Бесплатный автореферат и диссертация по биологии на тему
Регуляция экспрессии генов плацентарного трансформирующего фактора роста-β и β-рецептора тромбоцитарного фактора роста кальцитриолом в клетках LNCaP рака предстательной железы
ВАК РФ 03.00.04, Биохимия

Автореферат диссертации по теме "Регуляция экспрессии генов плацентарного трансформирующего фактора роста-β и β-рецептора тромбоцитарного фактора роста кальцитриолом в клетках LNCaP рака предстательной железы"

¿/Г

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ ПЛАЦЕНТАРНОГО ТРАНСФОРМИРУЮЩЕГО ФАКТОРА РОСТА-Р И Р-РЕЦЕПТОРА ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА КАЛЬЦИТРИОЛОМ В КЛЕТКАХ ЫЧСаР РАКА ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ

Специальность 03.00.04 - "Биохимия"

На правах рукописи

Назарова Надежда Юрьевна

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологически^

00345Э^аи

Санкт-Петербург

2008

003459390

Работа выполнена в лаборатории химии белка кафедры биохимии Санкт-Петербургского государственного университета и в лаборатории анатомии Медицинской школы Университета Тампере (Финляндия).

Научный руководитель:

- кандидат биологических наук Галина Ивановна Чихиржина

Официальные оппоненты:

- доктор биологических наук, профессор Андрей Петрович Перевозчиков

- доктор биологических наук

Елена Сергеевна Корнилова

Ведущее учереждение:

Санкт-Петербургский государственный политехнический университет

Защита диссертации состоится «¿Г" ^¿■¿^с/ал 2009 года в /г часов на заседании Совета Д 212.232.09 по защите докторских и кандидатских диссертаций при Санкт-Петербургском государственном университете по адресу: 199034, Санкт-Петербург, Университетская наб., д. 7/9.

С диссертацией можно ознакомиться в Научной библиотеке им. А. М. Горького Санкт-Петербургского государственного университета.

Автореферат разослан " о О" ^¿ха/^ц^, 2008 года.

Ученый секретарь диссертационного совета кандидат биологических наук

Л.С.Курилова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Аденокарцинома предстательной железы является одной из самых распространенных форм рака среди мужчин. В 1990 году Шварц и Хулка выдвинули гипотезу о том, что недостаточность витамина Д является фактором риска развития рака предстательной железы, поскольку метаболиты витамина Д поддерживают клетки этой железы в дифференцированном состоянии, а их недостаточность провоцирует переход от скрытой к выраженной форме рака (Schwartz, Hulka, 1990). Исследования in vitro показали, что кальцитриол, активный метаболит витамина Д, контролирует пролиферацию, дифференцировку, апоптоз и миграцию гормон-зависимых раковых клеток, а также ангиогенез. В настоящее время активно изучаются механизмы противоопухолевого действия кальцитриола и природа повышенной чувствительности гормон-зависимых раковых клеток к его действию. В функциональном отношении кальцитриол подобен классическим стероидным гормонам, действие которых реализуется при связывании с рецептором - транскрипционным фактором и регуляцию экспрессии генов-мишеней. Поэтому необходимым этапом в понимании феномена противоопухолевого действия витамина Д является расшифровка спектра генов-мишеней кальцитриола и выявление среди них генов, задействованных в контроле пролиферации, дифференцировки клеток и апоптоза. К настоящему времени скрининг генов, регулируемых кальцитриолрм и его аналогами в клетках рака предстательной железы, позволил выявить такие механизмы антипролиферативного действия витамина Д как регуляция сигнальных путей инсулиноподобного фактора роста, эпидермального фактора роста, трансформирующих факторов роста 1 и 2. Регуляция экспрессии других генов, определяющих скорость роста клеток, кальцитриолом остается неисследованной.

Цель работы. Целью данного исследования было выявление новых генов-мишеней кальцитриола, вовлеченных в регуляцию роста гормон-зависимых клеток рака предстательной железы человека линии LNCaP.

Для достижения этой цели были поставлены следующие задачи исследования:

1. Провести скрининг генов, регулируемых кальцитриолом в клетках LNCaP,

на микрочипах к ДНК и определить потенциальные гены-мишени

кальцитриола на основании результатов скрининга и данных литературы.

2. Провести анализ экспрессии выбранных генов-мишеней под действием

кальцитриола в клетках LNCaP методами ОТ-ПЦР (обратной

транскрипции с последующей полимеразной цепной реакцией) в режиме

реального времени и иммуноблоттинга.

3. Оценить значение регуляции экспрессии выбранных генов-мишеней для

подавления роста клеток LNCaP кальцитриолом

Научная новизна исследования. Выявлены новые потенциальные мишени кальцитриола, включая гены, кодирующие компоненты сигнальных путей факторов роста, такие как плацентарный трансформирующий фактор роста-(3

(PTGF-P) и p-рецептор тромбоцитарного фактора роста (PDGFRP), ряд генов, кодирующих ферменты метаболизма, и др.

Исследована зависимость уровня экспрессии гена PTGF-P от времени инкубации клеток с кальцитриолом и его концентрации. Выявлен авдроген-независимый характер действия кальцитриола на экспрессию этого гена. Получены новые данные по регуляции роста клеток рака предстательной железы линии LNCaP под действием рекомбинантного PTGF-p. Впервые исследованы два возможных пути в сигнальной системе PDGF-P в клетках рака предстательной железы: не обнаружено влияния PTGF-p на активацию белков SMAD, выявлено быстрое и краткосрочное фосфорилирование киназ, регулируемых внеклеточными сигналами, ERK.1 и ERK2.

Впервые показано, что капьцитриол подавляет экспрессию гена Р -рецептора тромбоцитарного фактора роста (PDGFRP) в клетках LNCaP, индуцированных эпидермальным фактором роста (EGF). Выявлено индуцирующее действие EGF на экспрессию гена PDGFRp, а также на способность PDGF (его ВВ-изоформы) усиливать рост клеток LNCaP.

Научное и практическое значение работы. Открытие новых механизмов подавления роста клеток LNCaP кальцитриолом - индукции экспрессии гена PTGF-p и подавления экспрессии гена PDGFRP - вносит вклад в понимание природы антипролиферативного действия витамина Д на клетки рака предстательной железы, а также механизмов взаимодействия сигнальных путей витамина Д и факторов роста суперсемейств TGF-p и PDGF/VEGF. Полученные данные могут быть использованы при разработке комплексных средств терапии и профилактики рака предстательной железы, создаваемых на основе аналогов кальцитриола и специфических ингибиторов действия факторов роста.

Основные положения, выносимые на защиту:

1. Капьцитриол индуцирует экспрессию гена плацентарного

трансформирующего фактора роста-Р (PTGF-P) в клетках рака предстательной железы человека линии LNCaP. Кальцитриол не влияет на стабильность мРНК PTGF-p. Индукция транскрипции гена PTGF-P кальцитриолом не зависит от белкового синтеза

2. Индукция транскрипции гена PTGF-P кальцитриолом не зависит от

действия андрогенов

3. PTGF-p подавляет рост клеток LNCaP и вызывает активацию киназ,

регулируемых внеклеточными сигналами, ERK1 и ERK2

4. Кальцитриол подавляет экспрессию гена p-рецептора тромбоцитарного

фактора роста (PDGFRP), индуцированную эпидермальным фактором роста, в клетках LNCaP

Апробация работы: Материалы научно-исследовательской работы докладывались на XV Всероссийском симпозиуме "Структура и функции клеточного ядра" (2005), IV съезде Российского общества биохимиков и молекулярных биологов (2008), международной конференции "I2,h Workshop on Vitamin D" (Голландия, 2003), на международном симпозиуме "Recent

advances in steroid biochemistry and molecular biology. 16,h International Symposium of the Journal of Steroid Biochemistry and Molecular Biology" (Австрия, 2005). По теме диссертации опубликовано 7 статей и 3 тезисов докладов.

Структура и объем диссертации: Диссертация изложена на 136 страницах, состоит из разделов "Введение", ''Обзор литературы'', "Методы исследования", "Результаты исследования", "'Обсуждение результатов", "Выводы". Список литературы включает 388 источников. Диссертация проиллюстрирована 31 рисунком и 6 таблицами.

Благодарности: Автор благодарит руководителя кафедры анатомии Медицинской школы университета Тампере (Финляндия) профессора Пентти Туохимаа за предоставленную возможность выполнить значительную часть экспериментальной работы.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Куль тивипование клеток. Клетки саркомы предстательной железы человека линии LNCaP выращивали в среде RPM1-1640, содержащей 10% эмбриональную сыворотку крупного рогатого скота (FBS) и антибиотики. Клетки саркомы предстательной железы человека линии РС-3 выращивали в среде DMEM/F12, содержащей 5% FBS и антибиотики. Клетки первичной культуры стромы предстательной железы человека линий P29SN и P32S выращивали в среде DMEM/F12, содержащей 5 мкг/мл инсулина и антибиотики. Клетки культивировали при 37°С в атмосфере 5% С02 до субконфлюэнтного состояния. Перед обработкой стероидными гормонами клетки инкубировали в среде с низким (1-5%) содержанием FBS, обработанной декстраном (DCC-FBS) в течение 24 - 48 ч. Перед обработкой факторами роста клетки инкубировали в среде, содержащей 1% бычий сывороточный альбумин (БСА), в отсутствие сыворотки в течение 24 ч. Для исследования фосфорилирования белков SMAD и ERK замену полноценной культуральной среды на среду, содержащую 0.5% БСА вместо сыворотки, проводили за 2 ч до обработки клеток рекомбинантным PTGF-ß. Для оценки скорости роста клеток использовали метод окрашивания клеток кристаллическим фиолетовым (Kueng, 1989). Клетки выращивали на 96-луночных планшетах в присутствии кальцитриола или других действующих веществ в течение 4-6 дней. Каждый второй день клетки на одном из планшетов фиксировали добавлением глутаральдегида и окрашивали кристаллическим фиолетовым. Количество клеток оценивали по поглощению света при 590 нм на спектрофотометре Wallac Victor 1420 Multilabel counter (Wallac Oy, Финляндия). Поглощение света в контроле принимали за 1. Результат выражали как поглощение света при 590 нм пробами, полученными из клеток, обработанных действующими веществами, к поглощению в контроле. Данные получали по результатам двух-трех независимых экспериментов, в каждом из которых на одном планшете идентичные пробы анализировали в 12-ти лунках. Для оценки количества жизнеспособных клеток применяли метод окраски трипановым синим (Tennant, 1964). Для анализа адгезивных свойств клеток

(Monboisse, 1991) суспензию клеток, разведенную до плотности 4><105 живых клеток/мл среды, высевали на планшеты, покрытые ламинином или коллагеном I и инкубировали в течение 2 ч при 37°С. Для подсчета клеток, прикрепленных к подложке, клетки фиксировали глутаральдегидом и окрашивали кристаллическим фиолетовым, как описано выше.

