishna R., Edwards J.S., McCulloch A., Palsson B.O. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints // Am. J. Physiol. Regul. Integr. Сотр. Physiol. - 2001. - V.280, N.3. - P. R695-R704.

[Л18] Дынник B.B., Темнов А.В. Математическая модель окисления пирувата в митохондриях печени. Регуляция цикла Кребса адениновыми и пиридиновыми нуклеотидами // Биохимия. - 1977. - Т.42, вып.6. - С.1030-1044; Дынник В.В., Хайнрих Р., Сельков Е.Е. Математическая модель углеводного энергетического обмена. Взаимодействие гликолиза, цикла Кребса и Н-транспортных челноков при изменении нагрузки АТРазы // Биохимия. - 1980. - Т. 45, вып. 5. - С. 771782; Дынник В.В. Механизмы регуляции мышечного энергетического обмена при окислении глюкозы и жирных кислот. Математическая модель // Биохимия. - 1982. - Т. 47, вып. 8. - С. 1278-1288; Дынник В.В., Маевский Е.И., Григоренко Е.В., Ким Ю.В. Субстратное ингибирование в цикле трикарбоновых кислот // Биофизика. - 1984. - Т. 29, вып. 6. - С. 954-958.

[Л 19] Kohn М.С., Achs M.J., Garflnkel D. Computer simulation of metabolism in pyruvate-perfused rat heart. II. Krebs cycle // Am.J.PhysioI. - 1979. - V. 273, N. 3. -P. R159-R166; Джафаров P.X. Теоретическое исследование механизмов ингибирования цикла трикарбоновых кислот избытком субстратов. Диссертация на соискание ученой степени кандидата физико-математических наук. -Пущино, 1988; Cortassa S., Aon М.А., Marban Е., Winslow R.L., O'Rourke В. An integrated Model of cardiac mitochondrial energy metabolism and calcium dynamics //

Biophysical Journal. - 2003. - V. 84. - P. 2734-2755; K.Yugi, M. Tomita. A general computational model of mitochondrial metabolism in a whole organelle scale // Bioinformatics. - 2004. - V. 20. - P. 1795-1796.

[JI20] E.M.T.El-Mansi, G.C.Dawson and C.F.A.Bryce. Steady-state modelling of metabolic flux between the tricarboxylic acid cycle and the glyoxylate bypass in Escherichia coli // Comput.Applic.Biosci. - 1994. - V. 10, N. 3. - P. 295-299; Singh V. K., Ghosh I. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets // Theoretical Biology and Medical Modelling. - 2006. - V. 3. - P. 27. [JI21] Walsh K., Koshland D.E. Determination of flux through the branch point of two metabolic cycles // J. Biol. Chem. - 1984. - V. 259, N. 15. - P. 9646-9654. [JI22] Демин O.B., Горянин И.И., Холоденко Б.Н., Вестерхофф Х.В. Кинетическое моделирование энергетического метаболизма и генерации активных форм кислорода в митохондриях гепатоцита // Молекулярная биология. - 2001. - Т. 35, вып. 6. - С. 1095-1104.

[JI23] Miller S.P. et al. Locations of regulatory sites for Isocitrate Dehydrogenase

Kinase/Phosphatase // J. Biol. Chem. - 2000. - V. 275, N. 2. - P. 833-839.

[Л24] Корниш-Боуден Э. Основы ферментативной кинетики. М., 1979.

[JI25] Goryanin I., Hodgman T.C., and Selkov E. Mathematical simulation and

analysis of cellular metabolism and regulation // Bioinformatics. - 1999. - V. 15. - P.

749-758.

[Л26] Hooke R. and T.A. Jeeves. "Direct search" solution of numerical and statistical problems // J. of the Association for Computing Machinery. - 1961. - V. 8. - P. 212229.

[JI27] Waskiewicz D.E., Hammes G.G. Elementary steps in the reaction mechanism of the alpha-ketoglutarate dehydrogenase multienzyme complex from Escherichia coli: kinetics of succinylation and desuccinylation // Biochemistry. - 1984. - V. 23, N. 14. -P. 3136-3143.

[Л28] Amarasingham C.R., Davis B.D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli // J. Biol. Chem. - 1965. - V. 240, N. 9. -P. 3664-3668.

Отпечатано в ООО «Компания Спутник+» ПД № 1-00007 от 25.09.2000 г. Подписано в печать 25.06.07. Тираж 100 экз. Усл. п.л. 1,75 Печать авторефератов (095) 730-47-74, 778-45-60

Содержание диссертации, кандидата биологических наук, Могилевская, Екатерина Александровна

Введение.

Глава 1. Обзор литературы.

1.1 Цикл трикарбоновых кислот.

1.2 Общие сведения о гепатотоксичности аспирина.

1.3 Моделирование цикла Кребса митохондрии.

1.4 Моделирование цикла Кребса Е. coli.

Глава 2. Материалы и методы.

2.1. Кинетическая модель сегмента цикла Кребса митохондрии, потребляющей глутамат и малат.

2.2. Кинетическая модель цикла Кребса Е. coli.

2.3. Методы описания ферментов цикла Кребса в моделях.

2.4. Методы вывода уравнений стационарной скорости ферментов.

2.4.1 Метод графов Кинга-Альтмана.

2.5. Методы определения неизвестных параметров, входящих в уравнения, описывающие стационарные скорости работы ферментов.

2.6. Методы исследования поведения моделей цикла Кребса.

