Бесплатный автореферат и диссертация по биологии на тему
Роль белков в молекулярной организации клеточной стенки дрожжей
ВАК РФ 03.00.03, Молекулярная биология

Содержание диссертации, доктора биологических наук, Калебина, Татьяна Сергеевна

1. ВВЕДЕНИЕ 8 И. ОБЗОР ЛИТЕРАТУРЫ

СТРОЕНИЕ КЛЕТОЧНОЙ СТЕНКИ ДРОЖЖЕЙ И

ОСНОВНЫЕ ЭТАПЫ БИОСИНТЕЗА ЕЕ КОМПОНЕНТОВ»

1 Г ЛЮК АН

1.1. Строение и локализация глюкана в клеточной стенке

1.2.Биосинтез Р1,3-глюкана

1.3. Встраивание р 1,3-глюкана в клеточную стенку

1.4. Биосинтез и встраивание 01,6-глюканов

2. ХИТИН

2.1. Локализация в клеточной стенке

2.2. Основные этапы биосинтеза хитина

3 БЕЛКИ КЛЕТОЧНОЙ СТЕНКИ ДРОЖЖЕЙ - ОБЩАЯ ХАРАКТЕРИСТИКА И

РАЗНООБРАЗИЕ

3.1. Экстракция белков из клеточной стенки

3.2.0-маннозилированые белки

3.3.Ы-маннозилированые белки

3.4.Белки, содержащие остаток гликозил-фосфоинозитольного «якоря»

3.5. Основные этапы биосинтеза Ы- и О-связанных маннозных цепей и ферменты, их осуществляющие 32 3.5.1 .Биосинтез О-гликозидных цепей

3 .5.2. Биосинтез Ы-гликозидных цепей

3.6. Разнообразие белков клеточной стенки дрожжей

3.6.1. Белки, экстрагируемые детергенами и тиоловыми реагентами при нагревании

3.6.2. Белки, экстрагируемые глюканазами

3.6.3. Белки, экстрагируемые щелочью

3.7. Регуляция экспрессии белков ковалентно связанных с глкжаном клеточной стенки дрожжей

4 СТРОЕНИЕ КЛЕТОЧНОЙ СТЕНКИДРОЖЖЕЙ И РОЛЬ БЕЖОВ В ФОРМИРОВАНИИ И ПОДДЕРЖАНИИ ЕЕ МОЛЕКУЛЯРНОЙ СТРУКТУРЫ 49 ЗАКЛЮЧЕНИЕ

III МАТЕРИАЛЫ И МЕТОДЫ

1. Используемые в работе реактивы

2. Используемые в работе штаммы микроорганизмов и условия их выращивания 57 3 . Выделение ДНК

3.1. Выделение плазмидной ДНК

3.2. Выделение ДНК из дрожжей 61 3 .3. Выделение ДНК из грибов 61 3.4. Выделение ДНК из бактерий и архебактерий

Ч 4. Выделение РНК из дрожжей

5. Электрофоретические методы

5.1. Электрофорез нуклеиновых кислот в агарозном геле

5.2. Электрофорез белков в ПААГ в денатурирующих условиях

6. Методы клонирования 64 6.1. Ферментативная обработка ДНК 6.2. Введение чужеродной ДНК в клетку Е. coli

6.2.1. Трансдукция Е. coli бактериофагом лямбда

6.2.2. Трансформация E.coli

6.2.3. Трансформация дрожжей

6.3. Создание геномной библиотеки Candida utilis

6.4. Библиотека генов Hansenula polymorpha

7. Радиоактивное мечение плазмид и фрагментов ДНК ник-трансляцией 67 8 . Секвенирование ДНК

9. Саузерн-блот гибридизация

10. Нозерн-блот гибридизация

11. ПЦР-амплификация

12. Экстракция ДНК из агарозного геля после электрофоретического разделения

13. Выделение клеточных стенок дрожжей

14. Депротеинизация КС дрожжей с помощью трипсина и проназы, а также NaOH

15. Экстракция белков из КС дрожжей (Mrsa et al., 1997 в нашей модификации)

16. Выделение и анализ белков среды роста дрожжей

16.1. Выделение белков из среды роста дрожжей

16.2. Анализ устойчивости белков среды роста к действию трипсина

17. Получение внутриклеточного содержимого клеток дрожжей

18. Получение антител к белку с молекулярной массой 33 кДа

19. Вестерн-блот анализ

20. Определение количества компонентов в изолированных КС дрожжей 75 20.1 Определение количества белков в изолированных КС дрожжей

20.2. Определение количественного содержания полисахаридов КС

20.3. Определение содержания аминосахаров

21. Выделение и очистка белков 77 21.1. Выделение клостридиопептидазы А

21.1.1. Очистка клостридиопептидазы А на ДЕАЕ-целлюлозе

21.1.2. Очистка клостридиопептидазы А препаративным электрофорезом 77 % 21.2. Хроматография культуральной жидкости Bacillus brevis штамм 5.4 на аффинных сорбентах бацитрацин-аминосилохолм и фенилборонат-сефароза

21.3. Выделение белков с молекулярной массой 116 и ЗЗкДа из клеточной стенки дрожжей Candida utilis

21.4. Выделение хитиназы из среды роста дрожжей 80 21.4.1 Получение коллоидного хитина ф 21.4.2. Выделение хитиназы

22. Определение активности ферментов

22.1. Активность коллагеназ

22.2. Общая протеолитическая активность

22.3. Маннозидазная и глюкозидазная активности

22.4. Активность аминопептидаз 82 22.5 Активности ß-глюканазы, хитиназы и инвертазы 83 22.6. Определение литической активности и обработка клеток и клеточных стенок гидролазами

23. Определение количества белка

24. Определение числа клеток и клеточных стенок дрожжей

25. Определение выхода инвертазы из клеток дрожжей

26. Определение чувствительности клеток дрожжей к ингибиторам роста

26.1. Определение чувствительности клеток к Calcofluor white и Congo red

26.2. Определение чувствительности клеток дрожжей к Никомицину Z

27. Определение аминокислотного состава белка

28. Получение и анализ смеси пептидов

29. Определение N-концевой последовательности аминокислот

30. Вестерн-блот анализ

31. Микроскопические методы

31.1. Электронная микроскопия клеток и КС дрожжей

31.2. Окрашивание клеток дрожжей Candida utilis примулином

31.3. Окрашивания клеток дрожжей Калькофлюором 88 32. Зональное центрифугирование клеток дрожжей 88 IV. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

1. Обнаружение в клеточной стенке дрожжей белков, выполняющих роль структурных элементов

1.1. Выделение сериновой протеиназы из культуральной жидкости Bacillus brevis.

1.2. Изучение действия сериновой протеиназы из культуральной жидкости

Bacillus brevis на стенки и клетки дрожжей

1.3. Обнаружение в клеточной стенке дрожжей белков, гидролиз которых приводит к деструкции клеточной стенки.

1.4.Идентификация и изучение роли белка с молекулярной массой 11 бкДа (Р116) из клеточных стенок дрожжей Candida utilis

1.5. Идентификация белка с молекулярной массой 33 кДа (РЗЗ) как глюкантрансферазы ф Bgl2p

1.5.1. Выделение и характеристика РЗЗ

1.5.2. Оределение поседовательности гена, кодирующего белок с молекулярной массой 33 кДа из КС дрожжей Candida utilis

2. Изучение роли глюкантрансферазы Bgl2p в формировании молекулярной структуры

КС дрожжей

2.1. Получение штамма дрожжей S.cerevisiae, лишенного гена BGL

2.2. Изучение культуральных свойств штамма с нарушенным геном BGL

2.3. Сравнительный анализ количества хитина и других компонентов КС дрожжей bgl

2.4. Анализ встраивания хитина в клеточные стенки дрожжей штамма bg!

2.5. Выявление роли хитинсинтаз в биосинтезе "дополнительного" хитина в штамме bgl

3. Изучение роли GPI-заякоренных белков во встраивании SEP белков в КС дрожжей Saccharomyces cerevisiae

4. Изучение роли О-маннозилированных белков в формировании молекулярного ансамбля клеточной стенки дрожжей 128 4.1 Выбор объекта исследования 129 4.1.1. Сравнительный анализ структурной роли белков и полисахаридов в клеточных стенках дрожжей, Hansenula polymorpha и Saccharomyces cerevisiae

4.2. Изучение роли О-гликозилированных белков для формирования молекулярного ансамбля клеточной стенки Hansenula polymorpha

4.2.1. Получение штамма Hansenula polymorpha с делецией гена РМТ

4.2.2. Определение уровня О-гликозилирования у штамма Hansenula polymorpha с нару шенным геном HpPMTl на примере хитиназы

4.2.3. Фенотипические проявления при нарушении гена РМТ1 у дрожжей Hansenula polymorpha

4.2.4. Сравнение состава клеточных стенок дрожжей Hansenula polymorpha исходного штамма и pmtl дизруптанта.

4.2.5. Сравнение состава белковых фракций клеточных стенок дрожжей Hansenula polymorpha исходного штамма и pmtl дизруптанта

4.2.6. Электронная микроскопия дрожжей Hansenula polymorpha с нарушенным геном

5. Исследование белков и геномных последовательностей дрожжей, содержащих ф элементы гомологии с альфа цепью коллагена высших эукариот

5.1. Идентификация коллагеноподобных последовательностей в белках дрожжей Candida utilis с использованием клостридиопептидазы

5.2. Определение влияния коллагеназы на некоторые гидролазные активности,ассоциированные с клеточной стенкой дрожжей.

5.3. Идентификация геномных последовательностей микроорганизмов, гомологичных кДНК спиральной части молекулы коллагена цыпленка

5.4. Изучение фрагмента геномной ДНК дрожжей Candida utilis, гомологичного генам коллагена 1 типа 159 5.4.1.Клонирование фрагмента геномной ДНК С. utilis, гомологичного кДНК спиральной части молекулы коллагена I типа

5.4.2. Анализ нуклеотидной последовательности pCUl

5.4.3. Выявление 54 п.н.-коллагенового модуля в клонированной дрожжевой последовательности

Введение Диссертация по биологии, на тему "Роль белков в молекулярной организации клеточной стенки дрожжей"

Изучение поверхности клеток микроорганизмов является в настоящее время одной из актуальных проблем молекулярной и клеточной биологии. Клеточная стенка (КС) представляет собой внешнюю часть одного из важнейших компартментов клетки дрожжей - клеточной оболочки в которую входят, также, плазматическая мембрана и так называемое периплазматическое пространство. Помимо очевидной роли наружного скелета дрожжей от которого зависит поддержание формы клетки, а также ее устойчивость к внешним воздействиям КС является физиологически активной органеллой, которая участвует в осуществлении комплекса взаимоотношений между микроорганизмом и окружающей средой. В КС закрепляются рецепторы, воспринимающие сигналы из внешней среды и антигены, определяющие иммунологические свойства организма, она участвует в процессе транспорта различных соединений из внешней среды в цитоплазму и обратно, а также является компартментом, в котором начинается расщепление питательных субстратов. КС весьма динамична: перестройками в ее молекулярной структуре сопровождаются такие процессы как флоккуляция, спаривание и переход к псевдогифальному росту. КС изменяется в зависимости от стадии и условий роста культуры, а также стадии клеточного цикла дрожжей. В то же время она является весьма стабильной структурой, общий план строения и функциональная дееспособность которой поддерживаются клетками в различных, даже экстремальных условиях.