Выделение суммарной клеточной РНК. Суммарную РНК выделяли из культуры клеток с использованием реагента TRIzol (Invitrogen, США) в соответствии с рекомендациями фирмы-изготовителя. Скрининг генов на микрочипах кДНК. Меченую кДНК получали в реакции обратной транскрипции на матрице суммарной клеточной РНК, с использованием олигонуклеотидных праймеров, содержащих 12-18 дезокситимидиновых остатков (dT)12.18 (Amersham Pharmacia Biotech, США). Реакционная смесь для получения меченой кДНК клеток, обработанных кальцитриолом, содержала 25 нМ CyTM5-dUTP (Amersham Pharmacia Biotech), а для получения меченой кДНК необработанных клеток (контроль) - 25 нМ СуТМЗ-dUTP (Amersham Pharmacia Biotech). Меченную СуЗ- и Су5-кДНК собирали на одной колонке Microcon (Millipore, США) и промывали кратковременным микроцентрифугированием в буфере ТЕ, pH 7.4. В работе использовали 2 типа кДНК-микрочипов: микрочипы Human 2-1, содержащие 3000 зондов (Turku Centre for Biotechnology, Финляндия) и микрочипы, содержащие 12000 зондов (Helsinki Biomedicum Biochip Center, Финляндия). Гибридизацию меченых кДНК с микрочипами проводили в соответствии с рекомендациями фирм-изготовителей микрочипов. Микрочипы сканировали на установке ScanArray 4000 Series (Packard Bioscience, США) и анализировали с помощью программы QuantArray Microarray Analysts Software (Packard Bioscience). Статистическую обработку данных проводили с помощью программы Excel Date Normalization Macro (Microsoft, США). Каждую пробу кДНК анализировали независимо на двух микрочипах. При анализе чипов, изменение уровня кДНК в >1.8 раза по результатам трех независимых экспериментов, считали существенным. Содержание специфичных мРНК в составе суммарной РНК клетки определяли количественным методом ОТ-ПЦР (обратной транскрипции с последующей полимеразной цепной реакцией) в режиме реального времени. ОТ осуществляли на матрице суммарной РНК клеток с использованием набора High-Capacity cDNA Archive (Applied Biosystems, США) в соответствии с рекомендациями фирмы-изготовителя в циклере GeneAmp PCR System 2400 (Applied Biosysems). ПЦР в режиме реального времени проводили на установке ABI Prism 7000 Sequence Detection System (Applied Biosystems) с использованием флуоресцентного красителя SYBR Green I. Последовательности праймеров конструировали с помощью программы Primer Express 2.0 (Applied Biosystems). Праймеры заказывали в фирме TAG Copenhagen A/S, Швеция. Результаты количественной ПЦР анализировали с помощью пакета ABI Prism 7000 SDS Software Version 1.0 (Applied Biosystems). По кривым амплификации (кривым зависимости интенсивности флуоресценции от цикла амплификации) определяли пороговый цикл (Ст, цикл

амплификации, при котором в пробе впервые детектируется статистически значимое повышение уровня флуоресценции относительно фона) для каждой пробы. Стандартные кривые (кривые зависимости Ст от десятичного логарифма количества внесенной ДНК) для каждого гена соответствовали линейной регрессивной модели (коэффициент детерминации Я2>0.95). Соотношения содержания исследуемой РНК в контроле и в эксперименте вычисляли по формуле, приведенной в статье РГаШ, 2001. Для нормирования в качестве внутреннего контроля использовали мРНК большой субьеднницы РО кислого рибосомного фосфорилированного белка (КРАЛ'О).

Таблица 1. Список праймеров

Название продукта гена Номер гена в базе данных GenBank (NCBI, США) Последовательность неуклеотидов праймера

PTGF-p NM 004864 прямой 5'-CCCGGGACCCTCAGAGTT-3'

обратный 5'-CAGGTCCTCGTAGCGTTTCC-3'

PDGFRa NM 006206 прямой 5-CACCCTGCGTTCTGAACTCA-3'

обратным 5'-TTTCTGTTTCCAAATGACAACCA-3'

PDGFR|3 NM 002609 прямой 5-AGCGCTGGCGAAATCG-3'

обратный 5-TTCACGCGAACCAGTGTCA-3'

PDGF-B NM 002608 прямой 5-CGATCCGCTCCTTTGATGAT-3'

обратный 5-TCCAACTCGGCCCCATCT-3'

RPLP0 NM 001002 прямой 5'-AATCTCCAGGGGCACCAT7'-3'

обратный 5'-CGCTGGCTCCCACTTTGT-3'

CYP24 NM 000782 прямой 5-GCCCAGCCGGGAACTC-3'

обратный 5'-AAATACCACCATCTGAGGCGTATT-3'

Анализ стабильности специфичных мРНК проводили с использованием актиномицина Д (Leclerc, 2002). Клетки инкубировали в среде с низким (1%) содержанием FBS в течение 24 ч. Инкубацию продолжали в среде, содержащей 10 нМ кальцитриол (эксперимент) или 0.01% этанол (контроль) в течение 24 ч. Затем в культуральную среду добавляли актиномицин Д (Sigma-Aldrich Laboratories, США) до конечной концентрации 5 мкг/мл. Через промежутки времени, увеличивающиеся от 0 до 6 ч, клетки собирали для выделения суммарной РНК и анализа методом количественной ОТ-ПЦР. Содержание мРНК в клетках до добавления актиномицина Д принимали за 1.

Аналитический электрофорез белков в присутствии SDS и чммуноблоттинг. Клетки подвергали лизису в соответствии с рекомендациями фирмы-изготовителя в буфере M-PER (Pierce, США), в присутствии ингибиторов протеаз (Complete Mini Protease inhibitor cocktail (Roche, Германия) и 1 мМ ортованадата натрия. Электрофорез белков в присутствии SDS проводили по методу Laemmli (1970). Разделенные на геле белки электрофоретически переносили на нитроцеллюлозные мембраны Protran (Shleider and Schuell, Германия) в соответствии с рекомендациями фирмы-

изготовителя. Гибридизацию с первичными антителами проводили при 4°С в течение ночи, с вторичными - в течение часа при комнатной температуре. Детекцию белков проводили с использованием набора реактивов ECL (GE Healthcare, Великобритания) в соответствии с рекомендациями фирмы-изготовителя. Полученные рентгеновские снимки сканировали и определяли интенсивность полос с помощью программы ImageJ (NIH, США).

Определение остаточного содержания кальцитрола методом высокоэффективной жидкостной хроматографии (ВЭЖХ). Клетки предварительно инкубировали в среде, содержащей 10 нМ кальцитриол в присутствии или в отсутствие 10 нМ 5а-дигидротестостерона (DHT) в течение 48 ч, а затем продолжали инкубацию клеток в присутствии 1 нМ кальцитриола в течение еще 16 ч. Клетки и культуральную среду собирали для оценки остаточного содержания кальцитриола. Радиоактивный 1а,25-дигидроси (26,27-метил-'Н) витамин ДЗ (TRK 656 5 uCi, Amersham) добавляли к пробам и предварительно очищали пробы с помощью ацетонитрила (acetonitrile-C18 Sep-Pak Cartridge, Waters, Ирландия). Метаболиты разделяли методом ВЭЖХ (Pharmacia LKB HPLC pump 2248, VWM 2141, США). Система растворителя подвижной фазы была следующей - гексан:дихлорометан:метанол:изопропанол (75:12:6:7). Концентрация кальцитриола оценивалась с использованием радиорецепторного анализа. Проводили пятикратное измерение каждой пробы.

Статистический анализ данных. Если не оговорено особо, каждое из представленных значений рассчитывалось по результатам трех независимых экспериментов. Во всех расчетах значимость различий между экспериментальными и контрольными пробами оценивали по t-критерию Стьюдента. За достоверность принимали 95% уровень значимости (р<0,05).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Скрининг генов, регулируемых кальцитриолом в клетках LNCaP. Для выявления новых потенциальных мишеней кальцитриола в гормон-зависимых клетках рака предстательной железы человека линии LNCaP применялись два типа микрочипов кДНК. На микрочипах Human 2-1 (Турку, Финляндия) было выявлено 23 гена, содержание мРНК которых существенно изменялось при инкубации клеток с 10 нМ кальцитриолом в течение 24 ч. На микрочипах компании Helsinki Biomedicum Biochip Center (Финляндия) было выявлено более 300 регулируемых кальцитриолом гена. Результаты скрининга подтвердили данные литературы о том, что кальцитриол индуцирует экспрессию гена белка-3, связывающего инсулиноподобный фактор роста (IGFBP-3), гена рецептора эпидермального фактора роста (EGFR) и др. (Nazarova, 2003; Qiao, 2003). Среди ранее не известных мишеней кальцитриола обнаружен ряд генов, кодирующих ферменты метаболизма, вовлеченные в биосинтез жирных кислот, пуриновых нуклеотидов и катаболизм гистидина (Qiao, 2003). Среди генов, кодирующих белки сигнальных путей факторов роста суперсемейства TGF-ß, выявлено увеличение количества мРНК плацентарного трансформирующего фактора роста-ß (PTGF-ß) (Таблица 1, Nazarova, 2004). PTGF-ß известен как фактор, стимулирующий апоптоз и

дифференцировку, и подавляющим пролиферацию клеток различного происхождения, что указывает на его вероятное противоопухолевое действие (Tan. 2000; Baek, 2001; Albertoni, 2002).__

Название продукта гена Индекс в базе данных GenBank* Коэффициент регуляции кальцитриолом'"'

Трансформирующим фактор роста-pi (TGF-pi) 0.8

Скрытый белок 1, связывающий TGF-P (LTBP1) 1.0

Скрытый белок 3, связывающий TGF-P (LTBP3) 1.1

Плацентарный трансформирующий фактор роста-Р (PTGF-P) 2.5

Морфогенетический белок кости I (BMI'l) 0.8

Морфогенетичсский белок кости 4 (ВМР4) 0.7

Морфогенетический белок кости 7 (ВМР7) ВС004248 1.0

Ингибин-а (INHA) ВС006391 0.6

Ингибин-РА (INHBA) 1.0

Таблица 1. Гены ростовых факторов семейства TGF-р и связывающих их белков, представленные на мнкрочипах кДНК. * указанный в документации к мпкрочппам. ''Коэффициент регуляции кальцнтриолом представляет собой отношение содержания мРНК продукта гена интереса в пробах РНК клеток, инкубированных в присутствии 10 нМ в течение 24 ч, к содержанию мРНК продукта гена интереса в контроле.

На основании данных литературы был выбран еще ряд факторов роста и цитокинов, имеющих важное значение в регуляции роста клеток предстательной железы, но зонды для анализа которых не представлены на микрочипах кДНК. Анализ регуляции экспрессии генов выбранных цитокинов и их рецепторов в клетках LNCaP был проведен методом количественной ОТ-ПЦР для того, чтобы сделать результаты скрининга более полными. Среди генов, исследованных этим методом, было выявлено существенное (в 2 раза) уменьшение количества мРНК р-рецептора тромбоцитарного фактора роста (PDGFRP) под действием кальцитриола (Nazarova, 2005). Поскольку подавление экспрессии генов рецепторов PDGF представляет собой мощный механизм регуляции чувствительности клеток к его митогенному действию, ген PDGFRP был также выбран для дальнейшего исследования.

Индукция экспрессии гена PTGF-fi кальцитриолом. Анализ методом количественной ОТ-ПЦР показал, что содержание мРНК PTGF-р в клетках LNCaP находится в прямой зависимости от времени инкубации с кальцитриолом в интервале от 0 до 24 ч (рис. 1А) и в прямой зависимости от концентрации кальцитриола в диапазоне от 0 до 100 нМ (рис. 1Б) (Nazarova, 2004). С помощью блокатора транскрипции актиномицина Д было показано, что кальцитриол не влиял на стабильность мРНК PTGF-Р, а с использованием блокатора трансляции циклогексимида было показано, что увеличение количества мРНК PTGF-Р под действием кальцитриола не зависело от синтеза белка (Nazarova, 2004; Назарова, 2008). Полученные данные, в совокупности с достаточно ранним характером индукции, позволяют говорить в данном случае о действии кальцитриола на уровне транскрипции.

о н

3,5

2,5 2 1,5 I

5 *

а о,5

Время, ч

Кальцитриол, нМ

Рис. 1. Диаграмма содержания мРНК PTGF-P в клетках LNCaP, обработанных кальцнтриолом. А. Клетки инкубировали в присутствии 10 нМ кальцитриола в течение указанных промежутков времени. Б. Клетки ннкубировали в присутствии кальцитриола в указанных концентрациях в течение 24 ч. Относительное содержание мРНК PTGF-fl оценивали по результатам количественной ОТ-ПЦР на основании показателей эффективности реакции и разности между значениями пороговых циклов в эксперименте и контроле (ДСТ) по гену интереса (PTGF-P) и нормализовали к ДСТ по гену внутреннего контроля (RPLP0). Интервалы значений соответствуют стандартному отклонению. * - уровень значимости < 0.05

Для выявления белка PTGF-P в клетках LNCaP и исследования его содержания в клетках, инкубированных в присутствии кальцитриола, экстрагированные из клеток белки разделяли электрофорезом в SDS-полиакриламидном геле, переносили на нитроцеллюлозные мембраны и гибридизовали с антителами к PTGF-P (Upstate Biotechnology, США) (рис. 2).

Время, ч 24 _48_ _72... „

ДЗ - '

- 45 кДа -—PTGF-p— -31 кДа-

Рис. 2. Иммуноблоты белков клеток ЫУСаР, обработанных кальцнтриолом (ДЗ), и их денситограммы. А. Клетки инкубировали в присутствии 10 нМ кальцитриола в течение указанных промежутков времени. Б. Клетки инкубировали в присутствии кальцитриола в указанных концентрациях в течение 72 ч. Гибридизация с антителами к РТСР-р. Справа указаны молекулярные массы стандартных белков: овапьбумина (45 кДа) н карбоаигидразы (31 кДа). Денситограммы построены на основании данных иммуноблотгинга в программе 1та£е.1,

Количественный анализ иммуноблотов с помощью программы Image.! (К1П, США), показал, что индукция белка PTGF-p характеризуется прямой зависимостью от времени обработки кальцитриолом в интервале 24-72 ч (рис. 2А) и концентрации кальцитриола в диапазоне 1-100 нМ (рис. 2Б) (Nazarova, 2004; Назарова, 2008).