Глава 3. Описание кинетики ферментов цикла Кребса.

3.1. Описание кинетики ферментов цикла Кребса митохондрии.

3.2. Описание кинетики ферментов цикла Кребса Escherichia coli. ределение концентраций ферментов цикла Кребса митохондрии ^ментальных данных, полученных на суспензии митохондрий .]

Исследование ответов системы на изменение уело: юнирования митохондрий - предсказания модели.; следование влияния салицилата на цикл Кребса митохондри] ью модели.

Кинетическое описание влияния салицилата на цикл Кре ндрии.

Введение Диссертация по биологии, на тему "Теоретическое исследование механизмов функционирования и регуляции цикла Кребса митохондрии и Escherichia coli"

Актуальность проблемы. В последние годы наблюдается существенный прогресс в области молекулярно-биологических и генетических исследований бактерии Escherichia coli и других организмов. Клеточный метаболизм, включающий взаимопревращения тысяч молекул в виде катализируемых ферментами биохимических реакций, - очень активно изучаемая сейчас система. Для большинства биохимических путей в Е. coli известны все молекулы-метаболиты и стехиометрия их взаимопревращений, т.е. имеется так называемая статическая информация о последовательности реакций и о том, какие молекулы и в каких количествах в них участвуют. В данной ситуации может возникнуть иллюзия, что статической информации достаточно для предсказания функционирования биохимических путей при решении фундаментальных и прикладных (например, биоинженерных) задач. Отчасти, это действительно так - в некоторых случаях возможно сделать предсказания на основе только статической информации [1]. Однако, как правило, такой подход не оправдывает себя, поскольку внутриклеточные процессы определяются не только последовательностью реакций, но и регуляторными влияниями интермедиатов на ферменты, и генетической регуляцией уровней экспрессии ферментов, что позволяет клетке адаптироваться к изменениям внешней среды. Регуляторные механизмы в клетке ответственны за поддержание гомеостаза и переходы между различными физиологическими состояниями метаболизма. Вот почему крайне важно включать в модели регуляторные механизмы метаболических путей. Для построения таких моделей в данной работе был использован подход кинетического моделирования [2], который может быть, в частности, применен для изучения побочных эффектов лекарств. На основе данных по стехиометрии и регуляторным механизмам могут быть реконструированы внутриклеточные процессы, на которые лекарство оказывает негативное действие. Как правило, лекарства имеют множественные эффекты на внутриклеточный метаболизм, например, несколько ферментов могут быть активированы или ингибированы, а также ряд ферментов может быть вовлечен в экскрецию лекарства. Проблема выявления главных и второстепенных механизмов токсического действия лекарств не может быть решена только экспериментально, т. к. анализ различных влияний требует их избирательного выключения, а это, как правило, невозможно сделать в эксперименте. Кинетическое моделирование позволяет исследовать каждый эффект в отдельности и понять, какой из них имеет больший вклад в общий побочный эффект.

Цель данной работы заключалась в выявлении и описании с помощью кинетических моделей особенностей функционирования и регуляции цикла Кребса митохондрии и Escherichia coli.

Для достижения поставленной цели в рамках настоящей работы решались следующие основные задачи:

1. Разработать кинетические модели цикла Кребса митохондрии, потребляющей глутамат и малат, и Escherichia coli, растущей на ацетате аэробно, основанные на детальном описании функционирования отдельных ферментов.

2. Получить с помощью кинетических моделей цикла Кребса митохондрии и Escherichia coli ответы системы на изменение внешних условий -энергетической и биосинтетической нагрузки клетки.

3. Промоделировать совместное и изолированное влияние отдельных механизмов ингибирования салицилатом цикла Кребса для выявления среди них критических и предложить способы восстановления стационарной скорости в цикле Кребса, сниженной салицилатом.

4. Показать, возможно ли, объединяя в модели in vitro экспериментальные данные из различных источников, описать измеренное in vivo распределение потоков в цикле Кребса Е. coli, потребляющей ацетат как источник углерода.

Научная новизна. Впервые разработана кинетическая модель сегмента цикла Кребса митохондрии, который функционирует в состоянии повышенной активности митохондрий, на основе информации об отдельных ферментах. Значения кинетических параметров, входящих в уравнения скорости, оценены по in vitro литературным экспериментальным данным. Концентрации ферментов определены из экспериментальных данных по дыханию суспензии митохондрий на глутамате и малате. На модели изучены эффекты салицилата на энергетический метаболизм митохондрии. Было показано, что ингибирование сукцинатдегидрогеназы и а-кетоглутаратдегидрогеназы вносит существенный вклад в общее ингибирующее действие салицилата, тогда как разобщение окислительного фосфорилирования и потребление коэнзима А в реакциях трансформации салицилата незначительно влияют на скорость окисления субстратов в цикле Кребса. Модель позволяет предсказать, что заингибированный салицилатом поток в цикле Кребса может быть увеличен путем перераспределения потоков в цикле увеличением концентраций внемитохондриальных глутамата и малата и снижением концентраций внемитохондриального а-кетоглутарата и внутримитохондриального глицина. Разработана также детальная кинетическая модель цикла Кребса Escherichia coli, растущей на ацетате аэробно. На основе in vitro данных дано подробное описание функционирования и регуляции ферментов полного цикла Кребса и глиоксилатного шунта, учтена регуляция изоцитратдегидрогеназы путем фосфорилирования. С помощью модели показано, как будет изменяться распределение потоков между циклом Кребса и глиоксилатным шунтом при изменении энергетической и биосинтетической активностей клетки. Практическое значение. С помощью построенной модели сегмента цикла Кребса митохондрии, функционирующей при повышенном энергопотреблении, изучено ингибирующее влияние салицилата на стационарный поток по циклу Кребса и предложены возможные способы предотвращения его уменьшения. На модели цикла Кребса Escherichia coli показана возможность объединения in vitro экспериментальных данных по отдельным ферментам для описания поведения системы in vivo. Предложенный подход кинетического моделирования позволяет решать практические фармакологические (показать, как можно уменьшить токсические эффекты уже существующих лекарств, а также предсказать возможные побочные эффекты новых лекарственных веществ, которые находятся в стадии разработки) и биоинженерные задачи. Апробация работы. Результаты диссертации докладывались на 2 съезде токсикологов России (Москва, 2003), на 3 европейской конференции по вычислительной биологии (Глазго, 2004), на 11 и 12 международных конференциях по биотермокинетике (Оксфорд, 2004, Тракай, 2006), на 12 международной конференции «Математика. Компьютер. Образование» (Пущино, 2005), на конференции «Российская биоэнергетика: от молекул к клетке» (Москва, 2005).