КС целиком покрывает дрожжевую клетку и состоит из маннопротеинов , глюкана и хитина (Klis,1994) минорными компонентами клеточной стенки являются липиды и полифосфаты. Строение и пути биосинтеза полисахаридов КС дрожжей в основных чертах были изучены к 80-м годам прошлого столетия (Вагабов, 1988). После этого стало очевидно, что без детального знания не только полисахаридов, но и белков входящих в состав клеточной стенки невозможно понять роль отдельных компонентов в процессе формирования ее молекулярного ансамбля и, в конечном итоге, определить как устроена и как функционирует сама КС дрожжей (Farkas,1985).

К началу данной работы вопрос о существовании в КС дрожжей белков, выполняющих конкретные функции был весьма спорным. Многие исследователи полагали, что истинным местом локализации белков различной степени гликозилирования (в основном ферментов), выделяемых из препаратов КС является цитоплазматическая мембрана периплазматическое пространство или внутриклеточное содержимое. С другой стороны в ряде работ маннопротеиновый компонент КС дрожжей было принято рассматривать как пептидоманнан функции которого сводились к формированию на поверхности клетки полисахаридных антигенных детерминант. Схемы строения КС дрожжей носили формальный характер и демонстрировали лишь возможную компановку маннопротеинового и глюканового слоев без учета разнообразных функций, выполняемых этой органеллой. Практически полностью отсутствовали представления о том каким образом из полимеров, синтезированных внутри клетки и на цитоплазматической мембране происходит сборка и формирование уникального молекулярного ансамбля клеточной стенки, находящейся вне цитоплазмы, снаружи от цитоплазматической мембраны и отделенной от нее периплазматическим пространством. Подобную ситуацию, отчасти, можно было объяснить недостаточным уровнем знаний о строении, способах закрепления и функциях белков, входящих в состав клеточной стенки дрожжей.

Первыми свидетельствами важной роли белков в качестве структурного элемента явились данные о лизисе клеточных стенок протеолитическими ферментами (Obata et al 1977). К началу данной работы в литературе, также, начали появляться сведения о том, что в клеточной стенке дрожжей содержаться ферменты (Correa et al 1982;), большинство из которых является гидролазами. Тем не менее долгое время способ встраивания белков в клеточную стенку был неизвестен. Первоначально полученные данные были разрознены, и, зачастую, противоречивы, поскольку систематического изучения белков клеточной стенки дрожжей в то время не проводили.

Цель и задачи исследования. Целью работы являлось изучение обнаруженных ранее и поиск новых белков, играющих важную роль в формировании КС дрожжей различной таксономической принадлежности и получение ответа на вопрос какова роль белков в создании, поддержании целостности и динамичном функционировании сложного молекулярного ансамбля КС дрожжей. При выполнении работы были поставлены следующие задачи:

- Обнаружение и частичная характеристика белков, входящих в состав КС дрожжей, а также выявление способов их закрепления и закономерностей встраивания.

- Изучение роли белков как структурных элементов КС, скрепляющих молекулы полисахаридов в единый молекулярный ансамбль.

- Выявление общих черт и особенностей строения КС дрожжей различной таксономической принадлежности в частности традиционно изучаемых дрожжей Saccharomyces cerevisiae и представителей так называемых «несахаромицетных» дрожжей Candida utilis и Hansenula polymorpha, сравнительный анализ роли белков в формировании молекулярного ансамбля их КС. Сравнение способности отдельных компонентов компенсировать нарушения, происходящие в структуре их КС.

- Изучение вопроса о присутствии в белках клеточной стенки дрожжей коллагеноподобных элементов, содержащих последовательности, гомологичные важнейшему структурному белку высших эукариот - коллагену.

II. ОБЮР ЛИТЕРАТУРЫ

СТРОЕНИЕ КЛЕТОЧНОЙ СТЕНКИ ДРОЖЖЕЙ И ОСНОВНЫЕ ЭТАПЫ БИОСИНТЕЗА ЕЕ КОМПОНЕНТОВ

Клеточная стенка целиком покрывает дрожжевую клетку, нарушая монотонность своего строения только в области образования и отделения дочерней клетки. У наиболее интенсивно изучаемых дрожжей, размножающихся почкованием, (в первую очередь Saccharomyces cerevisiae и Candida albicans) эта область носит название зоны почкования. От цитоплазматической мембраны клеточная стенка отделена периплазматическим пространством (см.рис 1).

ЦПМ ГС МПС

Рисунок I Электронная фогтарафия клеточной стенки дрожжей БассИаготусез сеге\ч,иае (х 100000). МПС- маннопротеиновый слой; ГС -глюкановый слой; ЦПМ - цито плазматическая мембрана; ПП пер и плазматическое пространство

Общая масса клеточной стенки дрожжей может достигать 25% от массы всей клетки, толщина ее колеблется в пределах 1000-2500 А" Она состоит на 40-50% из маннопротеинов и на 2% - из хитина; остальное приходится на полимер глюкозы -глюкан (Klis, 1994) (см.табл. 1).

Таблица 1. Компоненты клеточной стенки дрожжей Saccharomyces cerevisiae (Klis, 1994).

Компоненты Кол-во Основной тип Степень Mr а Молекул клеточной стенки (% от КС) связи полимеризации (кДа) на клетку х10"6

Манно протеины 40 al,6+al,3+al,2 от <10 до >450 2,6

Глюкан

-щелочерастворимый 20 6Р1,3 1500 243 2,5

-щелоче/кислото- нерастворимый® 35 6Р1,3 1500 243 Л -5 -f, J

-щелоченерастворимый, кислоторастворимый 5 бР1,6 140 23 6,6

Хитин 2 Pl,4 а ориентировочная средняя величина молекулярной массы бКак правило, Р1,3-глюкан содержит некоторое количество Р1,6-связей. В свою очередь, в ^1,6-связанном глюкане присутствуют (31,3-связанные остатки глюкозы. вДанный тип глюкана в КС дрожжей, по-видимому, ковалентно связан с хитином, что обусловливает его устойчивость к воздействию кислоты и щелочи.

Глюкан является важным структурным компонентом клеточной стенки, ответственным за поддержание ее прочности. Под термином «дрожжевой глюкан» в настоящее время объединяют несколько типов молекул полисахарида, образованных в основном Р1,3- и Р1,6-связанными остатками глюкозы (Manners et al., 1974; Duffus et al., 1982). Глюкан локализован как в латеральной клеточной стенке, так и в зоне почкования, которая по составу отличается от остальной поверхности главным образом высоким содержанием хитина.

Хитин - минорный, но чрезвычайно важный компонент клеточной стенки дрожжей - представляет собой полимер с Р1,4-связанными остатками N-ацетилглюкозамина. Примерно 90% этого соединения находится в области образования и отделения дочерних клеток - почек. В этой зоне хитин участвует в построении первичной перегородки - септы между материнской и дочерней клетками и образует жесткое кольцо, защищающее канал между ними. В латеральной клеточной стенке локализовано примерно 10% хитина.

Маннопрохеиновый компонент клеточной стенки долгое время считали пептидоманнаном, а саму клеточную стенку представляли как инертную структуру, состоящую в основном из полисахаридов, основная роль которой сводится к защите протопласта от механического повреждения.

Электронная микроскопия дала исследователям первые представления о взаимном расположении отдельных компонентов КС. Было показано, что глюкан и хитин формируют внутренний, менее элекгронноплотный слой, наблюдаемый при электронной микроскопии. Наружный, более электронноплотный слой, сфомирован маннопротеинами.

В последнее время наметился существенный прогресс в развитии наших представлений о строении и функциях клеточной стенки дрожжей. Показано, что она представляет собой динамичную, полифункциональную и физиологически активную органеллу, которая отвечает за осуществление комплекса взаимоотношений между микроорганизмом и окружающей средой. Клеточная стенка выполняет функцию наружного скелета. В КС располагаются рецепторы и она играет важную роль в иммунологических реакциях и, кроме того, она участвует в осуществлении контроля метаболических процессов факторами внешней среды. В значительной степени этот прогресс связан с успехами, достигнутыми в последние годы в области изучения структуры и функций белков различной степени гликозилирования, которые формируют маннопротеиновй компонент этой органеллы.

Еще не так давно весьма спорным вопросом было само существование белков в клеточной стенке дрожжей. Многие исследователи полагали, что как ферменты, так и структурные белки, выделяемые из препаратов клеточной стенки, являются примесями внутриклеточного содержимого. Совершенствование методов биохимии и молекулярной биологии привело к резкому увеличению объема информации о структуре белков клеточной стенки дрожжей и той роли, которую они играют в формировании молекулярного ансамбля этой органеллы. Накопленный фактический материал, позволяет более полно представить не только роль белков в молекулярной организации клеточной стенки дрожжей, но и дополнить представления о ее структуре.

В данном обзоре сделана попытка обобщить и проаналировать накопленные к настоящему времени данные о строении отдельных компонентов и структуре самой КС дрожжей, а также роли белков в формировании и поддержании целостности ее молекулярного ансамбля.

В обзоре литературы приведены сведения представляющие современное состояние освещаемых вопросов, а также результаты исследований полученные (в основном) в последние годы. В первую очередь сказанное относится к работам, посвященным изучению белков клеточной стенки. В начале нашего исследования данные о белках клеточной стенки дрожжей в литературе практически отсутствовали Все результаты , описанные в разделе, посвященном белкам клеточной стенки были получены и опубликованы в то время, когда мы начали и активно осуществляли наши исследования.

1. Г ЛЮК А H

Заключение Диссертация по теме "Молекулярная биология", Калебина, Татьяна Сергеевна

ВЫВОДЫ

1. На основании полученных данных предложена гипотетическая схема строения клеточной стенки дрожжей, согласно которой структурные белки скрепляют молекулы полисахаридов и\или крупные полисахаридные блоки в единый молекулярный ансамбль клеточной стенки. Количество и набор структурных белков незначительно различается в зависимости от вида дрожжей. Основными кандидатами на роль структурных белков являются белки, которые ковалентно связанны с полисахаридным каркасом, а также глюкантрансфераза Bgl2p.

2. На примере дрожжей Saccharomyces cerevisiae показано, что структурный модуль клеточной стенки - полисахарид-белковый комплекс, в состав которого входят хитин и белки, - встраивается в клеточную стенку с участием глюкантрансферазы Bgl2p.

3. Дрожжи Hansenula polymorpha и Candida utilis имеют сходный с Saccharomyces cerevisiae общий план строения клеточной стенки и при изучении ее структуры могут наряду с последними рассматриваться как типичные представители аскомицетных дрожжей. Отличительной особенностью дрожжей Hansenula polymorpha в сравнении с Saccharomyces cerevisiae является низкое содержание хитина, большая значимость белков как структурных элементов и отсутствие способности компенсировать дефекты клеточной стенки увеличением количества хитина. Это приводит к более отчетливым фенотипическим проявлениям нарушений в биосинтезе и встраивании в клеточную стенку белков у Hansenula polymorpha по сравнению с Saccharomyces cerevisiae .