Для исследования действия PTGF-P на рост клеток LNCaP клетки инкубировали в среде, содержащей 50-250 нг/мл рекомбинантного PTGF-p человека (R&D Systems, США) в течение 6 дней. Каждый второй день клетки фиксировали и считали методом окрашивания кристаллическим фиолетовым. PTGF-p в используемом диапазоне концентраций приводил к уменьшению числа клеток (на 15-25% на шестой день) (Nazarova, 2004), что поддерживает представления о белках суперсемейства TGF-p как о факторах-супрессорах опухоли предстательной железы, а также предположение о том, что индукция экспрессии гена PTGF-P кальцитриолом может служить механизмом его антипролиферативного действия.

Для выявления молекулярных механизмов действия PTGF-P в клетках LNCaP было исследовано два потенциальных пути передачи сигнала, активация белков SMAD и киназ, регулируемых внеклеточными сигналами (ERK). Активация белков SMAD в клетках LNCaP, инкубированных в присутствии 50 иг/мл рекомбинантного PTGF-p (rPTGF-P) в течение 15-90 мин была исследована путем разделения экстракта клеточных белков SDS-электрофорезом и иммуноблоттинга с использованием антител, специфичных к фосфорилированным формам R-SMAD - SMAD 1/5/8 и SMAD 2/3 (Cell Signaling Technology, США). Ожидаемого повышения содержания фосфорилированных форм SMAD под действием PTGF-P в клетках LNCaP обнаружено не было. Иммуноблоттинг с антителами к фосфорилированным формам ERK1 и ERK2 (New England BioLabs, США) выявил быстрое и кратковременное повышение содержания фосфорилированных форм обеих киназ (существенное повышение после 2 мин инкубации, которое исчезало после 10 мин воздействия) под действием 50 нг/мл rPTGF-P (рис. 3). Фосфорилирование ERK1/2 свидетельствует о том, что в клетках LNCaP действие PTGF-[i может передаваться через активацию киназ, регулируемых внеклеточными сигналами, путь, альтернативный классическому сигнальному пути TGF-J31.

Для того чтобы выяснить биологическое значение индукции PTGF-p в клетках LNCaP, использовались антитела к PTGF-P (Upstate Biotechnology, США), нейтрализующие фактор, который клетки секретируют в культуральную среду. Клетки инкубировали в присутствии 10 нМ кальцитриола в течение 24 ч перед добавлением предварительно тестированных разведений PTGF-P-специфичных антител. Данные о количестве клеток на 2 и 4 день инкубации, полученные с помощью окраски клеток кристаллическим фиолетовым, использовали для построения диаграмм, представленных на рис. 4. Существенного эффекта антител на рост клеток в

отсутствие кальцитриола не было обнаружено, что может объясняться тем, что

уровень базальной экспрессии гена РТОР-р в клетках ЬЫСаР низок для того, чтобы оказывать влияние на рост клеток. Время, мин 0 2 10 15

Г-ЕКК 1 ¡'-ЕЯК 2

ЕИК 1 ЕЯК2

• «ИШ» «¡р*» ..НИШ - 1»Ч|1|»<1

Рис. 3. Иммупоблот белков клеток Ы\СаР,

нмкубмрованных с РТСЛ'-р.

Клетки инкубировали в присутствии 50 нг/мл рекомбинантного РТОР-Р в течение указанных

промежутков времени

Гибридизация с антителами к фосфорилированным формам ЕКК 1/2 (верхняя панель). Регибридизация с антителами к ЕЮС 1/2 (нижняя панель).

О

■ контроль ~ Ванти-РТСГ-р " И кальцитриол - И кальцитриол + аитиТ'ТСГ-р

Время, дни

Рис. 4. Диаграмма количества клеток LNCaP, обработанных антителами к РТСЕ-р и кальцитриолом. Клетки инкубировали в присутствии антител к РТСР-Р (анш-РТОР-Р) к/илн 10 нМ кальцитриола в течение указанных промежутков времени. Количество клеток оценивали методом окраски клеток кристаллическим фиолетовым. Относительное количество клеток представлено как поглощение света при 590 нм пробами, полученными из клеток, выращенных в присутствии факторов роста, нормализованное к поглощению света в контроле. Интервалы значений соответствуют стандартному отклонению. * - уровень значимости < 0.05 (относительно количества клеток, обработанньк кальцитриолом)

Действительно, добавление РТСР-Р - специфичных антител в кальцитриол-содержащую культуральную среду, приводило к частичному (в среднем, на 70% на 4 день) восстановлению скорости роста клеток ЬМСаР (№гагоуа, 2004). Полученные результаты свидетельствуют о том, что действие кальцитриола на рост клеток Ыч'СаР, по крайней мере, частично, передается через регуляцию экспрессии гена, кодирующего РТСР-р.

Взаимодействие между кальцитриолом и 5а-дигидротестостероном в регуляции экспрессии гена РТСР-р. Действие кальцитриола в гормон-зависимых клетках рака предстательной железы тесно взаимосвязано с сигнальной системой андрогенов, наиболее активным из

которых является 5а-дигндротестостероп (DHT). Для исследования влияния андрогенов на кальцитриол-зависимую индукцию транскрипции гена PTGF-p были применены два подхода - инкубация клеток LNCaP с кальцитрполом в присутствии DUT и блокирование действия андрогенов Касодексом. В качестве показателя для исследования влияния DHT на действие кальцитриола в клетках LNCaP был выбран ген 24-гидроксилазы кальцитриола, поскольку кальцитриол наиболее эффективно индуцирует транскрипцию этого гена. Методом количественной ОТ-ПЦР было показано, что DHT в диапазоне концентраций 0.01 - 100 нМ, не оказывал заметного влияния на содержание мРНК 24-гидроксилазы в клетках LNCaP. Однако, в присутствии 10 нМ кальцитриола, DHT в концентрации 0.01-0.1 нМ приводил к небольшому увеличению количества мРНК 24-гидроксилазы, а в концентрации 1-100 нМ, напротив, почти полностью (па 50 - 90%) устранял вызванное кальцитрполом увеличение количества мРНК 24-гидроксилазы (рис. 5) (Lou, 2005).

Рис 5 Диаграмма содержания мРНК 24-гидроксилазы

кальцитриола в клетках LNCaP, обработанных

кальцитриолом » DUT. Клетки инкубировали в присутствии 10 нМ кальцитриола н DUT в указанных концентрациях в течение 24 ч. Относительное содержание мРНК 24-гндрокенлазы кальцитриола оценивали как указано на рис. 1. Интервалы значений

соответствуют стандартному отклонению.

Результаты исследования остаточного количества кальцитриола в клетках, индуцированных кальцитриолом в присутствии 10 нМ DHT, и в их культуральной среде методом высокоэффективной жидкостной хроматографии (ВЭЖХ) подтвердили, что DHT поддерживал суммарное содержание кальцитриола в клетках и культуральной среде в более высоких концентрациях (Lou, 2005). Таким образом, была впервые выявлена способность DHT защищать кальцитриол от расщепления, регулируя уровень индуцированной экспрессии гена 24-гидроксилазы кальцитриола. Эти данные раскрывают новый механизм взаимодействия между сигнальными путями андрогенов и метаболитов витамина Д в клетках рака предстательной железы.

Принимая во внимание то, что DHT повышает содержание мРНК PTGF-(! (Nazarova, 2004), и, с другой стороны, поддерживает концентрацию кальцитриола в клетке на более высоком уровне, мы предположили, что индукция транскрипции гена PTGF-p кальцитриолом зависит от андрогенов, что согласуется с гипотезой об андроген-зависимом характере действия кальцитриола в клетках рака предстательной железы (Zhao. 1997; Bao, 2004).

50000 r

Кальцитриол ~ + + + + + + DHT, нМ 0 0 0.01 0.1 1 10 100

Однако, против ожидаемого, инкубация клеток LNCaP с кальцитриолом в присутствие DHT не приводила к дальнейшему увеличению количества мРНК PTGF-P по сравнению с количеством этой РНК в клетках, инкубированных только с кальцитриолом (Назарова, 2006). Касодекс, в концентрации 1 мкМ, достаточной для полного блокирования действия андрогенов, не предотвращал индукцию экспрессии гена PTGF-р кальцитриолом (Назарова, 2006). Андроген-независимый характер регуляции экспрессии PTGF-р кальцитриолом служит в поддержку гипотезы о наличии независимого от андрогенов механизма регуляции роста клеток LNCaP кальцитриолом.

Подавление экспрессии гена PDGFRf! кальцитриолом. Следующим геном, выбранным по результатам скрининга, был ген Р-рецептора тромбоцитарного фактора роста (PDGFRP), количество мРНК которого в клетках LNCaP в 2 раза уменьшалось под действием кальцитриола. По данным литературы PDGF является сильным митогеном для клеток гиперплазии предстательной железы (ВРН) в культуре (Vlahos, 1993), однако регуляция сигнальных путей PDGF метаболитами витамина Д ранее не изучалась. Результаты исследования методом количественной ОТ-ПЦР подтвердили, что кальцитриол уменьшает содержание мРНК PDGFRP в клетках LNCaP, после продолжительного (24 ч) воздействия (рис. 6) (Nazarova, 2005).

Рис. 6 Содержание мРНК PDGFRP в клетках LNCaP, обработанных кальцитриолом. Клетки

инкубировали в присутствии 10 нМ кальцитриола в течение указанных промежутков времени. Относительное содержание мРНК PDGFRp оценивали по результатам количественной OT-ПЦР в реальном времени как указано на рис. 1. Интервалы значений соответствуют стандартному

отклонению.

* - уровень значимости < 0.05 Однако, при гибридизации блота, полученного при переносе на меморану экстракта белков клеток LNCaP, разделенного SDS-электрофорезом, с антителами к PDGFRP и PDGFRa (Cell Signaling Technology, США), не выявлялась полоса, соответствующая молекулярному весу PDGFRP и PDGFRa (190 кДа, рис. 7). Ранее мы показали, что в клетках стромы предстательной железы линий P29SN и P32S гены PDGFRa и PDGFRP экспрессируются на высоком уровне, что позволило использовать клетки этих линий в качестве положительного контроля (Nazarova, 2005). Результаты сравнительного анализа количества мРНК рецепторов PDGF в клетках предстательной железы четырех линий, проведенного методом количественной ОТ-ПЦР показали, что в клетках, имеющих стромальное происхождение (P29SN и P32S) кДНК PDGFRP детектировалась на 20-22 цикле амплификации (Ст), а в клетках, имеющих эпителиальное происхождение (LNCaP и РС-3) - на 26-28. Аналогично, кДНК

0 4 12 24 48

Время, ч

PDGFRa в клетках стромы детектировалась на клетках эпителия - на 25-33.

P29SN LNCaP

PDGFRa-»-

PDGFRß-*-

20-22 цикле амплификации, в Рис. 7 Нммуноблот белков клеток эпителия (ЫМСаР) и стромы (Р325 и Р298ГЧ) предстательном железы

человека. Гибридизация с антителами к РООРКа (верхняя панель) и РООГ^р (нижняя панель). Справа указаны молекулярные массы

стандартных белков: Р-галактозидазы (116 кДа) и миозина (205 кДа)

Вместе взятые, данные количественной ОТ-ПЦР и иммуноблоттинга позволяют заключить, что базальный уровень экспрессии генов рецепторов PDGF в клетках LNCaP очень низок. Однако, при исследовании экспрессии генов рецепторов PDGF в клетках LNCaP, индуцированных рекомбинантным эпидермальным фактором роста (EGF) (Calbiochem-Novabiochem GmbH, Германия), было обнаружено, что EGF повышает уровень экспрессии гена PDGFRß. Клетки инкубировали в присутствии 25 нг/мл рекомбинантного EGF в течение 24 ч. Несмотря на то, что по данным количественной ОТ-ПЦР EGF вызывал незначительное (3-х кратное) увеличение уровня мРНК PDGFRp (рис. 8, верхняя панель), на иммуноблотах, полученных при гибридизации экстракта белков клеток LNCaP, инкубированных с EGF, с антителами к PDGFRß, выявлялась полоса, соответствующая по молекулярной массе PDGFRß (рис. 8, нижняя панель).

5

и а. § « &

i i О

и

% 9

- о.®-

0 ^ й

1 о 5-

Н О Dl-,

О s

Рис. 8. Регуляция экспрессии гена PDGFRß кальцнтрколом и EGF в клетках LNCaP.