Публикации. По материалам диссертации опубликовано 14 работ. Структура и объем работы. Работа состоит из введения, пяти глав исследований, заключения и списка литературы. Работа представляет собой рукопись на 166 страницах, включая 57 рисунков и 5 таблиц. Список литературы включает 131 работу.

Заключение Диссертация по теме "Биофизика", Могилевская, Екатерина Александровна

ЗАКЛЮЧЕНИЕ

В ходе проведенного исследования были сформулированы следующие выводы:

1. Построены кинетические модели сегмента цикла Кребса митохондрии, потребляющей глутамат и малат, и цикла Кребса Escherichia coli, растущей на ацетате аэробно, основанные на детальном описании функционирования отдельных ферментов.

2. С помощью модели сегмента цикла Кребса митохондрии получены ответы системы на изменение внешних условий - энергетической и биосинтетической нагрузки клетки. На модели цикла Кребса E.coli получены зависимости стационарных концентраций метаболитов и стационарных потоков от концентрации субстрата ацетата, уровня биосинтетической и АТРазной нагрузки и от уровня потребления NADH комплексом I дыхательной цепи.

3. Показано, что при воздействии салицилата подавление функции митохондрий обусловлено главным образом ингибированием сукцинатдегидрогеназы и а-кетоглутаратдегидрогеназы. Модель позволяет предсказать, что одновременное увеличение концентрации малата и глутамата и снижение концентрации а-кетоглутарата в цитозоле, а также снижение концентрации внутримитохондриального глицина приводит к значительному восстановлению стационарной скорости потребления глутамата в результате перераспределения потоков в сегменте цикла Кребса.

4. Модель цикла Кребса E.coli, построенная на основе in vitro экспериментальных данных из различных источников, позволяет описать экспериментальное распределение потоков в цикле при условии увеличения концентраций ферментов изоцитратлиазы, фосфоенолпируваткарбоксилазы и глутаматдегидрогеназы относительно концентраций этих ферментов, рассчитанных из соответствующих специфических активностей экстракта клеток E.coli, выращенных на ацетате.

Таким образом, на примере сегмента цикла Кребса митохондрии и цикла Кребса Escherichia coli в работе продемонстрированы возможности подхода кинетического моделирования. Предлагается способ теоретического изучения механизмов побочных эффектов лекарств с помощью кинетического моделирования. Представленный подход, включающий детальное описание ферментов с учетом регуляторных связей и определение входящих в уравнения скорости параметров по экспериментальным данным, является весьма перспективным для решения фармакологических и биоинженерных задач.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Могилевская (Зобова) Е.А. Исследование гепатотоксичности салицилатов и поиск способов ее предотвращения с помощью кинетической модели цикла трикарбоновых кислот // Открытый всероссийский конкурс на лучшую научную студенческую работу в разделе медицинские науки. - М. - 2002. -С. 59.

2. Могилевская (Зобова) Е.А. Исследование механизмов гепатотоксичности салицилатов с помощью кинетической модели цикла трикарбоновых кислот / Могилевская (Зобова) Е.А., Демин О.В. // Тезисы докладов 2-го съезда токсикологов России. - М. - 2003. - С. 453.

3. Могилевская Е.А. Кинетическая модель функционирования 2-кетоглутаратдегидрогеназы Escherichia coli / Могилевская Е.А., Лебедева Г.В., Демин О.В. // Российский Биомедицинский журнал Medline.ru -Электрон, журнал. - 2006. - Т. 7, Ст. 44. - С. 442-449.

4. Могилевская Е.А. Кинетическая модель функционирования и регуляции изоцитратдегидрогеназы Escherichia coli / Могилевская Е.А., Лебедева Г.В., Горянин И.И., Демин О.В. // Биофизика. - 2007. - Т. 52, В. 1. - С. 47-56.

5. Могилевская Е.А. Кинетическая модель функционирования цитратсинтазы Е. coli / Могилевская Е.А., Лебедева Г.В., Демин О.В. // Математика, Компьютер, Образование. Труды XII международной конференции. - Т. 3. -Пущино, 2005. - С. 934-944.