4. Продемонстрирована взаимная зависимость во встраивании белков в клеточную стенку дрожжей. При нарушении О-маннозилирования в клеточную стенку не могут встроиться щелочеэкстрагируемые белки и большинство белков, экстрагируемых из клеточных стенок SDS и (3- м ер каптоэтано л о м за исключением глюкантрансферазы Bgl2p. Правильное формирование GPI-якоря у белков необходимо для встраивания глюкантрансферазы Bgl2p и не влияет существенным образом на встраивание в клеточную стенку других белков, экстрагируемых из клеточных стенок SDS и Р-меркаптоэтанолом. Обнаруженная закономерность отражает различия в «посадочных площадках», которые используют белки этой фракции для закрепления в клеточной стенке.

5. На основании полученных данных расширены и конкретизированы представления о новой функции хитина как репарирующего соединения при сборке клеточной стенки дрожжей.

6. В геномах дрожжей различной таксономической принадлежности обнаружены последовательности, гомологичные генам коллагена высших эукариот в области кодирования спирального домена. Одним из мест локализации белков с коллагеноподобными последовательностями является клеточная стенка дрожжей. Обнаружение в дрожжах коллагеноподобных последовательностей, является важным дополнительным доводом в пользу биохимического сходства грибов с животными организмами.

V. ЗАКЛЮЧЕНИЕ

В завершение следует сказать, что выполненное нами исследование позволило в значительной степени прояснить участие белков в формировании молекулярного ансамбля клеточной стенки дрожжей. Работы, проводимые в нашей лаборатории проходили на фоне постоянно повышающегося интереса к данным белкам. Формированию этого интереса, также, в определенной степени способствовали наши собственные исследования.

В настоящий момент выяснение деталей участия белков в формировании и поддержании целостности молекулярного ансамбля клеточной стенки дрожжей находится в начальной стадии. В то же время общие принципы участия этих соединений в многокомпонентной системе сборки и функционирования этой органеллы стали яснее. Более четко выявляется роль отдельных групп белков клеточной стенки связанных ковалентными связями с глюкановым каркасом в закреплении других белков, не связанных с полисахаридами ковалентно. Получены новые представления о путях встраивания в клеточную стенку хитина - минорного, однако важнейшего в структурном отношении полимера. Продемонстрирована роль белков в этом процессе. Получены первые сведения о возможности присутствия в клеточной стенке дрожжей белков с коллагеноподобными последовательностями. Коллагеноподобные последовательности выявлены в геноме грибов. Данные факты открывают широкие возможности для дальнейшего исследования эволюции коллагенов и коллагеноподобных белков в живых организмах

Первые этапы выполнения данной работы пришлись на период когда вопрос о существовании в КС дрожжей белков, выполняющих конкретные функции был весьма спорным. Однако, начиная с экспериментов, демонстрировавших способность протеолитических ферментов деструктурировать клеточные стенки дрожжей которые явились первым обнаруженным нами фактом, свидетельствующим в пользу того, что в КС дрожжей присутствуют белки которые, могут выполнять роль структурных элементов, скрепляющих полисахаридный каркас в единую структуру КС в своих исследованиях мы придерживались мнения о том, что без детального знания не только полисахаридов, но и белков входящих в состав клеточной стенки невозможно понять роль отдельных компонентов в процессе формирования ее молекулярного ансамбля и, в конечном итоге, определить как устроена и как функционирует сама КС дрожжей.

Анализ литературы и собственные результаты убеждают нас в том, что дальнейший прогресс в этой области, по всей вероятности, будет связан с последующим развитием исследований, посвященных анализу строения и функций белков клеточной стенки дрожжей.

Библиография Диссертация по биологии, доктора биологических наук, Калебина, Татьяна Сергеевна, Москва

1. Акпаров В.Х., Белянова Л.П., Баратова J1.A., Степанов В.М.// Субтилизин 72- сериновая протеиназа близкая субтилизину Карлсберг. Биохимия 1979, т.44, N5, С.886-891.

2. Бирюзова В.И. // Ультраструктурная организация дрожжевой клетки. // М. Изд. Наука. (1993). 224 стр.

3. Вагабов В.М. // Биосинтез углеводных компонентов клеточной стенки дрожжей. 1988. Пущино ОНТИ НЦБИ АН СССР. 198 С.

4. Гловер Д.// Клонирование ДНК М., Мир, 1988

5. Дудка И.А., Вассер С.П. Методы экспериментальной микологии. Киев, Наукова Думка, 1982.

6. Красильников H.A. Лучистые грибки и родственные им организмы. Москва, Мир, 1938.

7. КулаевИ.С. Биохимия высокомолекулярных полифосфатов Докт дисс 1969.

8. Маниатис Т., Фрич Э., Сэмбрук Д. // Молекулярное клонирование. (1984) "Мир".

9. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование М, Мир, 1984.

10. Маурер Г. Диск-электрофорез. М.Мир, 1971, с. 247.

11. Остерман Л.А. Методы исследования белков и нуклеиновых кислот. // "Наука". Москва. 1981. С. 120-126.

12. Петрушко Г.М., Калюжный М.Я.\\ Полисахариды дрожжеподобных микроорганизмов рода Candida, определяющие липофильные-липофобные свойства. Труды ВНИИ гидролиза растительных материалов 1971, т.21, с.110-217.

13. Стейниер Р., Эдельберг Э., Ингрэм Дж. Мир микробов М., Мир, 1979.

14. Степанов В.М., Руденская Г.Н., Нестерова Н.Г., Куприянова Т.И., Хохлова Ю.М., Усайте И.А., Логинова Л.Г., Тимохина Е.А.// Сериновая протеиназа

15. Thermoactinomyces vulgaris штамм ИНМИ 4А. Биохимия 1980, т.45, N10, С.1871- 1879

16. Степанов В.М., Руденская Г.Н., Янонис В.В., Остославская В.Н., Гончар М.В., Котлова Е.К., Стронгин А .Я. II Биоорганическая химия 1978, т.4, N9, С.1256-1262.

17. Циоменко А.Б., Плеханов П.Г., Туйметова Г.П., Кононова С.В. Секреторный белок теплового шока термотолерантных дрожжей Hansenula polymorpha. Идентификация и сравнительная характеристика. // Биохимия. (1997). Том 62, 147-153.

18. Шнырева, Егоров С.Н. // Микробиол. 1990. Т. 59. С. 948-955.

19. Штрейблова Е. Архитектоника клеточных стенок дрожжей. Изв.АН СССР сер.биол., 1977, N3,c.410-421.

20. Abeijon С., Orlean P., Robbins P.W., Hirschberg С.В. // Topography of glycosylation in yeast. Proc. Natl. Acad. Sci. USA (1989). Vol. 86, P.6935-6939.

21. Agafonov M.O., Trushkina P.M., Sohn J-H., Choi E-S., Rhee S-K., Ter-Avanesyan M.D. // Vectors for rapid selection of integrants with different plasmid copy numbers in the yeast Hansenula polymorpha DL1. Yeast. (1999). Vol. 15, P. 541551.

22. Aguado C., Ruiz-Herrera J., Sentandreu R., Mormeneo S. // Reaggregation and binding of cell wall proteins from Candida albicans to structural polysaccharides.Res.Microbiol. 1998. Vol.149. P. 327-338.

23. Alloush H.M., Lopez-Ribot J.L., Masten B.J., Chaffin W.L. // 3-phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans.Microbiology. 1997. Vol. 143. P. 321-330.

24. Andrews P.D., Stark M.J.R. // Dynamic, Rholp-dependent localization of Pkclp to sites of polarized growth J. Cell Sci. 2000, Vol. 113, P. 2685-2693.

25. Arnold W.N. //The structure of the yeast cell wall J.Biol.Chem. 1975, Vol.,247, N4, PI 161-1169.

26. Ash J., Domínguez M., Bergeron J.J.M., Thomas D.Y., Bourbonnais Y. // The yeast proprotein convertase encoded by YAP3 is a glycophosphatidylinositol-anchored protein that localized to the plasmamembrane. J. Biochem. (1995). Vol. 270. P. 20847-20854.

27. Babczinsky P., Tanner W. // Involvement of dolicholmonophosphate in the formation of specific mannosyl-linkages in yeast glycoproteins. // Biochem. Biophys. Res. Commun. (1973). Vol. 54: 1119 1124.

28. Ballou C.E. Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects // Meth. Enzymol. (1990). Vol.185, 440-470.

29. Ballou C.E.// Some aspects of the structure, immunochemistry, and genetic control of yeast mannans. Adv.Enzymol. (1974). Vol.40, 233-270.

30. Ballou C.E. //Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects Meth. Enzymol. 1990, vol.185, 440-470.

31. Bause E., Lehle L. Enzymatic N-glycosylation and O-glycosylation of synthetic peptide acceptors by dolichol-linked sugar derivatives in yeast. // Eur. J. Biochem. (1979). Vol. 10: 531 540.

32. Behrens N.H., Leloir L.F. Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. // Proc. Natl. Acad. Sci. USA (1970). Vol. 66: 153 159.

33. Bickle M., Delley P.A., Schmidt A., Hall M.N. Cell wall integrity modulates RHOl activity via the exchange factor ROM2 // EMBO J. (1998), vol.17, 2235-2245.

34. Bidard F., Blondín B., Dequin S., Vezinhet F., Barre P. // Cloning and analysis of a FL05 flocculation gene from S. cerevisiae. Curr. Genet. 1994. Vol. 25. P. 196-201.

35. Birnboim H.C., Doly J. // A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. (1979). Vol. 7, P.1513-1523.

36. Blumberg B, MacKrell AJ, Fessler JH. //Drosophila basement membrane procollagen alpha 1(IV). II. Complete cDNA sequence, genomic structure, and general implications for supramolecular assemblies. J Biol Chem. (1988) Vol. 263, N34, P.18328-37.

37. Bogdanova, A.I., Agaphonov, M.O. and Ter-Avanesyan, M.D. // Plasmid reorganization during integrative transformation in Hansenula polymorpha. Yeast. (1995) Vol.11 P. 343-353.

38. Bonaly R, Moulki H, Benjelloun AT, Pierfitte M. Cell walls of yeasts of the genus Rhodotorula. II. Influence of culture conditions on the chemical composition of cell walls. Biochim Biophys Acta. (1971),Vol.244, P. 484-94.

39. Bony M., Barre P., Blondin B. // Distribution of the flocculation protein, flop, at the cell surface during yeast growth: the availability of flop determines the flocculation level. Yeast. (1998). Vol. 14. P. 25-35.

40. Boone C., Sommer S.S., Hensel A., Bussey H. //Yeast KRE genes provide evidence for a pathway of cell wall (3-glucan assembly J. Cell. Biol. 1990, Vol. 110, P. 18331843.

41. Bradford M.M. // A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976). Vol.72, P. 248-254.

42. Brawner D.L., Cutler J. E. // Variability in expression of a cell surface determinant on Candida albicans as evidenced by an agglutinating monoclonal antibody. Infect. Iramun. 1984. Vol. 43. P. 966-972.

43. Bretthauer RK.//Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. Trends Biotechnol. (2003) Vol.21, P.459-62.

44. Brown J.L., Bussey H.// The yeast KRE9 gene encodes O-glycoprotein involved in cell surface (3-glucan assembly. Mol. Cell. Biol. 1993, Vol. 13, P. 6346-6356.