Верхняя панель: диаграмма количества мРНК PDGFRß в клетках, инкубированных в присутствии 10 нМ кальцитрнола и/или 25 нг/мл EGF в течение 24 ч. Относительное содеркание мРНК PDGFRß оценивали по результатам количественной ОТ-ПЦР как укаазно на рис. 1. Интервалы значений соответствуют стандартному отклонению. * -уровень значимости < 0.05 (относительно содержания мРНК PDGFRß в контроле; а -уровень значимости < 0.05 (относительно содержания мРНК PDGFRß в клетках, обработанных EGF). Нижняя панель: нммуноблот белков клеток LNCaP, обработанных кальцитриолом и EGF. Клетки инкубировали в присутствии 10 нМ кальцитрнола и/или 25 нг/мл EGF в течение 48 ч. Гибридизация с антителами к PDGFRß.

Кроме того, было показано, что при добавлении в культуральную среду клеток LNCaP EGF индуцировал чувствительность этих клеток к митогенному действию рекомбинантного PDGF-BB (количество клеток увеличивалось на 20% на четвертый день инкубации). Кальцигриол подавлял экспрессию гена

Кальцитриол EGF

PDGFR-ß

PDGFRß. индуцированную EGF (рис. 8). При раке предстательной железы, как правило, наблюдается гиперактивация EGFR, а поскольку повышенная активность EGFR может индуцировать восприимчивость клеток к митогенному действию PDGF, то подавление EGF-зависимой экспрессии гена PDGFRß кальцитриолом может также служить механизмом его антипролиферативного действия.

ВЫВОДЫ

1. Методом скрининга на микрочипах кДНК в клетках рака предстательной железы человека линии LNCaP выявлено более 300 потенциальных генов-мишеней кальцитриола, среди которых гены, кодирующие ферменты метаболизма, факторы роста и их рецепторы и другие.

2. Кальцитриол индуцирует экспрессию гена плацентарного трансформирующего фактора роста-ß (PTGF-ß) в клетках LNCaP. По данным, полученным методами количественной ОТ-ПЦР и иммуноблоттинга, уровень экспрессии гена PTGF-ß находится в прямой зависимости от концентрации кальцитриола в культуральной среде в диапазоне 1-100 нМ и от времени инкубации клеток с кальцитриолом в диапазоне 6 - 24 ч на уровне содержания РНК и 24 - 72 ч на уровне содержания белка. С использованием ингибитора транскрипции актиномицина Д показано, что кальцитриол не влияет на стабильность мРНК PTGF-ß. С использованием ингибитора трансляции циклогексимида показано, что индукция транскрипции гена PTGF-ß кальцитриолом не зависит от белкового синтеза.

3. Рекомбинантный PTGF-ß человека подавляет рост клеток LNCaP в культуре и вызывает быструю и кратковременную активацию киназ, регулируемых внеклеточными сигналами, ERK1 и ERK2. В присутствии антител к PTGF-ß частично предотвращается подавление роста клеток LNCaP, вызванное кальцитриолом.

4. Индукция экспрессии гена PTGF-ß кальцитриолом в клетках LNCaP не зависит от андрогенов, как показано с использованием 5а-дигидротестостерона (DHT) и антиандрогена Касодекс.

5. Клетки LNCaP невосприимчивы к митогенному действию тромбоцитарного фактора роста (его ВВ-изоформы) вследствие низкого уровня экспрессии его рецепторов, PDGFRa и PDGFRß. Эпидермальный фактор роста (EGF) индуцирует экспрессию гена PDGFRß и восприимчивость клеток к митогенному действию PDGF. Кальцитриол подавляет экспрессию гена PDGFRß, индуцированную EGF. В клетках стромы предстательной железы линии P29SN понижение содержания мРНК PDGFRß кальцитриолом сопровождается уменьшением скорости роста клеток.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Oiao S, Pennanen Р, Nazarova N, Lou ÏR, Tuohimaa P. Inhibition of fatti acid synthase expression by 1 alpha,25-diliydroxyvitamin D3 in prostate cancer cells // J Steroid Biochem Mol Biol. 2003. V. 85. № 1. P. 1-8.

2. Nazarova N, Tuohimaa P. la,25(OH)2D3 down-regulates expression of epidermal growth factor ligands, EGF and TGFa, in LNCaP human prostate cancer cells // Materials of the 12th Workshop on Vitamin D. 2003. P. 189.

3. Nazarova N. Oiao S, Golovko O, Lou YR. Tuohimaa P. Calcitriol-induced prostate-derived factor: autocrine control of prostate cancer cell growth // Int J Cancer. 2004. V. 112. № 6. P. 951-958.

4. Nazurova N, Golovko O, Blauer AI, Tuohimaa P. Calcitriol inhibits growth response to Platelet-Derived Growth Factor-BB in human prostate cells // J Steroid Biochem Mol Biol. 2005. V. 94. № 1-3. P.189-196.

5. Lou YR, Nazarova N, Talonpoika R, Tuohimaa P. 5alpha-dihydrotestosterone inhibits 1 alpha,25-dihydroxyvitamin D3-induced expression of CYP24 in human prostate cancer ceils // Prostate. 2005. V. 63. № 3. P. 222-230.

6. Golovko O, Nazarova N, Tuohimaa P. Vitamin D-induced up-regulation of tumour necrosis factor alpha (TNF-alpha) in prostate canccr cells // Life Sci. 2005. V. 77. № 5. P. 562-577.

7. Tuohimaa P, Golovko O, Kalueff A, Nazarova N, Qiao S, Syvala H, Talonpoika R., Lou YR. Calcidiol and prostate cancer // J Steroid Biochem Mol Biol. 2005. V. 93. №2-5. P.183-190.

8. Назарова Н.Ю.,Киао С., Туохшша П., Чихиржина Г.И. Кальцитриол индуцирует экспрессию трансформирующего фактора роста плаценты-р в клетках рака предстательной железы человека // Тезисы XV Всероссийского совещания "Структура и функции клеточного ядра". Цитология. 2005. Т. 47. № 9. С. 820-821.

9. Назарова Н.Ю., Чихиржина Г.И., Tuohimaa Р. Кальцитриол индуцирует транскрипцию гена трансформирующего фактора роста плаценты-Р в клетках предстательной железы по андрогеннезависимому механизму // Молекулярная биология. 2006. Т. 40. № 1. С. 84-89.

10. Назарова Н.Ю., Чихиржина Г.Н., Романовская Е.В., Туохимаа П. Индукция экспрессии гена плацентарного трансформирующего фактора роста-Р кальцитриолом в клетках рака предстательной железы линии LNCaP // Материалы IV съезда Российского общества биохимиков и молекулярных биологов. 2008. С. 369.

Подписано в печать 18.12.2008. Формат 60*84/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,93. Тираж 70 экз. Заказ №

Типография Издательства СПбГУ. 199061, С. - Петербург. Средний пр. А I.

Содержание диссертации, кандидата биологических наук, Назарова, Надежда Юрьевна

СПИСОК СОКРАЩЕНИЙ.

1 ВВЕДЕНИЕ.

1.1 Актуальность проблемы.

1.2 Цели н задачи исследования.

1.3 Основные положения, выносимые на защиту.

1.4 Научная новизна.

1.5 Научное и практическое значение работы.

2 ОБЗОР ЛИТЕРАТУРЫ.

2.1 Открытие и структура витамина Д.

2.2 Метаболизм и транспорт витамина Д.

2.3 Молекулярные механизмы действия кальцитриола.

2.3.1 Регуляция экспрессии генов.

2.3.2 "Быстрое" негеномное действие кальцитриола.

2.4 Биологические функции витамина Д.

2.5 Предстательная железа как орган-мишснь кальцитриола.

2.5.1 Эпидемиологические исследования.

2.5.2 Метаболизм витамина Д и экспрессия гена VDR в предстательной железе.

2.5.3 Действие кальцитриола на клетки рака предстательной железы.

2.5.3.1 Подавление пролиферации.

2.5.3.2 Индукция дифференцировки.

2.5.3.3 Индукция апоптоза.

2.5.3.4 Подавление ангиогенеза и инвазии клеток.

2.5.4 Взаимодействие между сигнальными системами кальцитриола и андрогенов.

2.6 Суперсемейство факторов роста TGF-p и рак предстательной железы.

2.7 Суперсемейство факторов роста PDGF/VEGF и рак предстательной железы.

Введение Диссертация по биологии, на тему "Регуляция экспрессии генов плацентарного трансформирующего фактора роста-β и β-рецептора тромбоцитарного фактора роста кальцитриолом в клетках LNCaP рака предстательной железы"

1.1 Актуальность проблемы Аденокарцинома предстательной железы является одной из самых распространенных форм рака среди мужчин. С каждым годом частота этого заболевания стабильно увеличивается, и, несмотря на то, что в большинстве случаев аденокарцинома развивается медленно, она занимает второе место в мире по смертности от рака среди мужчин (Gurel, 2008). Из-за высокой частоты и длительного скрытого периода развития заболевания, предпочтительной стратегией лечения аденокарциномы предстательной железы является первичная химиотерапия на ранней стадии. Важным фактором в развитии аденокарциномы предстательной железы является генетическая предрасположенность. Другую значительную долю риска отводят на факторы образа жизни. В 1990 году Шварц и Хулка выдвинули гипотезу о том, что недостаточность витамина Д является фактором риска развития рака предстательной железы. Авторы этой гипотезы предположили, что метаболиты витамина Д поддерживают клетки рака предстательной железы в дифференцированном состоянии, а их недостаточность провоцирует переход от скрытой к выраженной форме заболевания (Schwartz, Hulka, 1990). В поддержку этой гипотезы служат данные о противоопухолевом действии витамина Д на другие гормон-зависимые типы рака (кишечника и молочной железы). Гипотеза о том, что недостаточность витамина Д является фактором риска развития гормон-зависимых типов рака получила подтверждение в многочисленных эпидемиологических и экспериментальных исследованиях. Исследования in vitro показали, что кальцитриол, активный метаболит витамина Д, контролирует пролиферацию, дифференцировку, апоптоз и миграцию гормон-зависимых раковых клеток, а также ангиогенез. В настоящее время активно исследуются механизмы противоопухолевого действия кальцитриола, а также природа повышенной чувствительности гормонзависимых раковых клеток к его действию. Кальцитриол обладает секо-стероидной структурой и в функциональном отношении подобен классическим стероидным гормонам, действие которых реализуется через связывание с рецептором транскрипционным фактором и регуляцию экспрессии генов-мишеней. Поэтому необходимым витамина Д этапом является в понимании феномена спектра противоопухолевого действия и расшифровка генов-мишеней кальцитриола выявление среди них генов, задействованных в контроле апоптоза, пролиферации, 6 дифференцировки и миграции клеток. К настоящему времени скрининг генов, регулируемых кальцитриолом и его аналогами в клетках рака предстательной железы, позволил выявить такие механизмы антипролиферативного действия витамина Д, как регуляция сигнальных путей инсулиноподобного фактора роста (Boyle, 2001) и ряда антиапоптозных белков (Blutt, 2000). Регуляция экспрессии других генов, определяющих неисследованной. скорость роста клеток, кальцитриолом остается 1.2 Цели и задачи исследования Целью данного исследования было выявление новых генов-мишеней кальцитриола, вовлеченных в регуляцию роста гормон-зависимых клеток рака предстательной железы линии LNCaP. Для достижения этой цели были поставлены следующие задачи исследования: 1. Провести скрининг генов, регулируемых кальцитриолом в клетках LNCaP, на микрочипах кДНК и определить потенциальные гены-мишени кальцитриола на основании результатов скрининга и данных литературы. 2. Провести анализ экспрессии выбранных генов-мишеней под действием кальцитирола в клетках LNCaP методами ОТ-ПЦР (обратной транскрипции с последующей полимеразной цепной реакцией) в режиме реального времени и иммуноблоттинга. 3. Оценить значение регуляции экспрессии выбранных генов-мишеней для подавления роста клеток LNCaP кальцитриолом. 1.3 Основные положения, выносимые на защиту 1. Кальцитриол индуцирует экспрессию гена плацентарного трансформирующего фактора роста-Р (PTGF-p) в клетках рака предстательной железы человека линии LNCaP. Кальцитриол не влияет на стабильность мРНК PTGF-p. Индукция транскрипции гена PTGF-p кальцитриолом не зависит от белкового синтеза. 2. Индукция транскрипции гена PTGF-P кальцитриолом не зависит от действия андрогенов. 3. PTGF-p подавляет рост клеток LNCaP и вызывает активацию киназ, регулируемых внеклеточными сигналами, ERK1 и ERK2. 4. Кальцитриол подавляет экспрессию гена Р рецептора громбцитарного фактора роста (PDGFRP), индуцированную эпидермальным фактором роста, в клетках LNCaP..4 Научная новизна Выявлен ряд новых потенциальных генов-мишеней калыдитриола, включающий гены таких ферментов метаболизма как синтаза жирных кислот (FAS), фосфорибозилглицинамид-формилтрансфераза (GART), стеароил-КоА-десатураза а также гены, (SCD), гистидин-аммиак-лиаза (HAL) и дофахром таутомераза, кодирующие компоненты сигнальных путей факторов роста, такие как плацентарный трансформирующий фактор роста-(3, Р-рецептор тромбоцитарного фактора роста, трансформирующий фактор роста-а, эпидермальный фактор роста, фактор некроза опухоли-а. Впервые выявлена и исследована индукция экспрессии гена плацентарного трансформирующего фактора роста-Р (PTGF-P) кальцитриолом. Охарактеризована зависимость концентрации содержания мРНК и белка PTGF-P от калыдитриола в клетках LNCaP. времени воздействия и действие 5а- Исследовано д и гидротестостерона (DHT) на содержание мРНК PTGF-P в клетках LNCaP в присутствии и в отсутствие кальцитриола. Показано, что индукция транскрипции гена PTGF-P кальцитриолом не изменяется в присутствии DHT, а также не подавляется антиандрогеном Касодекс, что указывает на механизм индукции транскрипции этого гена кальцитриолом. Впервые исследованы два возможных пути передачи сигнала PTGF-P в клетках LNCaP: не обнаружено влияния PTGF-P на фосфорилирование белков андроген-независимыЙ! SMAD в этих клетках, выявлено быстрое и краткосрочное фосфорилирование киназ, регулируемых внеклеточными сигналами, ERK1 и ERK2. Впервые показано подавление экспрессии гена р рецептора тромбоцитарного фактора роста (PDGFRp) кальцитриолом. Подавление экспрессии этого гена выявлено в клетках линии LNCaP, выращенных в присутствии эпидермального фактора роста (EGF), и в клетках стромы предстательной железы линии P29SN. Показано, что клетки предстательной железы линий LNCaP и РС-3, имеющие эпителиальное происхождние, характеризуются очень низким уровнем экспрессии генов рецепторов тромбоцитарного фактора роста (PDGFRa и PDGFRP) по сравнению с клетками первичной культуры стромы предстательной железы P29SN и P32S. Уровень экспрессии гена исследованной изоформы тромбоцитарного фактора роста (PDGF-B), напротив, значительно выше в эпителиальных клетках линий РС-3 и LNCaP, чем в клетках первичной культуры стромы. Такой характер экспрессии предполагает преобладание паракринного механизма действия PDGF в предстательной железе. 8