6. Могилевская (Зобова) Е.А. Кинетическая модель цикла Кребса E.coli / Могилевская (Зобова) Е.А., Лебедева Г.В., Демин О.В. // Математика, Компьютер, Образование. Тезисы XII международной конференции. -Пущино, 2005.-С. 187.

7. Могилевская (Зобова) Е.А., Демин О.В. Кинетическая модель цикла Кребса митохондрии / Могилевская (Зобова) Е.А., Демин О.В. // Российская биоэнергетика: от молекул к клетке. Тезисы конференции. - Москва, 2005. -С. 68.

8. Mogilevskaya E.A. Application of mitochondrial Krebs cycle kinetic modeling to investigate salicylate hepatotoxic effect // Systems Biology: redefining BioThermoKinetics. Trakai. - 2006. - P. 57.

9. Mogilevskaya E.A. Cellular kinetic modeling of the microbial metabolism / Goryanin I.I., Lebedeva G.V., Mogilevskaya E.A., Metelkin E.A., Demin O.V. // Methods Biochem. Anal. - 2006. - V. 49- P. 437-488.

10. Mogilevskaya (Zobova) E.A. Kinetic Model of E.coli Krebs Cycle /

Mogilevskaya (Zobova) E.A., Lebedeva G.V., Demin O.V. // Developing tli

Concepts for Systems Biology. 11 Workshop of the BioThermoKinetics Study Group. - Oxford, 2004. - P.55.

11. Mogilevskaya (Zobova) E.A. Kinetic Model of E.coli Krebs Cycle / Mogilevskaya (Zobova) E.A., Lebedeva G.V., Demin O.V. // 12th International Conference on Intelligent Systems for Molecular Biology, 3rd European Conference on Computational Biology. - Glasgow, 2004. - P.217.

12. Mogilevskaya E.A. Kinetic Model of Mitochondrial Krebs Cycle: Unraveling the Mechanism of Salicylate Hepatotoxic Effects / Mogilevskaya E.A., Demin O.V., Goryanin I. // Journal of Biological Physics. - 2006. - V. 32. - P. 245-271.

13. Mogilevskaya (Zobova) E.A. Kinetic Modelling as a Modern Technology to Explore and Modify Living Cells / Demin O.V., Lebedeva G.V., Kolupaev A.G., Mogilevskaya (Zobova) E.A., Plyusnina T.Yu., Lavrova A.I., Dubinsky A., Goryacheva E.A., Tobin F., Goryanin I.I. // Modelling in Molecular Biology. Natural Computing Series. - Springer, 2004. - P. 59-103.

14. Mogilevskaya (Zobova) E.A. Kinetic modelling of the E. coli metabolism / Demin O.V., Plyusnina T.Y., Lebedeva G.V., Mogilevskaya (Zobova) E.A., Metelkin E.A., Kolupaev A.G., Goryanin I.I., Tobin F. // Topics in Current Genetics. - Springer, 2005. - P. 31-67.

Библиография Диссертация по биологии, кандидата биологических наук, Могилевская, Екатерина Александровна, Красноярск

1. Edwards J.S., Ibarra R.U., Palsson B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data // Nat. Biotechnol.2001.-V. 19. P. 125-130.

2. Krebs H.A., Johnson W.A. The role of citric acid in intermediate metabolism in animal tissues // Enzymologia. 1937. - N.4. - P.148-156.

3. Кондрашова M.H. Структурно-кинетическая организация цикла трикарбоновых кислот при активном функционировании митохондрий // Биофизика. 1989. - Т. 34, вып. 3. - С.450-457.

4. Kondrashova M.N., Gogvadze V.G., Medvedev B.I., Babsky A.M. Succinic acidoxidation as the only energy support of intensive Ca2+ uptake by mitochondria // Biochem. Biophys. Res. Commun. 1982. - V. 109. - N. 2 - P. 376-381.

5. Кондрашова M.H. // Митохондрии. M.: Наука. - 1972. - С. 151.

6. Кондрашова M.H., Маевский Е.И., Бабаян Г.В. и др. // Митохондрии. М.:1. Наука. 1973. - С. 112.

7. Siess Е.А., Wieland О.Н. Early kinetics of glucagon action in isolatedhepatocytes at the mitochondrial level // Eur. J. Biochem. 1980. - V.l 10 - N.l -P. 203-210.

8. Robinson J.B., Srere P. A. Organization of Krebs tricarboxylic acid cycle enzymesin mitochondria // J. Biol. Chem. 1985. - V. 260. - N.l9. - P. 10800-10805.

9. Parlo R.A., Coleman P.S. Enhanced Rate of Citrate Export from Cholesterol-rich

10. Hepatoma Mitochondria. 1984. // J. Biol. Chem. V. 259. - N.16. - P. 999710003.

11. Reitzer L.J., Wice B.M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells // J. Biol. Chem. 1979. - V. 254. -P. 2669-2676.

12. Yudkoff M., Nelson D., Daikhin Y., Erecinska M. Tricarboxylic acid cycle in ratbrain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle // J. Biol. Chem. -1994. V. 269. - N. 44. - P. 27414-27420.

13. Cronan J.E., LaPorte D. Tricarboxylic acid cycle and glyoxylate bypass // E.coliand Salm.typhimurium: Cellular and Molecular Biology. ASM Press. - 1996. -P. 206-216.

14. Peng L., Shimizu K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement // Appl. Microbiol. Biotechnol. 2003. - V. 61. - P. 163178.