45. Brown J.L., Kossaczka Z., Jiang B., Bussey H.// A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (l,6)-beta-glucan synthesis. Genetics, (1993), Vol. 133, P. 837-847.

46. Bruin EC, Werten MW, Laane C, de Wolf FA. Endogenous prolyl 4-hydroxylation in Hansenula polymorpha and its use for the production of hydroxylated recombinant gelatin. FEMS Yeast Res. 2002 V.4, P. 291-8

47. Cabib E, Farkas V. The control of morphogenesis: an enzymatic mechanism for the initiation of septum formation in yeast. : Proc Natl Acad Sci USA. 1971 Sep;68(9):2052-6

48. Cabib E. // Molecular aspects of yeast morphogenesis. Ann. Rev. Microbiol. 1975. Vol. 29. P. 191-205.

49. Cabib E.// Architecture of the yeast cell wall. P(l-6)-glucan interconnects mannoprotein, p(l-3)-glucan and chitin. J. Biol. Chem. 1997, Vol.272, P. 1776217775.

50. Cabib E., Bowers B. Chitin and yeast budding Localization of chitin in yeast bud scars. J.Biol.Chem. 1971, v.246,Nl, 152-159.

51. Cabib E., Bowers B., Roberts R.L.// Vectorial synthesis of a polysaccharide by isolated plasma membranes. Proc. Natl. Acad. Sci. USA. 1983, Vol. 80, 3318-3321.

52. Cabib E., Drgonova J., Drgon T. Role of small G proteins in yeast cell polarization and wall biosynthesis // Annu. Rev. Biochem. 1998, vol.67, 307-333.

53. Cabib E., Robberts R. Bowers B. Synthesis of the yeast cell wall and its regulation. // Annu. Rev. Biochem. (1982). Vol. 51: 763-793.

54. Cabib E., Roh D.H., Schmidt M., Crotti L.B., Varma A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. // J. Biol. Chem. (2001). Vol.276, 19679-19682.

55. Cabib E., Roh D.H., Schmidt M„ Crotti L.B., Varma A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis // J. Biol. Chem. 2001, vol.276, 19679-19682.

56. Cabib E., Sburlati A., Bowers B., Silverman S.J. Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae // J. Cell. Biol. 1989, vol.108, 1665-1672.

57. Cabib E., Silverman S.J., Shaw J.A. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae // J. Gen. Microbiol. 1992, vol.138, 97-102.

58. Calderone R.A., Braun P.C. 11 Adherence and receptor relationships of Candida albicans.Microbiol. Rev. 1991. Vol. 55. P. 1-20.

59. Cappellaro C., Mrsa V., Tanner W. New potential cell wall glucanases of Saccharomyces cerevisiae. // J. Bacteriol. (1998). Vol. 180, 5030-5037.

60. Cappellaro, C., V. Mrsa, Tanner W. // New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating.J. Bacteriol. 1998. Vol. 180. P. 5030-5037.

61. Caro L.H.P., Smits G.J., Van Egmond P., Chapman J.W., Klis F.M.// Transcription of multiple cell wall protein-encoding genes in Saccharomyces cerevisiae is differently regulated during the cell cycle. FEMS Microbiol. Lett. (1998). Vol. 161, P. 345-349.

62. Caro L.H.P., Tettelin H., Vossen J.H., Ram A.F.J., Van Den Ende H., Klis F.M. // In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae.Yeast. 1997. Vol. 13. P. 14771489.

63. Casanova M., Chaffin W.L. // Phosphate-containing proteins and glycoproteins of the cell wall of Candida albicans. Infect. Immun. 1991. Vol. 59. P. 808-813.

64. Chaffin W.J., Lopez-Ribot J.L., Casanova M., Gozalbo D„ Martinez J.P. // Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 1998. Vol. 62. P. 130-180.

65. Chaffin W.J., Stocco D. Cell wall proteins of Candida albicans // Can.J.Microbiol. 1983, vol. 29, 1438-1444.

66. Charalambous B.M., Keen J.N., McPherson M.J. Collagen-like sequences stabilize homotrimers of abacterial hydrolase. EMBO J. 1988 Vol.9, P.2903-9.

67. Chavez F.P., Pons T., Delgado J.M., Rodrigues L.// Cloning and sequence analysis of the gene encoding invertase from the yeast Candida utilis. Yeast 1998, Vol.14, P. 63-74.

68. Choi W.J., Santos B., Duran A., Cabib E. Are yeast chitin synthases regulated at the transcriptional or the posttranscriptional level? // Mol. Cell Biol. 1994, Vol.14, P.768-79

69. Christodoulidou A., Briza P., Ellinger A, Bouriotis V. Yeast ascospore wall assembly requires two chitin deacetylas isosymes // FEBS Lett. 1999, vol. 460, 275279.

70. Chu ML, de Wet W, Bernard M, Ding JF, Morabito M, Myers J, Williams C, Ramirez F. Human pro alpha 1(1) collagen gene structure reveals evolutionary conservation of a pattern of introns and exons. Nature. 1984 Jul 26-Aug l;310(5975):337-40.

71. Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P.O., Herskowitz I. The transcriptional program of sporulation in budding yeast // Science. 1998, vol.282, 699-705.

72. Chuang J.S., Schekman R.W. Differential traffiking and timed localization of two chitin synthase proteins, Chs2p and Chs3p // J. Cell Biol. 1996, vol.135, 597-610.

73. Cid V.J., Duran A., del Rey F., Snyder M.P., Nombela C.,Sanchez M. // Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae.MicrobioI.Reviews.1995. Vol. 59. P. 45-386.

74. Cohen R.E., Ballou L., Ballou C.E. Saccharomyces cerevisiae mannoprotein mutants. Isolation of the mnn5 mutant and comparison with the mnn3 strain. // J. Biol. Chem. (1980). Vol. 255: 7700-7707.

75. Comer F.I., Hart G.W. O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. // J. Biol. Chem. (2000). Vol. 275: 29179-29182.

76. Conzelmann A., Puoti R.L., Lester L., Desponds C. Two different types of lipid moieties are present in glycerol phosphatidylinositol-anchored membrane proteins of Saccharomyces cerevisiae // EMBO J. 1992, vol.11, 457-466.

77. Conzelmann A., Riezman H., Desponds C., Bron C. A major 125-kd membrane glycoprotein of Saccharomyces cerevisiae is attached to the lipid bilayer through an inositol-containing phospholipid // EMBO J. 1988, vol.7, 2233-2240.

78. Correa JU, Elango N, Polacheck I, Cabib E. Endochitinase, a mannan-associated enzyme from Saccharomyces cerevisiae. J Biol Chem. 1982 Feb 10;257(3): 1392-7.

79. Cutler JE. N-glycosylation of yeast, with emphasis on Candida albicans. Med My col. 2001 ;39 Suppl 1:75-86

80. De Marini D.J., Adams A.E., Fares H., De Virgilio C., Valle G., Chuang J.S., Pringle J.R. A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae // J. Cell. Biol. 1997, vol. 139, 75-93.

81. De Nobel J.G., Lipke P.N. Is there a role for GPI-s in the yeast cell wall assembly? // Trends Cell. Biol. 1994, vol.4, 41-45.

82. Delley P.A., Hall M.N. Cell wall stress depolarizes cell growth via hyperactivation of RHOl // J. Cell. Biol. 1999, vol.147, 163-174.

83. DeRisi J.L., Iyer V.R., Brown P.O. // Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997. Vol. 278. P. 680-686.

84. Dickinson K, Keer V, Hitchcock CA, Adams DJ. Chitinase activity from Candida albicans and its inhibition by allosamidin. J Gen Microbiol. 1989 Jun;135 ( Pt6.: 1417-21

85. Dijkgraaf G.J., Brown J.L., Bussey H. The KNH1 gene of Saccharomyces cerevisiae is a functional homolog of KRE9 // Yeast. 1996, vol.15, 683-692.

86. Dohrmann P.R., Butler G., Tamai K., Dorland S., Greene J.R., Thiele D.J., Stillman D.J. Parallel pathways of gene regulation: homolous regulators SWI5 and ACE2 differentially control transcription of HO and chitinase // Genes Dev. 1992, vol.6, 93-99.

87. Donzeau M., Bourdineaud J.P., Lauquin G.J.M. // Regulation by low temperatures and anaerobiosis of a yeast gene specifying a putative GPI-anchored plasma membrane protein corrected. Mol. Microbiol. 1996. Vol. 20. P. 449-459.

88. Dorit RL, Schoenbach L, Gilbert W. How big is the universe of exons? Science. 1990 Dec 7;250(4986): 1377-82

89. Drgonova J., Drgon T., Roh D.H., Cabib E. The GTP-binding protein Rholp is required for cell cycle progression and polarization of the yeast cell // J. Cell. Biol. 1999, vol.146, 373-387.

90. Duffus J.H., Levi C., Manners D.J. Yeast cell-wall glucans // Adv. Microbial. Physiol. 1982, vol.23, 151-181.

91. Ecker M, Mrsa V, Hagen I, Deutzmann R, Strahl S, Tanner W. O-mannosylation precedes and potentially controls the N-glycosylation of a yeast cell wall glycoprotein. EMBO Rep. 2003 Jun;4(6):628-32

92. Eddy A. A., Rudin A.D. // The structure of the yeast cell wall. I. Identification of charged groups at the surface.J. Inst. Brew. 1958. Vol. 64. P. 19-21.

93. Eddy AA, Woodhead JS. Eddy AA, Woodhead JS. An alkali-soluble glucan fraction from the cell walls of the yeast Saccharomyces carlsbergensis. FEBS Lett. 1968 Jul; 1(1 ):67-68

94. Edwards S.R., Braley R., Chaffin W.L. // Enolase is present in the cell wall of Saccharomyces cerevisiae.FEMS Microbial. Lett. 1999. Vol. 177. P. 211-216.

95. Ende H., Klis F.M. // The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol.Microbiol. 2000. Vol. 35. P. 601-611.

96. Epp J.A., Chant J. An IQGAP-related protein controls actin-ring formation and cytokinesis in yeast // Curr. Biol. 1997, vol.7, 921-929.

97. Erdman S., Lin L., Makzynski M., Snyder M. Pheromone-regulated genes required for yeast mating differentiation // J. Cell Biol. 1998, vol. 140, 461-483.

98. Ernst J.F., Prill S.K.-H. O-glycosylation. // Medical Microbiology (2001). Vol. 39: 67-74.

99. Farkas V. // The fungal cell wall. In: Fungal protoplasts. Eds. Peberdy J.F., Ferenczy L. N.-Y.Basel.l985. Vol. 6. P. 3-29.

100. Fields C. Domain organization and intron position Caenorhabditis elegans collagen genes: the 54 bp module hypothesis revisited/ J.Mol.Evol. 1988, v.28, N1, pp.55-63.

101. Fleet G.H., Manners D.J. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae // J. Gen. Microbiol. 1976, vol.94, 180-192.

102. Gao X-D., Nishikawa A., Dean N. Identification of a conserved motif in the yeast Goldgi GDP-mannose transporter required for binding to nucleotide sugar. // J. Biol. Chem. (2001). Vol. 276: 4424-4432.