Заключение Диссертация по теме "Биохимия", Назарова, Надежда Юрьевна

1. Методом скрининга на микрочипах кДНК в клетках рака предстательной железы человека линии LNCaP выявлено более 300 потенциальных генов-мишеней кальцитриола, среди которых гены, кодирующие ферменты метаболизма, факторы роста и их рецепторы, и другие.2. Кальцитриол индуцирует экспрессию гена плацентарного трансформирующего фактора роста-р (PTGF-P) в клетках LNCaP. По данным, полученным методами количественной ОТ-ГЩР и иммуноблоттинга, уровень экспрессии гена PTGF-P находится в прямой зависимости от концентрации кальцитриола в культуралыюй среде в диапазоне 1-100 нМ и от времени инкубации клеток с кальцитриолом в диапазоне 6 - 24 ч на уровне содержания РНК и 24 - 72 ч на уровне содержания белка. С использованием ингибитора транскрипции актиномицина Д показано, что кальцитриол не влияет на стабильность мРНК PTGF-

р. С использованием ингибитора трансляции циклогексимида, показано, что индукция транскрипции гена PTGF-P кальцитриолом не зависит от белкового синтеза.3. Рекомбинантный PTGF-P человека подавляет рост клеток LNCaP в культуре и вызывает быструю и кратковременную активацию киназ, регулируемых внеклеточными сигналами, ERK1 и ERK2. В присутствии антител к PTGF-P частично предотвращается подавление роста клеток LNCaP, вызванное кальцитриолом.4. Индукция экспрессии гена PTGF-P кальцитриолом в клетках LNCaP не зависит от андрогенов, как показано с использованием 5а-дигидротестостерона (DHT) и антиандрогена Касодекс.5. Клетки LNCaP невосприимчивы к митогенному действию тромбоцитарного фактора роста изоформы ВВ (PDGF-BB) вследствие низкого уровня экспрессии его рецепторов, PDGFRa и PDGFRp. Эпидермальный фактор роста (EGF) индуцирует экспрессию гена PDGFRP и восприимчивость клеток к митогенному действию PDGF. Кальцитриол подавляет экспрессию гена PDGFRp, индуцированную EGF. В клетках первичной культуры стромы предстательной железы линии P29SN понижение содержания мРНК PDGFRp кальцитриолом сопровождается уменьшением скорости роста клеток.7 БЛАГОДАРНОСТИ С чувством глубокой признательности благодарю заведующего лабораторией анатомии Медицинской школы Университета Тампере (Финляндия) профессора Пентти Туохимаа за предоставленную возможность выполнить значительную часть экспериментальной работы и всех сотрудников лаборатории - за помощь в освоении новых методов. Особую благодарность выражаю доктору Сэнджуну Киао (Каролинский Университет, Швеция), доктору Ян-Ру Лу и всем соавторам моих печатных работ за интересное и продуктивное сотрудничество.Благодарю всех сотрудников лаборатории химии белка и преподавателей кафедры биохимии Санкт-Петербургского государственного университета, чья помощь в получении профессиональных навыков позволила выполнить данное исследование. Особую благодарность выражаю доценту кафедры биохимии, к.б.н.Наталье Евгеньевне Воиновой и старшему преподавателю кафедры биохимии, к.б.н.Татьяне Вячеславовне Никитиной за ценные замечания по содержанию и оформлению диссертации.

Библиография Диссертация по биологии, кандидата биологических наук, Назарова, Надежда Юрьевна, Санкт-Петербург

1. Назарова Н.Ю., Чихиржина Г.И., Романовская Е.В., Туохимаа П. Индукция экспрессии гена плацентарного трансформирующего фактора роста-р кальцитриолом в клетках рака предстательной железы линии LNCaP Материалы IV съезда Российского общества биохимиков и молекулярных биологов. 2008.

2. Назарова Н.Ю., Чихиржина Г.И., Tuohimaa Р. Кальцитриол индуцирует транскрипцию гена трансформирующего фактора роста плаценты-Р в клетках предстательной железы по андрогеннезависимому механизму Молекулярная биология. 2006. Т.40.№ 1.С. 84-

3. Adams J.S., Chen Н., Chun R.F., Nguyen L., Wu S., Ren S.Y., Barsony J. and Gacad M.A. Novel regulators of vitamin D action and metabolism: Lessons learned at the Los Angeles zoo J Cell Biochem. 2003. V. 88. P.308-314. Ahn J., Peters U., Albanes D., Purdue M.P., Abnet C.C., Chatterjee N., Horst R.L., Hollis B.W., Huang W.Y., Shikany J.M., Hayes R.B. Serum vitamin D concentration and prostate cancer risk: a nested case-control study J Natl Cancer Inst. 2008. V. 100(11). P. 796-

4. Ahonen M.H., Tenkanen L., Teppo L., Hakama M. and Tuohimaa P. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland) Cancer Causes Control. 2000. V. 11. P. 847-

5. Albertoni M., Shaw P.H., Nozaki M., Godard S., Tenan M., Hamou M.F., Fairlie D.W., Breit S.N., Paralkar V.M., de Tribolet N., Van Meir E.G. and Hegi M.E. Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1 Oncogene. 2002. V. 21. P. 4212-4

6. Anncs J.P., Munger J.S. and Rifkin D.B. Making sense of latent TGFbeta activation J Cell Sci.2003. V. 116. P. 217-

7. Armbrecht H.J. and Boltz M.A. Expression of 25-hydroxyvitamin D 24-hydroxylase cytochrome P450 in kidney and intestine. Effect of 1,25-dihydroxyvitamin D and age FEBS Lett. 1991. V. 292. P. 17-

8. Asahara Т., Takahashi Т., Masuda H., Kalka C, Chen D., Iwaguro H., Inai Y., Silver M. and Isner J.M. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells Embo J. 1999. V. 18. P. 3964-3

9. Aschenbrenner J.K., Sollinger H.W., Becker B.N. and Hullett D.A. l,25-(OH(2))D(3) alters the transforming growth factor beta signaling pathway in renal tissue J Surg Res. 2001. V. 100. P. 171-175. 106

10. Baek S.J., Horowitz J.M. and Eling Т.Е. Molecular cloning and characterization of human nonsteroidal anti-inflammatory drug-activated gene promoter. Basal transcription is mediated by Spl and Sp3 //J Biol Chem. 2001a. V. 276. P. 33384-33

11. Baek S.J., Kim K.S., Nixon J.В., Wilson L.C. and Eling Т.Е. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities Mol Pharmacol. 2001b. V. 59. P. 901-

12. Baek S.J., Wilson L.C. and Eling Т.Е. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53 Carcinogenesis. 2002. V. 23. P. 425-

13. Baran D.T., Quail J.M., Ray R., Leszyk J. and Honeyman T. Annexin II is the membrane receptor that mediates the rapid actions of lalpha,25-dihydroxyvitamin D(3) J Cell Biochem. 2000. V. 78. P. 34-

14. Barsony J. and McKoy W. Molybdate increases intracellular 3,5-guanosine cyclic monophosphate and stabilizes vitamin D receptor association with tubulin-containing filaments //J Biol Chem. 1992. V. 267. P. 24457-24

15. Beer T.M. Development of weekly high-dose calcitriol based therapy for prostate cancer Urol Oncol. 2003. V. 21. P. 399-405. Ben-Shoshan M., Amir S., Dang D.T., Dang L.H., Weisman Y., Mabjeesh N.J. lalpha,25-dihydroxy vitamin D3 (Calcitriol) inhibits hypoxia-inducible factor1 /vascular endothelial growth factor pathway in human cancer cells Mol Cancer Ther. 2007. V. 6(4). P. 1433-1

16. Beno D.W., Brady L.M., Bissonnette M. and Davis B.H. Protein kinase С and mitogenactivated protein kinase are required for 1,25-dihydroxyvitamin D3-stimulated Egr induction//J Biol Chem. 1995. V. 270. P. 3642-3

17. Berg J.M. DNA binding specificity of steroid receptors Cell. 1989. V. 57. P. 1065-1068. 107

18. Berth-Jones J. and Hutchinson P.E. Vitamin D analogues and psoriasis Br J Dermatol. 1992. V. 127. P. 71-

19. Bikle D.D. and Gee E. Free, and not total, 1,25-dihydroxyvitamin D regulates 25hydroxyvitamin D metabolism by keratinocytes Endocrinology. 1989. V. 124. P. 649-

20. Bizzarri M., Cucina A., Valente M.G., Tagliaferri F., Borrelli V., Stipa F. and Cavallaro A. Melatonin and vitamin D3 increase TGF-betal release and induce growth inhibition in breast cancer cell cultures J Surg Res. 2003. V. 110. P. 332-

21. Blutt S.E., Allegretto E.A., Pike J.W. and Weigel N.L. 1,25-dihydroxyvitamin D3 and 9-cisretinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in Gl Endocrinology. 1997. V. 138. P. 1491-1

22. Blutt S.E., McDonnell T.J., Polek T.C. and Weigel N.L. Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2 Endocrinology. 2000. V. 141. P. 10-

23. Bobinac D., Marie I., Zoricic S., Spanjol J., Dordevic G., Mustac E. and Fuckar Z. Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer Croat Med. 2005. V. 46. P. 389-

24. Bodtwala D., Luscombe C.J., French M.E., Liu S., Saxby M.F., Jones P.W., Ramachandran S., Fryer A.A. and Strange R.C. Susceptibility to prostate cancer: studies on interactions between UVR exposure and skin type Carcinogenesis. 2003. V. 24. P. 711-

25. Boland R. Role of vitamin D in skeletal muscle function Endocr Rev. 1986. V. 7. P. 434

26. Bootcov M.R., Bauskin A.R., Valenzuela S.M., Moore A.G., Bansal M., He X.Y., Zhang H.P., Donnellan M., Mahler S., Pryor K., Walsh B.J., Nicholson R.C., Fairlie W.D., Por S.B., Robbins J.M. and Breit S.N. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily Proc Natl Acad Sci U SA. 1997. V. 94. P. 11514-11