15. Машковский М.Д. // Лекарственные средства. 2000. - T.l. - C.163.

16. Temple A.R. Acute and chronic effects of aspirin toxicity and their treatment // Archives of Internal Medicine. -1981. -V. 141. P. 364-369.

17. Prescott L.F. Effects of non-narcotic analgesics on the liver // Drugs. 1986. -V. 32. - P. 129-147.

18. Benson G.D. Hepatotoxicity following the therapeutic use of antipyretic analgesics // American Journal of Medicine. 1983. - V. 75 (5 A). - P. 85-93.

19. Iancu Т., Elan E. Ultrastructural changes in aspirin hepatotoxicity // American Journal of Clinical Pathology. 1976. -V. 66. -N. 3,- P. 570-575.

20. Майоре А.Я., Дудник Л.Б., Копылова Е.И., Варганова Е.И., Кузнецова А.В.,

21. Fromenty В., Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity // Pharmacological Therapeutics. 1995. - V. 67. -P. 101-154.

22. Forman W.B., Davidson E.D., Webster L.T. Enzymatic Conversion of Salicylateto Salicylurate // Molecular Pharmacology. 1971. - V. 7. - P. 247-259.

23. Vessey D.A., Hu J., Kelly M. Interaction of salicylate and ibuprofen with the carboxylic acid: CoA ligases from bovine liver mitochondria // Journal of Biochemical Toxicology. 1996. - V. 11. - P. 73-78.

24. Kaplan E.H., Kennedy J., Davis J. Effects of salicylate and other benzoates on oxidative enzymes of the tricarboxylic acid cycle in rat tissue homogenates // Archives of Biochemistry. 1954. - V. 51. - P. 47-61.

25. Haas R., Parker W.D., Stumpf Jr.D., Erugen L.A. Salicylate-induced loose coupling: protonmotive force measurements // Biochemical Pharmacology. -1985.-V. 34.-P. 900-902.

26. Schwartz R., Landy G., Taller D., et al. Organic acid excretion in salicylate intoxication // Journal of Pediatrics. -1965. V. 66. - P. 658.

27. Bohnensack R., Sel'kov E.E. Stoichiometric regulation in the citric acid cycle. I.1.near interactions of intermediates // Studia biophysica. 1977. - B.65. - C. 61-173.

28. Bohnensack R., Sel'kov E.E. Stoichiometric regulation in the citric acid cycle. II. Non-linear interactions // Studia biophysica. 1977. - B.66. - C. 47-63.

29. Дынник B.B., Темнов A.B. Математическая модель окисления пирувата в митохондриях печени. Регуляция цикла Кребса адениновыми и пиридиновыми нуклеотидами // Биохимия. 1977. - Т. 42. - В. 6. - С. 10301044.

30. Kohn М.С., Achs M.J., Garfinkel D. Computer simulation of metabolism in pyruvate-perfused rat heart. II. Krebs cycle // 1979. Am. J. Physiol. - V. 273. -N. 3. P. R159-R166.

31. Дынник В.В., Хайнрих Р., Сельков Е.Е. Математическая модель углеводного энергетического обмена. Взаимодействие гликолиза, циклом Кребса и Н-транспортных челноков при изменении нагрузки АТРазы // Биохимия. 1980. - Т. 45. - В. 5. - С. 771-782.

32. Дынник В.В. Механизмы регуляции мышечного энергетического обмена при окислении глюкозы и жирных кислот. Математическая модель // Биохимия. 1982. - Т. 47. - В. 8. - С. 1278-1288.

33. Дынник В.В., Маевкий Е.И., Григоренко Е.В., Ким Ю.В. Субстратное ингибирование в цикле трикарбоновых кислот // Биофизика. 1984. - Т. 29. -В. 6.-С. 954-958.

34. Джафаров Р.Х. Теоретическое исследование механизмов ингибирования цикла трикарбоновых кислот избытком субстратов // Диссертация на соискание ученой степени кандидата физико-математических наук. -Пущино. 1988.

35. Edwards J.S., Palsson B.O. How will bioinformatics influence metabolic engineering? // Biotechnol. Bioeng. 1998. - V. 58. - N. 2-3. - P. 162-169.

36. Cortassa S., Aon M.A., Marban E., Winslow R.L., O'Rourke B. An integrated Model of cardiac mitochondrial energy metabolism and calcium dynamics // Biophysical Journal. 2003. - V. 84. - P. 2734-2755.

37. K.Yugi, M. Tomita. A general computational model of mitochondrial metabolism in a whole organelle scale // Bioinformatics. 2004. - V. 20. - N. 11. -P. 1795-1796.

38. El-Mansi E.M.T., G.C.Dawson and C.F.A.Bryce. Steady-state modelling of metabolic flux between the tricarboxylic acid cycle and the glyoxylate bypass in Escherichia coli // Comput. Applic. Biosci. 1994. - V. 10. - N. 3. - P. 295-299.

39. Walsh К., Koshland DE. Determination of flux through the branch point of two metabolic cycles // J. Biol. Chem. 1984. - V. 259. - N. 15. - P. 9646-9654.

40. Singh V. K., Ghosh I. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets // Theoretical Biology and Medical Modelling. 2006. -V.3.-P. 27.

41. Демин O.B., Горянин И.И., Холоденко Б.Н., Вестерхофф X.B. Кинетическое моделирование энергетического метаболизма и генерации активных форм кислорода в митохондриях гепатоцита // Молекулярная биология.-2001.-Т. 35. В. 6. - С. 1095-1104.