103. Garcia-Rodrigues L.J., Trilla J.A., Castro C., Valdivieso M.H., Duran A., Roncero C. Characterization of the chitin biosynthesis process as a compensatory F mechanism in the fksl mutant of Saccharomyces cerevisiae // FEBS Lett. 2000, vol. 478, 84-88.

104. Gaynor E.C., Mondesert G., GriMMe S.J., Reed S.I., Orlean P., Emr S.D. MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast // Mol. Biol. Cell 1999, vol.10, 627-648.

105. Gentzsch M., Immervoll T., Tanner W. Protein O-glycosylation in Saccharomyces cerevisiae: the protein O-mannosyltransferases Pmtlp and Pmt2p function as heterodimer. FEBS Lett. (1995). Vol. 377, 128-130.

106. Gentzsch M., Strahl-Bolsinger S., Tanner W. A new Dol-P-Man:protein O-D-mannosyltransferase activity from Saccharomyces cerevisiae. // Glycobiology (1995). Vol. 5: 77-82.

107. Gentzsch M., Tanner W. Protein O-glycosylation in yeast: protein-specific mannosyltransferases. // Glycobiology. (1997). Vol. 7, 481-486.

108. Gentzsch M., Tanner W. The PMT gene family: protein glycosylation in Saccharomyces cerevisiae is vital. // EMBO J. (1996). Vol. 15, 5752-5759.

109. Gentzsch M., Tanner W. Protein O-glycosylation in yeast: protein-specific mannosyltransferases // Glycobiology. 1997, vol.7, 481-486.

110. Gentzsch M., Tanner W. The PMT gene family: protein glycosilation in Saccharomyces cerevisiae in vital // EMBO J. 1996, vol. 15, 5752-5759.

111. Gietz, R.D, Schiestl, R.H., Willems, A.R., Woods, R.A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure // Yeast. 1995, vol.11,355-360.

112. Gin-Navarro I., Gil M.L., Casanova M., Martinez J.P., Gozalbo D. // The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen.J. Bacteriol. 1997. Vol. 179. P. 4992-4999.

113. Goldman R. C., Sullivan P. A., Zakula D., Capobianco J. O.// Kinetics of beta-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur. J. Biochem. 1995. Vol. 227. P. 372-378.

114. Gray J.V., Ogas J.P., Kamada Y., Stone M., Levin D.E., Herskowitz I. A role for the Pkcl MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator // EMBO J. 1997, vol.16, 4924-4937.

115. Grinna L.S., Tschopp J.F. // Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris.Yeast. 1989. Vol. 5. P. 107-115.

116. Gunwar S, Saus J, Noelken ME, Hudson BG. Glomerular basement membrane. Identification of a fourth chain, alpha 4, of type IV collagen. J.Biol.Chem., 1990, N10, pp. 5466-5471.

117. Gustin M.C., Albertyn J., Alexander M., Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae // Microboil. Mol. Biol. Rev. 1998, vol. 62, 1264-1300.

118. Hausler A., Ballou L., Ballou C.E., Robbins P.W. Yeast glycoprotein biosynthesis. // Proc. Natl. Acad. Sci. USA (1992). Vol. 89: 6846-6850.

119. Hamada K., Fukuchi S., Arisawa M., Baba M., Kitada K. // Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. Mol. Gen. Genet. 1998. Vol. 258. P. 53-59.

120. Hanada K., Mizutani T., Yamagishi M. The isolation of collagenase and its prorerties. Agr.Biol.Chem., 1973, v.37, N8, p.1771- 1781.

121. Harsay E., Bretscher A. Parallel secretory pathways to the cell surface in yeast // J. Cell Biol. 1995,vol. 131, 297-310.

122. Hartland R.P., Emerson G.W., Sullivan P.A. // A secreted beta-glucan-branching enzyme from Candida albicans.Proc. R. Soc. London.Ser. B. 1991. Vol. 246. P. 155160.

123. Haselbeck A. Purification of GDP mannose:dolichyl-phosphate O-beta-D-mannosyltransferase from Saccharomyces cerevisiae. // Eur. J. Biochem. (1989). Vol. 181: 663-668.

124. Haselbeck A., Tanner W. Dolichyl phosphate-mediated mannosyl transfer through liposomal membranes. // Proc. Natl. Acad. Sci. USA (1982). Vol. 79: 15201524.

125. Haselbeck A., Tanner W. O-glycosylation in Saccharomyces cerevisiae is initiated at the endoplasmic reticulum. // FEBS Lett. (1983). Vol. 158: 335-338.

126. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases // Biochem J. 1996, vol.315, 695-696.

127. Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J.P., Davies G. Conserved catalytic machinery and production of a common fold for several families of glycosyl hydrolases // Proc. Natl. Acad. Sci. USA. 1995, vol.92, 70907094.

128. Hernando F.L., Estevez J.J., Cebrian M., Poulain D., Ponton J. // Identification of Candida albicans cell wall antigens lost during subculture in synthetic media. J. Med. Vet. Micol. 1993. Vol. 31. P. 227-237.

129. Herrero E., Sanz P., Sentandreu R. // J. Gen. Microbiol. 1987. Vol. 133. P. 28952903.

130. Herscovics A., Orlean P. // Glycoprotein biosynthesis in yeast. FASEB J. (1993). Vol. 7, 540-550.

131. Hien N.H., Fleet G.H. // Separation and characterization of six (1 leads to 3)-beta-glucanases from Saccharomyces cerevisiae. J. Bacteriol. 1983. Vol. 156. P. 1204-1213.

132. Hounsell E.F., Davies M.J., Renouf D.V. O-linked protein glycosylation structure and function. // Glycoconj J. (1996). Vol. 13: 19-26.

133. Hoyer L.L., Scherer S., Shatzman A.R., Livi G.P. // Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol. Microbiol. 1995. Vol. 15. P. 39-54.

134. Hutchins K, Bussey H. //Cell wall receptor for yeast killer toxin: involvement of (1 leads to 6)-beta-D-glucan. J Bacteriol. 1983 Vol.154, N1, P.161-9.

135. Igual J.C., Johnson A.L., Johnston L.H. Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity // EMBO J. 1996, vol.15, 5001-5013.

136. Immervoll T., Gentzsch fyl., Tanner W. PMT3 and PMT4, two new members of the protein-O-mannosyltransferase gene family of Saccharomyces cerevisiae. // Yeast (1995). Vol. 11: 1345-1351.

137. Inoue S.B., Qadota H., Arisawa M., Watanabe T., Ohya Y. Prenylation of Rholp is required for activation of yeast 1,3-P-glucan synthase // J. Biol. Chem. 1999, vol. 274, 38119-38124.

138. Inoue S.B., Takewaki N., Takasuka T., Mio T., Adachi M., Fujii Y., Miyamoto C., Arisawa M., Furuichi Y., Watanabe T. Characterization and gene cloning of 1,3 P-glucan synthase from Saccharomyces cerevisiae // Eur. J. Biochem. 1995, vol.231, 845-854.

139. Inoue, H., Nojima, H., Okayama, H. High efficiency transformation of Escherichia coli with plasmids. // Gene (1990). Vol. 96 P. 23-28.

140. Ito, H., Fukuda, Y., Murata, K., Kimura, A. Transformation of intact yeast cells treated with alkali cations. // J. Bacteriol. (1983). Vol. 153. P. 163-168.

141. Jacoby J.J., Nilius S.M., Heinisch J.J. A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene // Mol. Gen. Genet. 1998, vol.258, 148-155.

142. Jamienson A.D., Pruitt K.M., Caldwell R.C. An improved amilase assay. J.Dent.Res., v.48,N4, p.483-486.

143. Jars M.U., Osborn S., Forstrom J., MacKay V.L. N- and O-glycosylation and phosphorylation of the bar secretion leader derived from the barrier protease of Saccharomyces cerevisiae. //J. Biol. Chem. (1995). Vol. 270: 24810-24817.

144. Jentoft N.// Why are proteins O-glycosylated? Trends Biochem. Sci. 1990. Vol. 15. P. 291-294.

145. Jigami Y., Odani T. Mannosylphosphate transfer to yeast mannan. // Biochim Biophys Acta (1999). 1426: 335-345.

146. Jung U.S., Levin D.E. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway // Mol. Microbiol. 1999, vol.34, 1049-1057.

147. Kalo A., Segal E., Sahar E., Dayan D. // Interaction of Candida albicans with genital mucosal surfaces: involvement of fibronectin in adherence.J. Infect. Dis. 1988. Vol. 157. P. 1253-1256.

148. Kandasamy R., Vediyappan G., Chaffin W.L. // Evidence for the presence of pir-like proteins in Candida albicans. FEMS Microbiol. Lett. 2000. Vol. 186. P. 239-243.

149. Kapteyn J.C., Klis F.M., Cabib E. // Architecture of the yeast cell wall. Beta(l->6)-glucan interconnects mannoprotein, beta(l-->)3-glucan, and chitin.J. Biol. Chem. 1997. Vol. 272. P. 17762-17775.

150. Kapteyn J.C., Ram A.F.J., Groos E.M., Kollar R„ Montijn R.C., Van Den Ende

151. H., Llobell A., Cabib E., Klis F.M. Altered extent of cross-linking of pi,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall pi,3-glucan content. // J. Bacteriol. (1997). Vol.179, 6279-6284.

152. Kapteyn J.C., Ter Riet B„ Vink E., Blad S., De Nobel H., Van Den Ende H., Klis F.M. // Low external pH induces HOG 1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol.Microbiol. 2001. Vol. 39. P. 469480.

153. Kapteyn J.C., Van Den Ende H., Klis F.M. // The contribution of cell wall proteins to the organization of the yeast cell wall.Biophys. Biochem. Acta. 1999. Vol. 1426. P.373-383.

154. Kessler G., Nickerson W.J. // Glucomannan-protein complexes from cell walls of yeasts.J. Biol. Chem. 1959. Vol. 234. P. 2281-2285.

155. Ketela T., Green R., Bussey H. Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway // J. Bacteriol. 1999, Vol. 181, 3330-3340

156. King L., Butler G. Ace2p, a regulator of CTS1 (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae // Curr, Genet. 1998, vol.34, 183-191.

157. Kingston IB, Pettitt J. Structure and expression of Ascaris suum collagen genes: a comparison with Caenorhabditis elegans. Acta Trop. 1990 Jul;47(5-6):283-7.

158. Kitagaki H., Shimoi H., Itoh K. // Identification and analysis of a static culture-specific cell wall protein, Tirlp/Srplp in Saccharomyces cerevisiae. Eur. J. Biochem. 1997. Vol. 249. P. 343-349.

159. Klebl B, Kozian D, Leberer E, Kukuruzinska MA. A comprehensive analysis of gene expression profiles in a yeast N-glycosylation mutant. Biochem Biophys Res Commun. 2001 Aug 31 ;286(4):714-20

160. Klebl, F., Tanner W. // Molecular cloning of a cell wall exo-beta-1,3-glucanase from Saccharomyces cerevisiae. J. Bacteriol. 1989. Vol. 171. P. 6259-6264.

161. Klis F.M. Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked (3-1,3-/ P-l,6-glucan heteropolymer // Glycobiology. 1996, vol. 6, 337-345.

162. Klis, F. M. // Review: cell wall assembly in yeast. Yeast. 1994. Vol.10. P. 851869.

163. Kollar R., Petrakova E„ Ashwell G., Robbins P.W., Cabib E. Architecture of the yeast cell wall. The linkage between chitin and (3(l-3)-glucan. // J. Biol. Chem. (1995). Vol. 270, 1170-1178.