27. Bottner M., Laaff M, Schechinger В., Rappold G., Unsicker K. and Suter-Crazzolara С Characterization of the rat, mouse, and human genes of growth/differentiation factor15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1) Gene. 1999. V. 237. P. 105

28. Bottone F.G., Jr., Baek S.J., Nixon J.B. and Eling Т.Е. Diallyl disulfide (DADS) induces the antitumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT 116 cells J Nutr. 2002. V. 132. P. 773-778. 108

29. Boyle B.J., Zhao X.Y., Cohen P. and Feldman D. Insulin-like growth factor binding protein3 mediates 1 alpha,25-dihydroxyvitamin d(3) growth inhibition in the LNCaP prostate cancer cell line through p21/WAFl //J Urol. 2001. V. 165. P. 1319-1

30. Boyle I.Т., Miravet L., Gray R.W., Holick M.F. and Deluca H.F. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxy vitamin D in nephrectomized rats Endocrinology. 1972. V. 90. P. 605-

31. Braun M.M., Helzlsouer K.J., Hollis B.W. and Comstock G.W. Prostate cancer and prediagnostic levels of serum vitamin D metabolites (Maryland, United States) Cancer Causes Contro. 1995. V. 6. P. 235-

32. Brenza H.L., Kimmel-Jehan C Jehan F., Shinki Т., Wakino S., Anazawa H., Suda T. and DeLuca H.F. Parathyroid hormone activation of the 25-hydroxy vitamin D3-lalphahydroxylase gene promoter// ProcNatl Acad Sci U S A 1998. V. 95. P. 1387-1

33. Brown A.J., Zhong M., Finch J., Ritter C McCracken R., Morrissey J. and Slatopolsky E. Rat calcium-sensing receptor is regulated by vitamin D but not by calcium Am J Physiol. 1996. V. 270. P. 454-

34. Brown L. and Benchimol S. The involvement of МАРК signaling pathways in determining the cellular response to p53 activation: cell cycle arrest or apoptosis J Biol Chem. 2006. V. 281. P. 3832-3

35. Cadranel J., Garabedian M., Milleron В., Guillozo H., Akoun G. and Hance A.J. l,25(OH)2D2 production by T lymphocytes and alveolar macrophages recovered by lavage from normocalcemic patients with tuberculosis J Clin Invest. 1990. V. 85. P. 1588-1

36. Campbell M.J., Elstner E., Holden S., Uskokovic M. and Koeffler H.P. Inhibition of proliferation of prostate cancer cells by a 19-nor-hexafluoride vitamin D3 analogue involves the induction of p21wafl, p27kipl and E-cadherin J Mol Endocrinol. 1997. V. 19. P. 15-

37. Cardillo M.R., Petrangeli E., Perracchio L., Salvatori L., Ravenna L. and Di Silverio F. Transforming growth factor-beta expression in prostate neoplasia Anal Quant Cytol Histol. 2000. V. 22. P. 1-

38. Carlberg С Ligand-mediated conformational changes of the VDR are required for gene transactivation J Steroid Biochem Mol Biol. 2004. V. 89-90. P. 227-

39. Carling Т., Kindmark A., Hellman P., Lundgren E., Ljunghall S., Rastad J., Akcrstrom G. and Melhus H. Vitamin D receptor genotypes in primary hyperparathyroidism Nat Med. 1995. V. 1. P. 1309-1

40. Chacko B.M., Qin B.Y., Tiwari A., Shi G., Lam S., Hayward L.J., De Caestecker M. and Lin K. Structural basis of heteromeric smad protein assembly in TGF-beta signaling Mol Cell. 2004. V. 15. P. 813-823. 109

41. Chen T.C., Schwartz G.G., Burnstein K.L., Lokeshwar B.L. and Holick M.F. The in vitro evaluation of 25-hydroxyvitamin D3 and 19-nor-lalpha,25-dihydroxyvitamin D2 as therapeutic agents for prostate cancer Clin Cancer Res. 2000. V. 6. P. 901-

42. Chen T.C., Holick M.F., Lokeshwar B.L., Burnstein K.L. and Schwartz G.G. Evaluation of vitamin D analogs as therapeutic agents for prostate cancer Recent Results Cancer Res. 2003. V. 164. P. 273-

43. Chipuk J.E., Cornelius S.C., Pultz N.J., Jorgensen J.S., Bonham M.J., Kim S.J. and Danielpour D. The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3 J Biol Chem. 2002. V. 277. P. 12401

44. Chott A., Sun Z., Morganstern D., Pan J., Li Т., Susani M., Mosberger I., Upton M.P., Bubley G.J. and Balk S.P. Tyrosine kinases expressed in vivo by human prostate cancer bone marrow metastases and loss of the type 1 insulin-like growth factor receptor//Am J Pathol. 1999. V. 155. P. 1271-1279. CIaesson-Welsh L. Platelet-derived growth factor receptor signals J Biol Chem. 1994. V. 269. P. 32023-32

45. Clarke T.R., Hoshiya Y., Yi S.E., Liu X., Lyons K.M. and Donahoe P.K. Mullerian inhibiting substance signaling uses a bone morphogenetic protein (BMP)-like pathway mediated by ALK2 and induces SMAD6 expression Mol Endocrinol. 2001. V. 15. P. 946-

46. Colston K., Hirt M. and Feldman D. Organ distribution of the cytoplasmic 1,25dihydroxycholecalciferol receptor in various mouse tissues Endocrinology. 1980. V. 107. P. 1916-1

47. Cooke N.E. and Haddad J.G. Vitamin D binding protein (Gc-globulin) Endocr Rev. 1989. V. 10. P. 294-

48. Cooke P.S., Young P. and Cunha G.R. Androgen receptor expression in developing male reproductive organs Endocrinology. 1991. V. 128. P. 2867-2

49. Corder E.H., Guess H.A., Hulka B.S., Friedman G.D., Sadler M., Vollmer R.T., Lobaugh В., Drezner M.K., Vogelman J.H. and Orentreich N. Vitamin D and prostate cancer: a prediagnostic study with stored sera Cancer Epidemiol Biomarkers Prev. 1993. V. 2. P. 467-

50. Correa-Cerro L., Berthon P., Haussler J., Bochum S., Drelon E., Mangin P., Fournier G., Paiss Т., Cussenot O. and Vogel W. Vitamin D receptor polymorphisms as markers in prostate cancer// Hum Genet. 1999. V. 105. P. 281-287. 110

51. Derynck R and Zhang YE Smad-dependent and Smad-independent pathways in TGF-beta family signalling Nature. 2003. V. 425. P. 577-

52. Dokoh S., Donaldson C.A., Marion SL, Pike JW and Haussler MR The ovary: a target organ for 1,25-dihydroxyvitamin D3 Endocrinology. 1983. V. 112. P. 200-

53. Donald CD, Montgomery DE, Emmett N and Cooke DB, 3rd Invasive potential and substrate dependence of attachment in the dunning R-3327 rat prostate adenocarcinoma model//Invasion Metastasis. 1998. V. 18. P. 165-

54. Dunlop TW, Vaisanen S, Frank С and Carlberg С The genes of the coactivator TIF2 and the corepressor SMRT are primary lalpha,25(OH)2D3 targets J Steroid Biochcm Mol Bio. 2004. V. 89-90. P. 257-

55. Dunlop TW, Vaisanen S, Frank C, Molnar F, Sinkkonen L and Carlberg С The human peroxisome proliferator-activated receptor delta gene is a primary target of lalpha,25dihydroxyvitamin D3 and its nuclear receptor J Mol Biol 2005. V. 349. P. 248

56. Dusso AS, Brown AJ and Slatopolsky E Vitamin D Am J Physiol Renal Physiol. 2005. V. 289. P. 8-

57. Eisman JA Genetics of osteoporosis Endocr Rev. 1999. V. 20. P. 788-

58. Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, Kato S and Matsumoto T Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors Endocrinology. 2003. V. 144. P. 5138-5144. 111

59. Fainaru M and Silver J A method for studying plasma transport of vitamin D applicable to hypervitaminosis D Clin Chim Acta. 1979. V. 91. P. 303-

60. Faupel-Badger JM, Diaw L, Albanes D, Virtamo J, Woodson K, Tangrea JA Lack of association between serum levels of 25-hydroxyvitamin D and the subsequent risk of prostate cancer in Finnish men Cancer Epidemiol Biomarkers Prev. 2007. V. 16. P. 12):2784-2

61. Feeley ВТ, Gamradt SC, Hsu WK, Liu N, Krenek L, Robbins P, Huard J and Lieberman JR Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer J Bone Miner Res. 2005. V. 20. P. 2189-2

62. Feldman D, Skowronski RJ and Peehl DM Vitamin D and prostate cancer Adv Exp Med Biol. 1995. V. 375. P. 53-

63. Feng XH and Derynck R Specificity and versatility in tgf-beta signaling through Smads Annu Rev Cell Dev Biol. 2005. V. 21. P. 659-693 Forsberg K, Valyi-Nagy I, Heldin CH, Herlyn M and Westermark B: Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB Proc Natl Acad Sci U S A. 1993. V. 90. P. 393-

64. Fraser DR and Kodicek E Unique biosynthesis by kidney of a biological active vitamin D metabolite//Nature. 1970. V. 228. P. 764-

65. Frederick JP, Liberati NT, Waddell DS, Shi Y and Wang XF: Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element Mol Cell Biol. 2004. V. 24. P. 2546-2

66. Friedman PA and Gesek FA Vitamin D3 accelerates PTH-dependent calcium transport in distal convoluted tubule cells Am J Physiol. 1993. V. 265. P. 300-

67. Fromm J A, Johnson SA, Johnson DL. Epidermal growth factor receptor 1 (EGFR1) and its variant EGFRvIII regulate TATA-binding protein expression through distinct pathways Mol Cell Biol. 2008. V. 28(20). P. 6483-6495. Fry DG, Milam LD, Maher VM and McCormick JJ: Transformation of diploid human fibroblasts by DNA transfection with the v-sis oncogene J Cell Physiol. 1986. V. 128. P. 313-

68. Fudge K, Wang CY and Stearns ME Immunohistochemistry analysis of platelet-derived growth factor A and В chains and platelet-derived growth factor alpha and beta receptor expression in benign prostatic hyperplasias and Gleason-graded human prostate adenocarcinomas Mod Pathol. 1994. V. 7. P. 549-554. 112

69. Gann PH, Ma J, Hennekens CH, Hollis BW, Haddad JG and Stampfer MJ: Circulating vitamin D metabolites in relation to subsequent development of prostate cancer Cancer Epidemiol Biomarkers Prev. 1996. V. 5. P. 121-

70. Garach-Jehoshua O, Ravid A, Liberman UA, Koren R. 1,25-Dihydroxyvitamin D3 increases the growth-promoting activity of autocrine epidermal growth factor receptor ligands in keratinocytes Endocrinology. 1999. V. 140(2). P. 713-

71. Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK and Gorham ED Serum 25hydroxyvitamin D and colon cancer: eight-year prospective study Lancet. 1989. V. 2. P. 1176-1

72. Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB and Holick MF The role of vitamin D in cancer prevention Am J Public Health. 2006. V. 96. P. 252

73. Getzenberg RH, Light BW, Lapco PE, Konety BR, Nangia AK, Acierno JS, Dhir R, Shurin Z, Day RS, Trump DL and Johnson CS Vitamin D inhibition of prostate adenocarcinoma growth and metastasis in the Dunning rat prostate model system Urology. 1997. V. 50. P. 999-1

74. Gilbertson D.G., Duff ME, West JW, Kelly JD, Sheppard PO, Hofstrand PD, Gao Z, Shoemaker K, Bukowski TR, Moore M, Feldhaus AL, Humes JM, Palmer ТЕ and Hart CE Platelet-derived growth factor С (PDGF-C), a novel growth factor that binds to PDGF alpha and beta receptor J Biol Chem. 2001. V. 276. P. 27406-27

75. Golovko O, Nazarova N, Tuohimaa P. Vitamin D-induced up-regulation of tumour necrosis factor alpha (TNF-alpha) in prostate cancer cells Life Sci. 2005. V. 77. 5. P. 562-

76. Gommersall LM, Khanim FL, Peehl DM, Doherty AH and Campbell MJ: Epigenetic repression of transcription by the Vitamin D3 receptor in prostate cancer cells J Steroid Biochem Mol Biol. 2004. V. 89-90. P. 251-

77. Grant WB Vitamin D may reduce prostate cancer metastasis by several mechanisms including blocking Stat3 Am J Pathol. 2008. V. 173(5). P. 1589-1