42. Borst P. The pathway of glutamate oxidation by mitochondria isolated from different tissues // Biochim. Biophys. Acta. 1962. - V. 57. - P. 256-269.

43. Wilson D.F., Nelson D., Erecinska M. Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation // FEBS Letters. 1982. -V. 143.-N. 2.-P. 228-232.

44. Kornberg H.L., Krebs H.A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle // Nature. 1957. - V. 179. - P. 988-991.

45. Miller S.P., Chen R., Karschnia E.J., Romfo C., Dean A., LaPorte D.C. Locations of regulatory sites for Isocitrate Dehydrogenase Kinase/Phosphatase // J. Biol. Chem. 2000. - V. 275. - N. 2. - P. 833-839.

46. Корниш-Боуден Э. Основы ферментативной кинетики. // Изд-во «Мир». -М.-1979.

47. Huang C.Y. Derivation of Initial Velocity and Isotope Exchange Rate Equations // Methods in Enzymology. 1979. - V. 63. - P. 54-84.

48. King E.L., Altman C. // Journal of Physical Chemistry. 1956. - V. 60. - P. 1375-1378.

49. Goryanin I., Hodgman T.C., Selkov, E. Mathematical simulation and analysis of cellular metabolism and regulation // Bioinformatics. 1999. - V. 15. - P. 749758.

50. Hook R., T.A. Jeeves. "Direct search" solution of numerical and statistical problems // J. ACM. 1961. - V. 8. - P. 212-229.

51. Dierks T., Kramer R. Asymmetric orientation of the reconstituted aspartate/glutamate carrier from mitochondria // Biochimica et Biophysica Acta. 1988.-V. 937.-P. 112-126.

52. La Noue K.F., Duszynski J., Watts J.A., McKee E. Kinetic properties of aspartate transport in rat heart mitochondrial inner membranes // Archives of Biochemistry and Biophysics. 1979. - V. 195. - P. 578-590.

53. Cascante M., Cortes A. Kinetic studies of chicken and turkey liver mitochondrial aspartate aminotransferase // Biochem. J. 1988. - V. 250. - P. 805-812.

54. Kuramitsu S., Inoue K., Kondo K., Aki K., Kagamiyama H. Aspartate aminotransferase isozymes from rabbit liver. Purification and properties // J. Biochem. 1985. -V. 97. - P. 1337-1345.

55. Garber A.J., Hanson R.W. The interrelationships of the various pathways forming gluconeogenic precursors in guinea pig liver mitochondria // J. Biol. Chem. 1971.-V. 246. - P. 589-598.

56. Siess E.A., Kientsch-Engel R.I., Wieland O.H. Concentration of free oxaloacetate in the mitochondrial compartment of isolated liver cells // Biochem. J.- 1984.-V. 218.-P. 171-176.

57. McCormack J.G., Denton R.M. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex // Biochem. J. 1979. - V. 180. - P. 533-544.

58. Massey V. The composition of the ketoglutarate dehydrogenase complex // Biochim. Biophys. Acta. 1960. - V. 38. - P. 447-460.

59. Smith C.M., Bryla J., Williamson J.R Regulation of mitochondrial a-ketoglutarate metabolism by product inhibition of a-ketoglutarate dehydrogenase // J. Biol. Chem. 1974. - V. 249. - P. 1497-1505.

60. Hamada M., Koike K., Nakaula Y., Hiraoka Т., Koike M., Hashimoto Т. A kinetic study of the a-keto acid dehydrogenase complexes from pig heart mitochondria // J. Biochem. 1975. - V. 77. - P. 1047-1056.

61. Cha S., Parks R.E. Succinic thiokinase. II. Kinetic studies: initial velocity, product inhibition, and effect of arsenate // J. Biol. Chem. 1964. - V. 239. - P. 1968-1977.

62. Cha S., Parks R.E. Succinic thiokinase.I.Purification of the enzyme from pig heart. // J. Biol. Chem. 1964. - V. 239. - P. 1961-1967.

63. Kaufman S., Alivisatos S.G.A. Purification and properties of the phosphorilating enzyme from spinach// J. Biol. Chem. 1955. - V. 216. - P. 141-152.

64. Kotlyar A.B., Vinogradov A.D. Dissociation constants of the succinate dehydrogenase complexes with succinate, fumarate and malonate // Biokhimiya. 1984.-V. 49.-P. 511-518.

65. Grivennikova V.G., Gavrikova E.V., Timoshin A.A., Vinogradov A.D. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction // Biochim. Biophys. Acta. -1993.-V. 1140.-P. 282-292.

66. Виноградов А.Д. Сукцинат-убихинон редуктазный участок дыхательной цепи // Биохимия. 1986. - Т. 51. - Вып. 12. - С. 1944-1973.

67. Alberty R.A. Fumarase // The Enzymes. 1961. - V. 5(B). - P. 531-544.

68. Greenhut J., Umezawa H., Rudolph F.B. Inhibition of Fumarase by S-2,3-Dicarboxyaziridine // J. Biol. Chem. 1985. - V. 260. - P. 6684-6686.

69. Heyde E., Ainsworth S. Kinetic Studies on the Mechanism of the Malate Dehydrogenase Reaction // J. Biol. Chem. 1968. - V. 243. - P. 2413-2423.

70. Indiveri C., Dierks T., Kramer R., Palmieri F. Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria // Eur. J. Biochem. -1991. V. 198. - P. 339-347.