164. Kondo K., Inouye M. // TIP 1, a cold shock-inducible gene of Saccharomyces cerevisiae.J. Biochem. 1991. Vol. 266. P. 17537-17544.

165. Kopecka M, Kreger DR. Assembly of microfibrils in vivo and in vitro from (1 — -3)-beta-D-glucan synthesized by protoplasts of Saccharomyces cerevisiae. Arch Microbiol. 1986 Jan;143(4):387-95

166. Kopecka M., Phaff H.J., Fleet G.H. Demonstration of a fibrillar component in the cell wall in the yeast Saccharomyces cerevisiae and its chemical nature // J. Cell. Biol. 1974, vol. 62, 66-76.

167. Kovacech B., Nasmyth K., Schuster T. EGT2 gene transcription is indused predominantly by Swi5 in early G1 // Mol. Cell. Biol. 1996, vol.16, 3264-3274.

168. Krainer E., Stark R., Naider F., Alagraman K., Becker J.M. Direct observation of cell wall glucans in whole cell of Saccharomyces cerevisia by magic-angle spinning 13C-NMR. // Biopolymers. (1994). Vol. 34: 1627-1635.

169. Kramer J.M., Cox G.N., Nirsh D. Comparison of the complete sequence of two collagens genes Caenorhabditis elegans Cell 1982, v.30, N2, p.599-606.

170. Kupec M., Byers B., Esposito R.E., Mitchell A.P. Meiosis and sporulation in Saccharomyces cerevisiae. 1997. In: The molecular biology of the yeast Saccharomyces, vol.3, 229-362. Edited by J.R.

171. Kuranda M.J., Robbins P.W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. // J. Biol. Chem (1991). Vol.266. P. 1975819767

172. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. (1982). Vol. 157: 105 132.

173. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. // Nature (1970). Vol. 227, 680-685.

174. Lampen J.O. External enzymes of yeast: their nature and formation. // Ant. Van Leeuwenhoek. (1968). Vol. 34: 1-18.

175. Lampen J.O. // External enzymes of yeast: their nature and formation. Ant. Van Leeuwenhoek. 1968. Vol. 34. P. 1-18.

176. Lehle L. Biosynthesis of the core region of yeast mannoproteins. Formation of a glucosylated dolichol-bound oligosaccharide precursor, its transfer to protein and subsequent modification. Eur J Biochem. 1980 Aug;109(2):589-601

177. Lehle L., Bause E. Enzymatic N-glycosylation and O-glycosylation of synthetic peptide acceptors by dolichol-linked sugar derivatives in yeast. // Biochim. Biophys. Acta. (1984). Vol. 799: 246-251.

178. Lehrach H, Frischauf AM, Hanahan D, Wozney J, Fuller F, Boedtker H. Construction and characterization of pro alpha 1 collagen complementary deoxyribonucleic acid clones. Biochemistry. 1979 Jul 10; 18(14):3146-52

179. Lew D.J., Reed S.I. Morphogenesis in the teast cell cycle: regulation by Cdc28 and cyclins // J.Cell.Biol. 1993, vol. 120, 1305-1320.

180. Lipke P., Ovalle R. // Cell wall architecture in yeast: new structure and new challenges.J.Bacteriol. 1998. Vol. 180. P. 3735-3740.

181. Lipke P.N., Kurjan J. // Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins.Microbiol. Rev. 1992. Vol. 56. P. 180-194.

182. Lipke P.N., Wojchiechowicz D. // Alpha-agglutinin expression in Saccharomyces cerevisiae. Biochim. Biophys. Res. Commun. 1989. Vol. 161. P. 4651.

183. Lipke P.N., Wojchiechowicz D., Kurjan J. // AG alpha 1 is the structural gene for the Saccharomyces cerevisiae alpha-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating. Mol. Cell. Biol. 1989. Vol. 9. P. 3155-3165.

184. Liu H., Brester A. Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport // J. Cell. Biol. 1992, vol. 118,285-299.

185. Lo H.J., Kohler J.R., DiDomenico B., Loebenberg D., Cacciapouti A., Fink G.R. Nonfilamentous C.albicans mutants are avirulent // Cell. 1997, vol. 90, 939-949.

186. Lo W.S., Dranginis A.M. // FLOl 1, a yeast gene related to the STA genes, encodes a novel cell surface flocculin.J. Bacteriol. 1996. Vol. 178. P. 7144-7151.

187. Lo W.S., Dranginis A.M. The cell surface flocculin Flol 1 is reqired for pseudohyphae formation and invasion by Saccharomyces cerevisiae // Mol. Biol. Cell. 1998, vol.9, 161-171.

188. Longtine M.S., Fares H., Pringle J.R. Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function // J. Cell. Biol. 1998, vol. 143, 719-736.

189. Lopez-Romero E, Ruiz-Herrera J. Biosynthesis of beta-glucans by cell-free extracts from Saccharomyces cerevisiae. Biochim Biophys Acta. 1977 Dec 22;500(2):372-84

190. Lupashin V.V., Kononova S.V., Ratner E.N., Tsiomenko A.B., Kulaev I.S.// Identification of a novel secreted glycoprotein of the yeast Saccharomyces cerevisiae stimulated by heat shock.Yeast. 1992. Vol. 8. P. 157-169.

191. Lussier M., Sdicu A.-M., Bussereau F., Jaquet M., Bussey H. The Ktrlp, Ktr3p, and Kre2p/Mntlp mannosyltransferases participate in the elaboration of yeast O-and N-linked carbohydrate chains. // J. Biol. Chem. (1997). Vol. 272: 15527 -15531.

192. Lussier M., Sdicu A.-M., Ketela T., Bussey H. Localization and targeting of the Saccharomyces cerevisiae Kre2p/Mntlp alpha 1,2-mannosyltransferase to a medial-Golgi compartment. // J. Cell Biol. (1995). Vol. 131: 913 927.

193. Lussier M., Sduci A.-M., Bussey H. // The KTR and MNN1 Mannosyltransferase families of Saccharomyces cerevisiae Biocem.Biophys.Acta . 1999. pp. 323-334.

194. Lyons T.P., Hough J.S. Glycoproteins from yeast cell wall Biochem J. 1970 Apr; 117(2) :44P

195. Mandel M., Higa A. Calcium dependent bacteriophage DNA infection // J. Mol. Biol. 1970, vol.53, 154-159.

196. Mann W, Jeffery J. Isolation of DNA from yeasts. Anal Biochem. 1989 Apr;178(l):82-7

197. Manners D. J., Masson A. J., Patterson J. C:// The heterogeneity of glucan preparation from the walls of various yeasts. J. Gen. Microbiol. (1974). Vol. 80, 411-417.

198. Manners DJ, Masson AJ, Patterson JC, Bjorndal H, Lindberg B. The structure of a beta-(l— 6)-D-glucan from yeast cell walls. Biochem J. 1973 Sep;135(l):31-6

199. Manners DJ, Masson AJ, Patterson JC. The heterogeneity of glucan preparations from the walls of various yeasts. J Gen Microbiol. 1974 Feb;80(2):411-417.

200. Manners D.J., Masson A.J., Patterson J.C. The structure of a beta-(l leads to 3)-D-glucan from yeast cell walls : Biochem J. 1973 Sep;135(l): P.19-30

201. MarklanF.S., Smith E.L.// Enzymes N.-Y.London, Akad.Press, 1971, pp.561608.

202. Marmur J. A procedure for isolation of DNA from microorganisms J.Mol.Biol. v.3 Nl,pp.208-218.

203. Marriott M., Tanner W. Localization of dolichyl phosphate- and pyrophosphate-dependent glycosyl transfer reactions in Saccharomyces cerevisiae. // J. Bacteriol. (1979). Vol. 139: 565 572.

204. Mazur P., Morin N., Baginsky W., el-Sherbeini M., Clemas J.A., Nielsen J.B., Foor F. Differential expression and function of two homologous subunits of yeast 1,3-p-D-glucan synthase // Mol. Cell. Biol. 1995., vol. 15, 5671-5681.

205. McConville M.J., Ferguson M.A.J. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eucaryotes // Biochem. J. 1993, vol.294, 305-324.

206. Meaden P., Hill K., Wagner J., Slipetz D., Sommer S.S., Bussey H. The yeast KRE5 encodes a probable endoplasmic reticulum protein required for (1-6)- |3-D-glucan synthesis and normal cell growth // Mol. Cell. Biol. 1990., vol.10, 30133019.

207. Mentesana PE, Konopka JB. Mutational analysis of the role of N-glycosylation in alpha-factor receptor function. Biochemistry. 2001 Aug 14;40(32):9685-94

208. Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. // Anal Chem (1959). Vol. 31:426-428

209. Minke R, Blackwell J. //The structure of alpha-chitin.J Mol Biol. 1978 Apr 5;120(2): 167-81

210. Miseta A, Kellermayer R, Aiello DP, Fu L, Bedwell DM.// The vacuolar Ca2+/H+ exchanger Vcxlp/Humlp tightly controls cytosolic Ca2+ levels in S. cerevisiae. // FEBS Lett. (1999) Vol. 451(2), P. 132-136

211. Molano J, Bowers B, Cabib E.// Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study. J Cell Biol. 1980 May;85(2):199-212

212. Montijn R.C., Vink E„ Muller W.H., Verkleij A.J., Va Den Ende H„ Henrissat B., Klis F.M. Localization of synthesis of pi,6-glucan in Saccharomyces cerevisiae // J. Bacteriol. 1999, vol.181, 7414-7420.

213. Mormeneo S., Marcilla A., Iranzo M., Sentandreu R. // Structural mannoproteins released by beta-elimination from Candida albicans cell walls.FEMS Microbiol.Lett. 1994. Vol.123. P. 131-136.

214. Mouassite M., Camougrand N., Schwöb E., Demaison G., Laclau M., Guerin M. The 'SUN' family: yeast SUN4/SCW3 is involved in cell septation. // Yeast (2000). Vol. 16, 905-919.

215. Mrsa V., Klebl F., Tanner W. Purification and characterisation of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase. //J. Bacteriol. (1993). Vol. 175,2102-2106.

216. Mrsa V., Kokanj D., Ecker M., Tanner W. Localisation of NaOH-extractable proteins (PIR protein family) in the Saccharomyces cerevisiae cell wall. // Abstracts of conference "Molecular Mechanisms of funfal cell wall biogenesis" (2001), 24.

217. Mrsa V., Kokanj D., Ecker M., Tanner W. Localisation of the PIR protein family in the S. cerevisiae cell wall. // Abstracts of "XXth international symposium on yeasts" (2000), 171-172.

218. Mrsa V., Kokanj D., Ecker M., Tanner W. Localization of the PIR protein family in the S.cerevisiae cell wall // Abstracts of "XXth international symposium on yeasts" 2000, 171-172.

219. Mrsa V., Seidl T., Gentzsch M., Tanner W. // Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast. 1997. Vol. 13. P. 1145-1154.

220. Mrsa V., Tanner W. // Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall.Yeast.1999. Vol. 15, P. 813-820.

221. Mrsa, V., Klebl F., Tanner W. // Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-l,3-glucanase. J. Bacteriol. 1993. Vol. 175. P. 2102-2106.

222. Muniz M., Morsomme P., Riezman H. Protein sorting upon exit from the endoplasmic reticulum//Cell. 2001, vol.104, 313-320.

223. Munoz-Dorado J., Kondo K., Inouye M., Sone H. // Identification of cis- and trans-acting elements involved in the expression of cold shock-inducible TIP1 gene of yeast Saccharomyces cerevisiae.Nucleic. Acids Res. 1994. Vol. 22. P. 560-568.

224. Muzzarelli R.A. Chitin// Pergamon Press N.-Y. 1977, p.1-309

225. Nakajima T., Ballou C.E. Structure of the linkage region between the polysaccharide and protein parts of Saccharomyces cerevisiae mannan. // J. Biol. Chem. (1974). Vol. 249, 7685-7694.

226. Nakajima T., Ballou C.E. // Structure of the linkage region between the polysaccharide and protein parts of Saccharomyces cerevisiae mannan. J. Biol. Chem. 1974. Vol. 249. P. 7685-7694.

227. Nakayama K., Feng Y., Tamaka A., Jigami Y. The involvement of mnn4 and mnn6 mutations in mannosyl phosphorylation of O-linked oligosaccharide in yeast Saccharomyces serevisiae. // Biochim Biophys Acta (1998). Vol. 1425: 255-262.

228. Novick P., Botstein D. Phenotypic analysis of temperature-sensitive yeast actin mutants // Cell. 1985, vol. 40, 405-416.

229. Novick P., Ferro S., Schekman R. Order of events in the yeast secretory pathway //Cell. 1981, vol.42, 461-469.

230. Novick P., Schekman R. Export of major cell surface proteins is blocked in yeast secretory mutants //J. Cell Biol. 1983, vol.96, 541-547.

231. ObataT., Iwata M., Namba Y Proteolytic enzyme from Oerskovia sp. CK lysing viable yeast cells Agr/Biol/ Chem/ 1977? v/41? N 12? p.2387-2394

232. Odani T., Shimma Y., Wang X., Jigami Y. // Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae/ FEBS Letteers 1997, v.420, pp. 186-190.

233. Ono T., Suzuki T., Anaraku Y., Iida H. The MID2 gene encodes a putative integral membrane protein with a Ca2+-binding domain and shows mating pheromone-stimulated expression in Saccharomyces cerevisiae // Gene. 1994, vol.151, 203-208.

234. Orlean P. Dolichol phosphate mannose synthase is required in vitro for glycosyl phosphatidylinositol membrane anchoring, O-mannosylation, and N-glycosylation of protein in Saccharomyces cerevisiae. // Mol. Cell. Biol. (1990). Vol. 10: 5796 -5805.

235. Orlean P. Two chitin synthases in Saccharomyces cerevisiae // J. Biol. Chem. 1987, vol.262, 5732-5740.

236. Orlean P., Albright C., Robbins P.W. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. // J. Biol. Chem. (1988). Vol. 261: 17499 17507.

237. Orlean P., in: J.R. Pringle, J.R. Broach, E.W. Jones (Eds.), The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. Ill, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1997), pp. 229 362.

238. Ozols J. Amino acid analysis. // Methods Enzymol. (1990). Vol. 182:587-601.

239. Packeiser A.N., Urakov V.N., Polyakova Y.A., Shimanova N.I., Shcherbukhin V.D., Smiornov V.N., Ter-Avanesyan M.D. // A novel vacuolar protein encoded by SSU21 / MCD4 is involved in cell wall integrity in yeast.Yeast.1999. Vol. 15. P. 1485-1501.

240. Pastor F.I.J., Valentin E., Herrero E., Sentandreu R. Structure of Saccharomyces cerevisiae cell wall. Mannoproteins released by zymolyase and their contribution to wall architecture // Biochim. Biophys. Acta. 1984, vol.802, 292-300.

241. Pendark M.L., Klotz S.A. // Adherence of Candida albicans to host cells. FEMS Microbiol.Lett. 1995. Vol. 129. P. 103-114.

242. Phaff H.J.// In: The Yeast physiology and biochemistry. N.Y.-London, Acad. Press. 1971. Vol. 2. P. 135-210.

243. Phaff HJ. Industrial microorganisms. Sci Am. 1981 Sep;245(3):77-89

244. Philip B., Levin D.E. Wscl and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rhol // Mol. Cell. Biol. 2001, vol.21, 271-280.

245. Popolo L. and Vai M. The Gasl glycoprotein, a putative wall polymer cross-linker. // Biophys. Biochem. Acta. (1999). Vol. 1426, 385-400.

246. Popolo L., Gilardelli D., Bonfante P., Vai M. Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggpl A mutant of Saccharomyces cerevisiae // J. Bacteriol. 1997, vol.179, 463-469.

247. Popolo L.,Vai M. The Gasl glycoprotein, a putative wall polymer cross-linker // Biophys. Biochem. Acta. 1999, vol.1426, 385-400.

248. Pringle, J.R. Broach, E.W.Jones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Progress in Industrial Microbiol. 1973. Vol. 12. P. 109-127.

249. Rajavel M., Philip B., Buehrer B.M., Errede B., Levin D.E. Mid2p is a putative sensor for cell integrity signalling in Saccharomyces cerevisiae // Mol. Cell. Biol. 1999, vol.19, 3969-3976.

250. Ram A.F.J., Van Den Ende H., Klis F.M. // Green fluorescent protein-cell wall fusion proteins are covalently incorporated into the cell wall of Saccharomyces cerevisiae.FEMS Microbiol. Lett. 1998. Vol. 162. P. 249-255.

251. Ram A.F.J., Walters A., Ten Hoopen R., Klis F.M. A new approach for isolating cell wall mutants in Saccharomyces cerevisiae y screening for hypersensitivity to calcofluor white. // Yeast. (1994). Vol. 10, 1019-1030.

252. Reddy ST, Kumar SN, Haas AL, Dahms NM. Biochemical and functional properties of the full-length cation-dependent mannose 6-phosphate receptor expressed in Pichia pastoris. Biochem Biophys Res Commun. 2003 Sep 26;309(3):643-51

253. Reynolds E.S. The use of lead citrate of high pH as an electronopaque stain in electron microscopy. // J.Cell. Biol. (1963). Vol. 17, 208-212.

254. Rodriguez-Pena J.M., Cid V.J., Arroyo J., Nombela C. A novel family of cell wall-related proteins regulated differently during the yeast life cycle. // Mol. Cell. Biol. (2000). Vol. 20, 3245-3255.

255. Roemer T., Bussey H. // Yeast Krelp is a cell surface O-glycoprotein. Mol. Gen. Genet. 1995. Vol. 249. P. 209-216.

256. Roemer T., Bussey H. Yeast P-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro // Proc. Natl. Acad. Sci.USA. 1991, vol.88, 11295-11299.

257. Roemer T., Delaney S., Bussey H. SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis // Mol. Cell. Biol. 1993, vol. 13, 4039-4048.

258. Rombouts F.M., Fleet G.H., Manners D.J., Phaff H.J. Lysis of yeast cell walls non-lytic and lytic glucanases from Bacillus circulans WL-12 Carbohydr.Res. 1978, v.64 N2, p.237249.

259. Roncero C., Duran A. Effect of calcofluor white and congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization // J. Bacteriol. 1985, vol.163, 1180-1185.

260. Rose, M. D., Winston, F., Hieter, P. Methods in yeast genetics. // A laboratory course manual. N.Y.: Cold Spring Harbor Laboratory Press. (1990) P. 131-132.

261. Rosenfeld L., Ballou C.E. Genetic control of yeast mannan structure. Biochemical basis for the transformation of Saccharomyces cerevisiae somatic antigen. // Carbohydr. Res. (1974). Vol. 32: 287-298.

262. Rothstein, R.J. One-step gene disruption in yeast. // Methods Enzymol. (1983) Vol. 101. P. 202-211.

263. Rouwenhorst R.J., Hensing M„ Verbakel J., Scheffers W.A., Van Dijken J.P. // Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS 6556.Appl. Env. Microbiol. 1990. Vol. 56. P. 3337- 3345.

264. Rouwenhorst R.J., Hensing M., Verbakel J., Scheffers W.A., Van Dijken J.P. Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS 6556. // Appl. Env. Microbiol. (1990). Vol. 56: 3337- 3345.

265. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning/ Cold Spring Harbor Laboratory press, 1989

266. San Segundo P., Correa J., Vasquez de Aldana C.R., del Rey F. SSG1, a gene encoding a sporulation-specific l,3-(3-glucanase in Saccharomyces cerevisiae // J. Bacteriol. 1993, vol.175, 3823-3837.

267. Sanger, F., Nicklen, S. and Coulson, A.R. DNA sequencing with chain-terminating inhibitors. // Proc. Natl. Acad. Sci. USA (1977) Vol. 74. P. 5463-5467.

268. Santos B., Duran A., Valdivieso M.H. CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae // Mol. Cell. Biol. 1997, vol. 17, 24852496.

269. Santos B., Snyder M. Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p // J. Cell Biol. 1997, vol. 136, 95-110.

270. Sanz P., Herrero E., Sentandreu R. Autolytic release of mannoproteins from cell walls of Saccharomyces cerevisiae J.Gen.Microbiol. 1985, v. 131, N7, pp.29252932.

271. Sarthy A.V., McGonigal T„ Coen M., Frost D.J., Meulbroek J.A., Goldman R.C. // Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase.

272. Microbiology. 1997. V.143. P. 367-376.

273. Schekman R., Orci L. Coat proteins and vesicle budding // Science. 1996, vol.271, 1526-1533.

274. Schleip I, Heiss E, Lehle L. The yeast SEC20 gene is required for N- and O-glycosylation in the Golgi. Evidence that impaired glycosylation does not correlate with the secretory defect. J Biol Chem. 2001 Aug 3;276(31):28751-8

275. Schreuder M.P. In: Targeting of proteins to the cell wall of yeast and possible applications. PhD thesis (Leiden University, Leuden, the Netherlands (1994). 109.

276. Seichertova O, Beran K, Holan Z, Pokorny V. The chitin-glucan complex of Saccharomyces cerevisiae. II. Location of the complex in the encircling region of the bud sear. Folia Microbiol (Praha). 1973;18(3):207-11

277. Sentandreu R., Northcote D.H. // The structure of a glycopeptide isolated from the yeast cell wall. J. Biochem. 1968. V. 109. P. 419-432.

278. Sestak S., Farkas V. In situ assays of fungal enzymes in cells permeabilized by osmotic shock. Anal. Biochem. 2001, vol.292, 34-39.

279. Sharma C.B., Babczinsky P., Lehle L., Tanner W. The role of dolicholmonophosphate in glycoprotein biosynthesis in Saccharomyces cerevisiae. // Eur. J. Biochem. (1974). Vol. 46: 35 -41.

280. Sharma C.B., D'Souza C., Elbein A.D. Partial purification of a mannosyltransferase involved in the O-mannosylation of glycoproteins from Saccharomyces cerevisiae. // Glycobiology 1 (1991). Vol. 367-373.

281. Shaw J.A., Mol P.C., Bowers B., Silverman S.J., Valdivieso M.H., Duran A., Cabib E. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. Hi. Cell Biol. (1991). Vol. 114, 113-123.