71. Ricks C.A., Cook R.M. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver // J Dairy Sei. 1981. - V. 64. - P. 23242335.

72. Fox D.K., Roseman S. Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli // J. Biol. Chem. -1986. V. 261. - N. 29. - P. 13487-13497.

73. Cleland W.W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations // Biochim. Biophys. Acta. 1963.-V. 67.-P. 104-137.

74. D.S. Pereira, L.J. Donald, D.J. Hosfield, H.W. Duckworth. Active site mutants of Escherichia coli citrate synthase. Effects of mutations on catalytic and allosteric properties // J. Biol. Chem. 1994. - V. 269. -N. 1. - P. 412-417.

75. Guynn R.W., Gelberg H.J., Veech R.L. Equilibrium Constants of the Malaie Dehydrogenase, Citrate Synthase, Citrate Lyase, and Acetyl Coenzyme A Hydrolysis Reactions under Physiological Conditions // J. Biol. Chem. 1973. -V. 248.-N. 20.-P. 6957-6965.

76. Wright J.A., Sanwal B.D. Regulatory Mechanisms involving nicotinamide adenine nucleotides as allosteric effectors // J. Biol. Chem. 1971. - V. 246. -N. 6.-P. 1689-1699.

77. Jangaard N.O., Unkeless J., Atkinson D.E. The inhibition of Citrate Synthase by adenosine triphosphate // Biochim. Biophys. Acta. 1968. - V. 151. - P. 225235.

78. Faloona G.R., Srere P.A. Escherichia coli citrate synthase. Purification and the effect of potassium on some properties // Biochemistry. 1969. - V. 8. - N. 11.-P. 4497-4503.

79. Donald L.J., Crane B.R., Andersone D.H., Duckworth H.W. The role of cysteine 206 in allosteric inhibition of Escherichia coli citrate synthase // J. Biol. Chem. -1991.-V. 266.-N. 31.-P. 20709-20713.

80. Jordan P.A., Tang Y., Bradbury A.J., Thomson A.J., Guest J.R. Biochemical and spectroscopic characterization of E.coli aconitases (AcnA and AcnB) // Biochem. J. 1999.-V. 344.-P. 739-746.

81. Nimmo H.G. Kinetic mechanism of Escherichia coli isocitrate dehydrogenase and its inhibition by glyoxylate and oxaloacetate // Biochem. J. 1986. - V. 234. -P. 317-323.

82. Dean A.M., Koshland D.E. Kinetic mechanism of E.coli Isocitrate Dehydrogenase // Biochemistry. 1993. - V. 32. - P. 9302-9309.

83. Stoddard B.L., Dean A., Koshland D.E. Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-A resolution: a pseudo-Michaelis ternary complex // Biochemistry. 1993. - V. 32.-P. 9310-9316.

84. Uhr M.L., Thompson V.W., Cleland W.W. The kinetics of pig heart triphosphopyridine nucleotide-isocitrate dehydrogenase. I. Initial velocity, substrate and product inhibition, and isotope exchange studies // J. Biol. Chem. -1974.-V. 249.-P. 2920-2927.

85. Stueland C.S., Eck K.R., Stieglbauer, LaPorte D.C. Isocitrate dehydrogenase kinase/phosphatase exhibits an intrinsic adenosine triphosphatase activity // J. Biol. Chem. 1987. - V. 262. - P. 16095- 16099.

86. Stueland C.S., Gorden K., LaPorte D.C. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step // J. Biol. Chem. 1988. - V. 263. - P. 19475-19479.

87. Lowry O.H., Carter J., Ward J.B., Glaser L. The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli // J. Biol. Chem. -1971. -V. 246. P. 6511-6521.

88. Waskiewicz D.E., Hammes G.G. Elementary steps in the reaction mechanism of the alpha-ketoglutarate dehydrogenase multienzyme complex from Escherichia coli: kinetics of succinylation and desuccinylation //Biochemistry. 1984.-V. 23.-N. 14.-P. 3136-3143.

89. Amarasingham C.R., Davis B.D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli // J. Biol. Chem. 1965. - V. 240. -N. 9. - P. 3664-3668.

90. Grinnell F.L., Nishimura J.S. Succinic Thiokinase of Escherichia coli. Purification, phosphorylation of the enzyme, and exchange reactions catalyzed by the enzyme // Biochemistry. -1969. -V. 8. N. 2. - P. 562-568.

91. Kim I.C., Bragg P.D. Some properties of the Succinate Dehydrogenase of Escherichia coli // Canadian journal of biochemistry. -1971. -V. 49. P. 1098.

92. Hirsch C.A., Rasminsky M., Davis B.D., Lin E.C. A fumarate reductase in Escherichia coli distinct from succinate dehydrogenase // J. Biol. Chem. 1963. -V. 238.-P. 3770-3774.

93. Flint D.H. Initial kinetic and mechanistic characterization of Escherichia coli fumarase A // Arch. Biochem. Biophys. 1994. - V. 311. - N. 2. - P. 509-516.

94. Wright S.K., Zhao F.J., Rardin J., Milbrandt J., Helton M., Furumo N.C. Mechanistic studies on malate dehydrogenase from Escherichia coli // Arch. Biochem. Biophys. 1995. - V. 321. -N. 2. - P. 289-296.