282. Shepherd M.G. Cell envelope of Candida albicans // CRC Crit. Rev. Microbiol. 1987, vol.15, 7-25.

283. Sherman F., Fink G.R. and Hicks J.B. Methods in Yeast Genetics. // Cold Spring Harbor Laboratory Press (1986), New York.

284. Shimoi H., Iimura Y., Obata T. Molecular cloning of CWP1: a gene encoding a Saccharomyces cerevisiae cell wall protein solubilized with Rarobacter faecitabus protease I. // J. Biochem. (1995). Vol. 118, 302-311.

285. Shimoi H., Iimura Y., Obata T. // Molecular cloning of CWP1: a gene encoding a Saccharomyces cerevisiae cell wall protein solubilized with Rarobacter faecitabidus protease I. J. Biochem. 1995. Vol. 118. P. 302-311.

286. Shimoi H., Kitagaki H., Ohmori H., Iimura Y., Ito K. Sedlp is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance.//J.Bacteriol. 1998., Vol. 180. P.3381-3387

287. Siestma J.H., Wessels J.G. Solubility of (1 leads to 3)-beta-D/(l leads to 6)-beta-D-glucan in fungal walls: importance of presumed linkage between glucan and chitin. //J. Gen Microbiol. (1981). Vol. 125, P.209-212.

288. Sipos G., Puoti A., Conzelmann A. Glycosylphosphatidylinositol membrane anchor in Saccharomyces cerevisiae. // EMBO J. (1994). Vol. 13: 2789-2796.

289. Sipos G., Puoti A., Conzelmann A. // Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: absence of ceramides from complete precursor glycolipids.EMBO J. 1994. Vol. 13. P. 2789-2796.

290. Smits G.J., Kapteyn J.C., Van Den Ende H., Klis F.M. Cell wall dynamics in yeast. // Curr. Opin. Microbiol. (1999). Vol. 2, 348-352.

291. Smits G.J., Van Den Ende H., Klis F.M. Differential regulation of cell wall biogenesis during growth and development in yeast. // Microbiology. (2001). Vol.147, 781-794.

292. Staab J.F., Sundstrom P. // Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast. 1998. Vol. 14. P. 681-686.

293. Stokke BT, Elgsaeter A, Hara C, Kitamura S, Takeo K. Physicochemical properties of (l->6)-branched (l-->3)-beta-D-glucans. 1. Physical dimensionsestimated from hydrodynamic and electron microscopic data. Biopolymers. 1993 Apr;33(4):561-73

294. Storck R, Alexopoulos CJ. Deoxyribonucleic acid of fungi. Bacteriol Rev. 1970 Jun;34(2): 126-54

295. Strahl-Bolsinger S., Gentzsch M., Tanner W. Protein O-mannosylation. // Biochem. Biophys. Acta. (1999). Vol. 1426, P. 297-307.

296. Strahl-Bolsinger S., Immervoll T., Deutzmann R., Tanner W. PMT1, the gene for a key enzyme of protein O-glycosylation in Saccharomyces cerevisiae. // Proc. Natl. Acad. Sci. USA (1993) Vol. 90: 8164 8168.

297. Strahl-Bolsinger S., Tanner W. Protein O-glycosylation in Saccharomyces cerevisiae. Purification and characterisation of the dolichyl-phosphate-D-mannose-protein O-D-mannosyltransferase. // Eur. J. Biochem. (1991). Vol. 196: 185 190.

298. Suomalainen H., Nurminen T., Oura E. Aspects of cytology and metabolism of yeast. // Progress in Industrial Microbiol. (1973). Vol. 12: 109-127.

299. Surarit R., Gopal P.K., Shepherd M.G. Evidens for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans. // J. Gen. Microbiol. (1988). Vol.134, 1723-1730.

300. Surarit R., Gopal P.K., Shepherd M.G. Evidens for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans // J. Gen. Microbiol. 1988, vol.134, 1723-1730.

301. Sutterlin C., Doering T.L., SchiMMoller F., Schroder S., Riezman H. Specific requirements for the ER to Golgy transport of GPI-anchored proteins in yeast // J. Cell Sci. 1997, vol.110, 2703-2714.

302. Takahara K, Sato Y, Okazawa K, Okamoto N, Noda A, Yaoi Y, Kato I. Complete primary structure of human collagen alpha 1 (V) chain. : J Biol Chem. 1991 Jul 15;266(20): 13124-9

303. Tanner W. A lipid intermediate in mannan biosynthesis in yeast. // Biochem. Biophys. Res. Commun. (1969). Vol. 35: 144 150.

304. Tanner W., Jung P., Behrens N.H. Identification of the lipid intermediate in yeast mannan biosynthesis. // FEBS Lett. (1971). Vol. 16: 245 248.

305. Tanner W., Lehle L. // Protein glycosylation in yeast.Biochim. Biophys. Acta. 1987. Vol. 906. P. 81-99.

306. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW. Transformation by integration in Aspergillus nidulans Gene. 1983 Dec;26(2-3):205-21

307. Timpel C., Strahl-Bolsinger S., Ziegelbauer K., Ernst J.F. Multiple function of Pmtlp-mediated protein O-mannosylation in the fungal pathogen Candida albicans. // J. Biol Chem (1998). Vol. 273: 20837-20846.

308. Towbin, H., Staehelin, T., Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some application. // Proc. Natl. Acad. Sci. USA (1979) Vol. 76. P. 4350-4354.

309. Tracey M.V.// Chitin. 1956, In: Peach P. & Tracey M.V. (Ed.) Modern methods of plant analysis, vol II (p 264-274). Springer Verlag, Berlin, Germany.

310. Utsugi T., Suzuki M., Abe M., Ohya Y. New aspects of cell wall remodelling: dynamics and feedback regulation // Abstracts of conference "Molecular Mechanisms of fungal cell wall biogenesis" 2000, 21.

311. Valdivieso M.H., Ferrario L., Vai M., Duran A., Popolo L. // Chitin synthesis in a gasl mutant of Saccharomyces cerevisiae. J. Bacteriol. 2000. Vol. 182. P. 47524757.

312. Valentin E., Herrero E., Pastor F.I.J., Sentandreu R. Solubilisation and analysis of mannoprotein from the cell wall of Saccharomyces cerevisiae. // J. Gen. Microbiol. (1984). Vol. 130, 1419-1428.

313. Van Der Vaart J.M., Caro L.H.P., Chapman J.W., Klis F.M., Verrips C.T. Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae // J. Bacteriol. 1995, vol. 177, 3104-3110.

314. Van Rinsum J., F. M. Klis, H. Van dan Ende // Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9.Yeast. 1991. Vol. 7. P.717-726.

315. Varghese J.N., Garret T.P., Colman P.M., Chen L., Hoj P.B., Fincher G.B. Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities // Proc. Natl. Acad. Sci. USA. 1994, vol.91, 2785-2789.

316. Vasquez de Aldana C.R., Correa J., San Segundo P., Bueno A., Nebreda A.R., Mendez E., del Rey F. Nucleotide sequence of the exo-l,3-beta-glucanase-encoding gene, EXG1, of the yeast Saccharomyces cerevisiae // Gene. 1991, vol.97, 173-182.

317. Vediyappan G., Bikandi J., Braley R., Chaffin W.L. // Cell surface proteins of Candida albicans: preparation of extracts and improved detection of proteins. Electrophoresis. 2000. Vol. 21. P. 956-961.

318. Venkatesan M, de Pablo F, Vogeli G, Simpson RT. Structure and developmentally regulated expression of a Strongylocentrotus purpuratus collagen gene. Proc Natl Acad Sci U S A. 1986 May;83(10):3351-5.

319. Verna J., Lodder A., Lee K., Vagts A., Ballester R. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae // Proc. Natl. Acad. Sci. USA. 1997, vol.94, 13804-13809.

320. Wagner M., Briza P., Pierce M., Winter E. Distinct steps in yeast spore morphogenesis require distinct SMK1 MAP kinase thresholds // Genetics. 1999, vol. 151, 1327-1340.

321. Warit S., Zhang N., Short A., Walmsley R.M., Oliver S.G., Stateva L.I. Glycosylation deficiency phenotypes resulting from deletion of GDP-mannose phosphorylase in two yeast species. // Mol. Microbiol (2000). Vol. 36: 1156-1166.

322. Weston A., Nassau P.M., Henly C., Marriot M.C. Protein O-glycosylation in Candida albicans. // Eur. J. Biochem (1993). Vol. 215: 845-849.

323. Williams DL, McNamee RB, Jones EL, Pretus HA, Ensley HE, Browder IW, Di Luzio NR. A method for the solubilization of a (1-—3)-beta-D-glucan isolated from Saccharomyces cerevisiae. Carbohydr Res. 1991 Oct 14;219:203-13

324. Yamada Y, Avvedimento VE, Mudryj M, Ohkubo H, Vogeli G, Irani M, Pastan I, de Crombrugghe B. The collagen gene: evidence for its evolutinary assembly by amplification of a DNA segment containing an exon of 54 bp. Cell. 1980 Dec;22(3):887-92

325. Yu L., Goldman R., Sullivan P.A., Walker G.F., Fesik S.W. // J. Biomol. NMR. 1993. Vol. 3. P. 429-441.

326. Zhao C., Jung U.S., Garrett-Engele P., Roe T., Cyert M.S., Levin D.E. Temperature-induced expression of yeast FKS2 if under the dual control of protein kinase C and calcineurin // Mol. Cell. Biol. 1998, vol.18, 1013-10221997. Vol. 94. P. 7082-7087

327. Ziman M., Chuang J.S., Schekman R.W. Chslp and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway // Mol. Biol Cell. 1996, vol. 7, 1909-1919.

328. Zlotnik H., Fernandez M.P., Bowers B., Cabib E. Saccharomyces cerevisiae mannoproteins from an external cell wall layer that determines wall porosity. // J. Bacteriol. (1984). Vol. 159, 1018-1026.

329. Выражаю благодарность моему научному консультанту профессору, члену-корреспонденту РАН Игорю Степановичу Кулаеву за внимание к работе, ценные советы, поддержку и участие.

330. Я благодарна А.Н. Пакайзер, Г.В.Фоминову, А.Б. Шевелеву и Е.И. Левитину за непосредственную помощь в работе.

331. Я благодарна за помощь в проведении электронной микроскопии Н. Е. Сузиной (ИБФМ РАН, Пущино) и И.О.Селях (Биологический факультет МГУ).

332. Благодарю д.б.н. В.К.Голубева за предоставленные штаммы микроорганизмов.

333. Выражаю признательность О.С. Моренкову (ИБК РАН, Пущино) за помощь в получении антител и В.М. Захарьеву (ИМБ РАН) за помощь в определении нукпеотидной последовательности фрагмента гена, кодирующего белок РЗЗ и белок Р116.

334. Хочу отдельно поблагодарить Нурминского Д.И. за помощь в изучении коллагеноподобных последовательностей дрожжей.

335. С большим удовольствием выражаю свою признательность всем сотрудникам кафедры молекулярной биологии за ценные советы, помощь и поддержку в работе, а также отзывчивое отношение.

336. Особую благодарность я выражаю Р.Иванову и аспиранту кафедры молекулярной биологии, Т.Плотниковой за помощь при оформлении диссертационной работы.