95. Murphey W.H., Kitto G.B. Malate Dehydrogenase from E.coli // Methods in Enzymology. -1969. V. 13. - P. 145-147.

96. MacKintosh C., Nimmo H.G. Purification and regulatory properties of isocitrate lyase from Escherichia coli ML308 // Biochem. J. 1988. - V. 250. - N. 1. - P. 25-31.

97. Howard B.R., Endrizzi J.A., Remington S.J.Crystal structure of Escherichia coli malate synthase G complexed with magnesium and glyoxylate at 2.0 A resolution: mechanistic implications // Biochemistry. 2000. - V. 39. -N. 11. -P. 3156-3168.

98. Falmagne P., Wiame J.M. Purification and partial characterization of two malate synthases of Echerichia coli // Eur. J. Biochem. 1973. - V. 37. - P. 415-424.

99. Sundaram T.K., Chell R.M., Wilkinson A.E. Monomeric malate synthase from a thermophilic Bacillus. Molecular and kinetic characteristics // Arch. Biochem. Biophys.- 1980.-V. 199.-P. 515-525.

100. Beeckmans S., Khan A.S., Kanarek L., Van Driessche E. Ligand binding on to maize (Zea mays) malate synthase: a structural study // Biochem. J. 1994. - V. 303.-P. 413-421.

101. Padan E., Zilberstein D., Schuldiner S. pH homeostasis in bacteria // Biochim. Biophys. Acta. 1981. - V. 650. - P. 151-166.

102. Gene-protein database of Escherichia coli K-12 // In E.coli and Salm.typhimurium:Cellular and Molecular Biology (Neidhardt FC, ed.). -1996. -Edition 6. ASM Press, Washington. - P. 2067.

103. Teller J.K., Fahien L.A., Valdivia E. Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver // J. Biol. Chem. 1999. - V. 265. -N. -32.-P. 19486-19494.

104. Robinson J.B., Inman J.L., Sumegi B., Srere P.A. Further characterization of the Krebs Tricarboxylic Acid Cycle Metabolon // J. Biol. Chem. 1987. - V. 262.-N. 4.-P. 1786-1790.

105. Fahien L.A., Kmiotek E.H., MacDonald M.J., Fibich В., Mandic M. Regulation of malate dehydrogenase activity by glutamate, citrate, a-ketoglutarate, and multienzyme interaction. // J. Biol. Chem. 1988. - V. 263. - N. 22. - P.10687-10697.

106. Panov A.V., Scaduto R.C. Jr. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles // Arch. Biochem. Biophys. -1995.-V. 316.-N. 2.-P. 815-820.

107. Скулачев В.П. Энергетика биологических мембран // 1989. Москва. -«Наука».

108. Wright В.Е., Butler М.Н., Albe K.R. Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction // J. Biol. Chem. 1992. -V. 267. -N. 5. - P. 3101-3105.

109. Hoek J.B. GDH and the oxidoreduction state of nicotinamide nucleotides in rat-liver mitochondria. 1971. Ph. D. Thesis.

110. Garber AJ, Hanson RW. The interrelationships of the various pathways forming gluconeogenic precursors in guinea pig liver mitochondria. 1971. J. Biol. Chem., 246, 589-598.

111. Williamson DH, Lund P, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. 1967. Biochem. J., 103,514-527.

112. Hansford RG, Johnson RN. The steady state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria. 1975. J. Biol. Chem., 250, 8361-8375.

113. Vallari DS, Jackowski S, Rock CO. Regulation of pantothenate kinase by coenzyme A and its thioesters. 1987. J. Biol. Chem., 262, 2468-2471.

114. Lakshmi TM, Helling RB. Acetate metabolism in Escherichia coli. 1978. Can. J. Microbiol., 24(2), 149-153.

115. Varghese S, Tang Y, Imlay JA (2003) Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J. Bacterid., 185, 221230.

116. Walsh K., Koshland DE. Branch point control by the Phosphorylation state of isocitrate dehydrogenase. 1985. J. Biol. Chem., 260(14), 8430-8437.

117. LaPorte D.C., Koshland D.E.Jr. Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. 1983. Nature. 305(5932), 286-290.121. http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/STAT NEW.cgi

118. Andersen K. B., K. von Meyenburg. Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli. 1977. J. Biol. Chem., 252(12), 4151-4156.

119. S.L. Miller, D. Smith-Magowan. The thermodynamics of the Krebs cycle and related compounds. 1990. J. Phys. Chem., 19(4), 1049-1073.

120. Krebs A, Bridger WA. The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli. 1980. // Can journal of biochemistry, 58, 309-318.

121. Rose IA, Grunberg-Manago M, Korey SR, Ocho A S. Enzymatic phosphorylation of acetate. 1954. J. Biol. Chem., 211, 737-756.

122. Suzuki T. Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides. 1969. Biochim. Biophys. Acta, 191, 559-569.

123. Jordan PA, Tang Y,Bradbury AJ,Thomson AJ, Guest JR. Biochemical and spectroscopic characterization of E.coli aconitases (AcnA and AcnB). 1999. Biochem. J., 344, 739-746.

124. Sakamoto N, Kotre AM, Savageau MA. Glutamate dehydrogenase from Escherichia coli: purification and properties. 1975. J. Bacterid. ,124(2), 775-783.

125. Thuma E., Schirmer R.H., Schirmer I. Preparation and characterization of a crystalline human ATP:AMP phosphotransferase // Biochim. Biophys. Acta.-1972.-V. 268. -N. 1. -P. 81-91.