78. Gray TK, Lester GE and Lorenc RS Evidence for extra-renal 1 alpha-hydroxylation of 25hydroxyvitamin D3 in pregnancy Science. 1979. V. 204. P. 1311-1

79. Greco A, Fusetti L, Villa R, Sozzi G, Minoletti F, Mauri P and Pierotti MA Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1 Al and the platelet derived growth factor b-chain gene in dermatofibrosarcoma protuberans Oncogene. 1998. V. 17. P. 1313-1

80. Greenwald J, Fischer WH, Vale WW and Choe S Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase Nat Struct Biol. 1999. V. 6. P. 18-22. 113

81. Gronwald RG, Seifert RA and Bowen-Pope DF: Differential regulation of expression of two platelet-derived growth factor receptor subunits by transforming growth factor-beta J Biol Chem. 1989. V. 264. P. 8120-8

82. Groot M, Boxer LM, Thiel G. Nerve growth factor- and epidermal growth factor-regulated gene transcription in PC 12 pheochromocytoma and INS-1 insulinoma cells Eur J Cell Biol. 2000. V. 79(12). P. 924-

83. Guillemant J and Guillemant S Early rise in cyclic GMP after 1,25-dihydroxycholecalciferol administration in the chick intestinal mucosa Biochem Biophys Res Commun. 1980. V. 93. P. 906-911. Guo Y, Jacobs SC and Kyprianou N Down-regulation of protein and mRN A expression for transforming growth factor-beta (TGF-betal) type 1 and type II receptors in human prostate cancer Int J Cancer. 1997. V. 71. P. 573-

84. Gurel B, Iwata T, Koh CM, Yegnasubramanian S, Nelson WG and De Marzo AM. Molecular alterations in prostate cancer as diagnostic, prognostic, and therapeutic targets //Adv Anat Pathol. 2008. V. 15(6). P. 319-

85. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Juppner H and Wolf M Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease J Am Soc Nephrol. 2005. V. 16. P. 2205-2

86. Guzey M, Kitada S and Reed JC: Apoptosis induction by lalpha,25-dihydroxyvitamin D3 in prostate cancer Mol Cancer Ther. 2002. V. 1. P. 667-

87. Haluska P and Adjei AA Receptor tyrosine kinase inhibitors Curr Opin Investig Drugs. 2001. V. 2. P. 280-

88. Hamasaki T, Inatomi H, Katoh T, Ikuyama T and Matsumoto T Significance of vitamin D receptor gene polymorphism for risk and disease severity of prostate cancer and benign prostatic hyperplasia in Japanese Urol Int. 2002. V. 68. P. 226-

89. Hansen CM and Maenpaa PH EB 1089, a novel vitamin D analog with strong antiproliferative and differentiation-inducing effects on target cells Biochem Pharmacol. 1997. V. 54. P. 1173-1

90. Harris SE, Harris MA, Mahy P, Wozney J, Feng JQ and Mundy GR Expression of bone morphogenetic protein messenger RNAs by normal rat and human prostate and prostate cancer cells Prostate. 1994. V. 24. P. 204-

91. Hashimoto Y and Miyachi H Nuclear receptor antagonists designed based on the helixfolding inhibition hypothesis Bioorg Med Chem. 2005. V. 13. P. 5080-5093. 114

92. Hayes CE, Nashold FE, Spach KM and Pedersen LB The immunological functions of the vitamin D endocrine system Cell Mol Biol (Noisy-le-grand). 2003. V. 49. P. 277300. He H, Levitzki A, Zhu HJ, Walker F, Burgess A and Maruta H Platelet-derived growth factor requires epidermal growth factor receptor to activate p21-activated kinase family kinases J Biol Chem. 2001. V. 276. P. 26741-26

93. Hedlund ТЕ, Moffatt KA and Miller GJ Vitamin D receptor expression is required for growth modulation by 1 alpha,25-dihydroxyvitamin D3 in the human prostatic carcinoma cell line ALVA-31 J Steroid Biochem Mol Biol. 1996a. V. 58. P. 277

94. Hedlund ТЕ, Moffatt KA and Miller GJ Stable expression of the nuclear vitamin D receptor in the human prostatic carcinoma cell line JCA-1: evidence that the antiproliferative effects of 1 alpha, 25-dihydroxyvitamin D3 are mediated exclusively through the genomic signaling pathway// Endocrinology. 1996b. V. 137. P. 1554-1

95. Herdick M and Carlberg С Agonist-triggered modulation of the activated and silent state of the vitamin D(3) receptor by interaction with co-repressors and co-activators J Mol Biol. 2000. V. 304. P. 793-

96. Herring PA, Ingels J, Palmieri G, Hasty KA lalpha,25-Dihydroxyvitamin D3 enhances proliferation of rat prostate cancer cells in the presence of living bone J Steroid Biochem Mol Biol. 2007. V. 103(3-5). P. 737-

97. Hocevar BA, Brown TL and Howe PH TGF-beta induces fibronectin synthesis through a cJun N-terminal kinase-dependent, Smad4-independent pathway Embo J. 1999. V. 18. P. 1345-1

98. Hocevar BA, Smine A, Xu XX and Howe PH: The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway Embo J. 2001. V. 20. P. 2789-2

99. Holick MF The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system//J Invest Dermatol. 1981. V. 77. P. 51-

100. Holick MF, Schnoes HK, DeLuca HF, Suda T and Cousins RJ: Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine Biochemistry. 1971. V. 10. P. 2799-2

101. Holick MF, Frommer JE, McNeill SC, Richtand NM, Henley JW and Potts JT, Jr.: Photometabolism of 7-dehydrocholesterol to previtamin D3 in skin Biochem Biophys Res Commun. 1977. V. 76. P. 107-

102. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP LNCaP model of human prostatic carcinoma Cancer Res. 1983. V. 43(4). P. 1809-1818. 115

103. Hruska KA, Bar-Shavit Z, Malone JD and Teitelbaum S Ca2+ priming during vitamin Dinduced monocytic differentiation of a human leukemia cell line J Biol Chem. 1988. V. 263. P. 16039-16

104. Hsieh T and Wu JM Induction of apoptosis and altered nuclear/cytoplasmic distribution of the androgen receptor and prostate-specific antigen by lalpha,25-dihydroxyvitamin D3 in androgen-responsive LNCaP cells Biochem Biophys Res Commun. 1997. V. 235. P. 539-544. Hu PP, Shen X, Huang D, Liu Y, Counter С and Wang XF: The MEK pathway is required for stimulation of p21(WAFl/CIPl) by transforming growth factor-beta J Biol Chem. 1999. V. 274. P. 35381-35

105. Iimura T, Oida S, Ichijo H, Goseki M, Maruoka Y, Takeda К and Sasaki S Modulation of responses to TGF-beta by 1, 25 dihydroxyvitamin D3 in MG-63 osteoblastic cells: possible involvement of regulation of TGF-beta type II receptor Biochem Biophys Res Commun. 1994. V. 204. P. 918-

106. Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW and Coetzee GA Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor//J Natl Cancer Inst. 1997. V. 89. P. 166-

107. Itoh S, Itoh F, Goumans MJ and Ten Dijke P Signaling of transforming growth factor-beta family members through Smad proteins Eur J Biochem. 2000. V. 267. P. 69546

108. Javelaud D and Mauviel A Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis Oncogene. 2005. V. 24. P. 5742-5

109. Jiang C, Hu H, Malewicz B, Wang Z and Lu J Selenite-induced p53 Ser-15 phosphorylation and caspase-mediated apoptosis in LNCaP human prostate cancer cells Mol Cancer Ther. 2004. V. 3. P. 877-884. Jin CH and Pike JW Human vitamin D receptor-dependent transactivation in Saccharomyces cerevisiae requires retinoid X receptor. Mol Endocrinol. 1996. V. 10. P. 196-

110. John EM, Dreon DM, Koo J and Schwartz GG Residential sunlight exposure is associated with a decreased risk of prostate cancer J Steroid Biochem Mol Biol. 2004. V. 8990. P. 549-

111. John EM, Koo J, Schwartz GG Sun exposure and prostate cancer risk: evidence for a protective effect of early-life exposure Cancer Epidemiol Biomarkers Prev. 2007. V. 16(6). P. 1283-1

112. Johnson CN, Adkins NL and Georgel P Chromatin remodeling complexes: ATP-dependent machines in action Biochem Cell Biol. 2005. V. 83. P. 405-417. 116

113. Johnsson A, Heldin CH, Wasteson A, Westermark B, Deuel TF, Huang JS, Seeburg PH, Gray A, Ullrich A, Scrace G and et al. The c-sis gene encodes a precursor of the В chain of platelet-derived growth factor Embo J. 1984. V. 3. P. 921-

114. Jones AV and Cross NC Oncogenic derivatives of platelet-derived growth factor receptors Cell Mol Life Sci. 2004. V. 61. P. 2912-2

115. Jones SM and Kazlauskas A Connecting signaling and cell cycle progression in growth factor-stimulated cells Oncogene. 2000. V. 19. P. 5558-5

116. Jung CW, Kim ES, Seol JG, Park WFI, Lee SJ, Kim BK and Lee YY Antiproliferative effect of a vitamin D3 analog, EB1089, on HL-60 cells by the induction of TGF-beta receptor//Leuk Res. 1999. V. 23. P. 1105-1

117. Jurutka PW, Terpening CM and Haussler MR The 1,25-dihydroxy-vitamin D3 receptor is phosphorylated in response to 1,25-dihydroxy-vitamin D3 and 22-oxacalcitriol in rat osteoblasts, and by casein kinase II, in vitro Biochemistry. 1993. V. 32. P. 81848

118. Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA and Haussler MR Molecular nature of the vitamin D receptor and its role in regulation of gene expression Rev Endocr Metab Disord. 2001. V. 2. P. 203-

119. Kahlen JP and Carlberg С Identification of a vitamin D receptor homodimer-type response element in the rat calcitriol 24-hydroxylase gene promoter Biochem Biophys Res Commun. 1994. V. 202. P. 1366-1

120. Kaji A, Zhang Y, Nomura M, Bode AM, Ma WY, She QB and Dong Z Pifithrin-alpha promotes p53-mediated apoptosis in JB6 cells Mol Carcinog. 2003. V. 37. P. 138

121. Karan D, Kelly DL, Rizzino A, Lin MF and Batra SK Expression profile of differentiallyregulated genes during progression of androgen-independent growth in human prostate cancer cells Carcinogenesis. 2002. V. 23. P. 967-

122. Karan D, Chen SJ, Johansson SL, Singh AP, Paralkar VM, Lin MF and Batra SK Dysregulated expression of MIC-1/PDF in human prostate tumor cells Biochem Biophys Res Commun. 2003. V. 305. P. 598-

123. Kassem M, Kveiborg M and Eriksen EF Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol Eur J Clin Invest. 2000. V. 30. P. 429-

124. Kato S, Fujiki R and Kitagawa H Vitamin D receptor (VDR) promoter targeting through a novel chromatin remodeling complex J Steroid Biochem Mol Biol. 2004. V. 89-90. P. 173-

125. Kazlauskas A Receptor tyrosine kinases and their targets Curr Opin Genet Dev. 1994. V. 4. P. 5-14. 117

126. Kephart DD, Walfish PG, DeLuca H and Butt TR Retinoid X receptor isolype identity directs human vitamin D receptor heterodimer transactivation from the 24hydroxylase vitamin D response elements in yeast Mol Endocrinol. 1996. V. 10. P. 408-

127. Kimura N, Matsuo R, Shibuya II, Nakashima К and Taga T BMP2-induced apoptosis is mediated by activation of the TAKl-p38 kinase pathway that is negatively regulated by Smad6 J Biol Chem. 2000. V. 275. P. 17647-17

128. Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J and Kato S The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome Cell. 2003. V. 113. P. 905-

129. Kivineva M, Blauer M, Syvala H, Tammela T and Tuohimaa P Localization of 1,25dihydroxyvitamin D3 receptor (VDR) expression in human prostate J Steroid Biochem Mol Biol. 1998. V. 66. P. 121-

130. Koli К and Keski-Oja J Vitamin D3 and calcipotriol enhance the secretion of transforming growth factor-beta 1 and -beta 2 in cultured murine keratinocytes Growth Factors. 1993.V. 8. P. 153-

131. Koli К and Keski-Oja J 1,25-Dihydroxyvitamin D3 enhances the expression of transforming growth factor beta 1 and its latent form binding protein in cultured breast carcinoma cells Cancer Res. 1995. V. 55. P. 1540-1

132. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy Science. 1999. V. 285(5434). P. 1733-1737. 118

133. Kontula K, Valimaki S, Kainulainen K, Viitanen AM and Keski-Oja J Vitamin D receptor polymorphism and treatment of psoriasis with calcipotriol Br J Dermatol. 1997. V. 136. P. 977-

134. Koopmann J, Buckhaults P, Brown DA, Zahurak ML, Sato N, Fukushima N, Sokoll LJ, Chan DW, Yeo CJ, Hruban RH, Breit SN, Kinzler KW, Vogelstein В and Goggins M Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers Clin Cancer Res. 2004. V. 10. P. 2386-2

135. Koshiyama H, Sone T and Nakao K: Vitamin-D-receptor-gene polymorphism and bone loss Lancet. 1995. V. 345. P. 990-

136. Koszewski NJ, Ashok S and Russell J Turning a negative into a positive: vitamin D receptor interactions with the avian parathyroid hormone response element Mol Endocrinol. 1999. V. 13. P. 455-

137. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW Establishment and characterization of a human prostatic carcinoma cell line (PC-3) Invest Urol. 1979. V. 17(1). P. 16-

138. Kueng W, Silber E and Eppenberger U Quantification of cells cultured on 96-well plates Anal Biochem. 1989. V. 182. P. 16-

139. Kumanov P, Nandipati КС, Tomova A, Robeva R and Agarwal ASignificance of inhibin in reproductive pathophysiology and current clinical applications Rcprod Biomed Online. 2005. V. 10. P. 786-

140. Kundra V, Soker S and Zetter BR Excess early signaling activity inhibits cellular chemotaxis toward PDGF-BB Oncogene. 1994. V. 9. P. 1429-1

141. Kveiborg M, Flyvbjerg A and Kassem M Synergistic effects of 1,25-Dihydroxyvitamin D3 and TGF-betal on the production of insulin-like growth factor binding protein 3 in human bone marrow stromal cell cultures Apmis. 2002. V. 110. P. 410-

142. Laemmly O. Maturation of head of bacteriophage T4 //Nature. 1970. V. 227. P. 680-

143. Lawton LN, Bonaldo MF, Jelenc PC, Qiu L, Baumes SA, Marcelino RA, de Jesus GM, Wellington S, Knowles JA, Warburton D, Brown S and Soares MB Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta Gene. 1997. V. 203. P. 17-26. Le H, Arnold JT, McFann KK and Blackman MR DHT and testosterone, but not DHEA or E2, differentially modulate IGF-I, IGFBP-2, and IGFBP-3 in human prostatic stromal cells Am J Physiol Endocrinol Metab. 2006. V. 290. P. 952-

144. Lempiainen H, Molnar F, Macias Gonzalez M, Perakyla M and Carlberg С Antagonist- and inverse agonist-driven interactions of the vitamin D receptor and the constitutive androstane receptor with corepressor protein Mol Endocrinol. 2005. V. 19. P. 22582

145. Lieberherr M Effects of vitamin D3 metabolites on cytosolic free calcium in confluent mouse osteoblasts//J Biol Chem. 1987. V. 262. P. 13168-13

146. Macias-Silva M, Hoodless PA, Tang SJ, Buchwald M and Wrana JL Specific activation of Smadl signaling pathways by the BMP7 type I receptor, ALK2 J Biol Chem. 1998. V. 273. P. 25628-25

147. Majewski S, Skopinska M, Marczak M, Szmurlo A, Bollag W and Jablonska S Vitamin D3 is a potent inhibitor of tumor cell-induced angiogenesis J Investig Dermatol Symp Proc. 1996. V. L P 97-

148. Mantell DJ, Owens PE, Bundred NJ, Mawer EB and Canfield AE 1 alpha,25dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo Circ Res. 2000. V. 87. P. 214-

149. Marchiani S, Bonaccorsi L, Ferruzzi P, Crescioli C, Muratori M, Adorini L, Forti G, Maggi M and Baldi E The vitamin D analogue BXL-628 inhibits growth factor-stimulated proliferation and invasion of DU145 prostate cancer cells J Cancer Res Clin Oncol. 2006. V. 132. P. 408-

150. Masek T, Vopalensky V, Suchomelova P, Pospisek M Denaturing RNA electrophoresis in TAE agarose gels Anal Biochem. 2005. V. 336(1). P. 46-

151. Massague J, Seoane J and Wotton D Smad transcription factors Genes Dev. 2005. V. 19. P. 2783-2

152. Matilainen M, Malinen M, Saavalainen К and Carlberg С Regulation of multiple insulin-like growth factor binding protein genes by lalpha,25-dihydroxyvitamin D3 Nucleic Acids Res. 2005. V. 33. P. 5521-5

153. Matsui T, Heidaran M, Miki T, Popescu N, La Rochelle W, Kraus M, Pierce J and Aaronson S Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes Science. 1989. V. 243. P. 800-

154. Maxwell M, Galanopoulos T, Hedley-Whyte ET, Black PM and Antoniades HN Human meningiomas co-express platelet-derived growth factor (PDGF) and PDGF-receptor genes and their protein products Int J Cancer. 1990. V. 46. P. 16-

155. Mazars A, Lallemand F, Prunier C, Marais J, Ferrand N, Pessah M, Cherqui G and Atfi A Evidence for a role of the JNK cascade in Smad7-mediated apoptosis J Biol Chem. 2001. V. 276. P. 36797-36803. 122

156. Medeiros R, Morais A, Vasconcelos A, Costa S, Pinto D, OHveira J and Lopes С The role of vitamin D receptor gene polymorphisms in the susceptibility to prostate cancer of a southern European population J Hum Genet. 2002. V. 47. P. 413-

157. Mellon WS and DeLuca HF An equilibrium and kinetic study of 1,25-dihydroxyvitamin D3 binding to chicken intestinal cytosol employing high specific activity 1,25dehydroxy[3H-26, 27] vitamin D3 //Arch Biochem Biophys. 1979. V. 197. P. 90-

158. Mcllor SL, Richards MG, Pedersen JS, Robertson DM and Risbridger GP Loss of the expression and localization of inhibin alpha-subunit in high grade prostate cancer J Clin Endocrinol Metab. 1998. V. 83. P. 969-

159. Mercier T, Chaumontet C, Gaillard-Sanchez I, Martel P and Heberden С Calcitriol and lexicalcitol (KH1060) inhibit the growth of human breast adenocarcinoma cells by enhancing transforming growth factor-beta production Biochem Pharmacol. 1996. V. 52. P. 505-

160. Merke J, Kreusser W, Bier В and Ritz E Demonstration and characterisation of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat Eur J Biochem. 1983. V. 130. P. 303-

161. Merz VW, Arnold AM and Studer UE Differential expression of transforming growth factorbeta 1 and beta 3 as well as c-fos mRNA in normal human prostate, benign prostatic hyperplasia and prostatic cancer World J Urol. 1994. V. 12. P. 96-

162. Meyer MB, Watanuki M, Kim S, Shevde NK and Pike JW The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells //Mol Endocrinol. 2006. V. 20. P. 1447-1

163. Miller GJ, Stapleton GE, Ferrara JA, Lucia MS, Pfister S, Hedlund ТЕ and Upadhya P The human prostatic carcinoma cell line LNCaP expresses biologically active, specific receptors for 1 alpha,25-dihydroxyvitamin D3 Cancer Res. 1992. V. 52. P. 515-

164. Miyamoto K, Kesterson RA, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S, Inoue Y, Morita K, Takeda E and Pike JW Structural organization of the human vitamin D receptor chromosomal gene and its promoter Mol Endocrinol. 1997. V. 11. P. 11651

165. Mohapatra S, Chu B, Zhao X and Pledger WJ Accumulation of p53 and reductions in XIAP abundance promote the apoptosis of prostate cancer cells Cancer Res. 2005. V. 65. P. 7717-7

166. Monboisse JC, Garnotel R, Randoux A, Dufer J, Borel JP Adhesion of human neutrophils to and activation by type-1 collagen involving a beta 2 integrin J Leukoc Biol. 1991. V. 50(4). P. 373-380. 123

167. Morii H, Lund J, Neville PF and DeLuca HF Biological activity of a vitamin D metabolite Arch Biochem Biophys. 1967. V. 120. P. 508-

168. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN and Eisman JA Prediction of bone density from vitamin D receptor alleles Nature. 1994. V. 367. P. 284-

169. Murayama A, Kim MS, Yanagisawa J, Takeyama К and Kato S Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching Embo J. 2004. V. 23. P. 1598-1

170. Murphy GP. Models for prostate cancer. New York: Liss, 1980. 380 P. Murthy S and Weigel NL lalpha,25-dihydroxyvitamin D3 induced growth inhibition of PC-3, prostate cancer cells requires an active transforming growth factor beta signaling pathway Prostate. 2004. V. 59. P. 282-

171. Nagasaki T, Hino M, Inaba M, Nishizawa Y, Morii H and Otani S Inhibition by lalpha,25dihydroxyvitamin D3 of activin A-induced differentiation of murine erythroleukemic F5-5 cells//Arch Biochem Biophys. 1997. V. 343. P. 181-

172. Nagel D and Kumar R 1 alpha,25-dihydroxyvitamin D3 increases TGF beta 1 binding to human osteoblasts Biochem Biophys Res Commun. 2002. V. 290. P. 1558-1

173. Nakamura K, Nashimoto M, Hori Y and Yamamoto M Serum 25-hydroxyvitamin D concentrations and related dietary factors in peri- and postmenopausal Japanese women//Am J Clin Nutr. 2000. V. 71. P. 1161-1

174. Nakamura K, Nashimoto M, Hori Y, Muto К and Yamamoto M Serum 25-hydroxyvitamin D levels in active women of middle and advanced age in a rural community in Japan //Nutrition. 1999. V. 15. P. 870-

175. Nakamura T, Scorilas A, Stephan C, Yousef GM, Kristiansen G, Jung К and Diamandis EP Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues Br J Cancer. 2003. V. 88. P. 1101-1

176. Nayeri S and Carlberg С Functional conformations of the nuclear lalpha,25dihydroxyvitamin D3 receptor//Biochem J. 1997. V. 327 (2). P. 561-

177. Nazarova N, Golovko O, Blauer M, Tuohimaa P. Calcitriol inhibits growth response to Platelet-Derived Growth Factor-BB in human prostate cells J Steroid B i o c h e m Mol Biol. 2005. V. 94. 1-3. P.189-

178. Nazarova N, Qiao S, Golovko O, Lou YR, Tuohimaa P Calcitriol-induced prostate-derived factor: autocrine control of prostate cancer cell growth Int J Cancer. 2004. V. 112(6). P. 951-958. 124

179. Nelson DA, Vande Vord PJ and Wooley PH Polymorphism in the vitamin D receptor gene and bone mass in African-American and white mothers and children: a preliminary report Ann Rheum Dis. 2000. V. 59. P. 626-

180. Nemerc 1, Dormanen MC, Hammond MW, Okamura WH and Norman AW Identification of a specific binding protein for 1 alpha,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia J Biol Chem. 1994. V. 269. P. 23750-23

181. Nemere I, Schwartz Z, Pedrozo H, Sylvia VL, Dean DD and Boyan BD Identification of a membrane receptor for 1,25-dihydroxyvitamin D3 which mediates rapid activation of protein kinase С//J Bone Miner Res. 1998. V. 13. P. 1353-1

182. Newman D, Sakaue M, Koo JS, Kim KS, Baek SJ, Eling T and Jetten AM Differential regulation of nonsteroidal anti-inflammatory drug-activated gene in normal human tracheobronchial epithelial and lung carcinoma cells by retinoids Mol Pharmacol. 2003. V. 63. P. 557-

183. Nishikawa J, Kitaura M, Matsumoto M, Imagawa M and Nishihara T Difference and similarity of DNA sequence recognized by VDR homodimer and VDR/RXR heterodimer Nucleic Acids Res. 1994. V. 22. P. 2902-2

184. Noda M, Vogel RL, Craig AM, Prahl J, DeLuca HF and Denhardt DT Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression Proc Natl Acad Sci U S A 1990. V. 87. P. 99959

185. Nomura AM, Stemmermann GN, Lee J, Kolonel LN, Chen TC, Turner A and Holick MF Serum vitamin D metabolite levels and the subsequent development of prostate cancer (Hawaii, United States) Cancer Causes Control. 1998. V. 9. P. 425-

186. Norman AW, Adams D, Collins ED, Okamura WH and Fletterick RJ Three-dimensional model of the ligand binding domain of the nuclear receptor for 1 alpha,25-dihydroxyvitamin D(3)// J Cell Biochem. 1999. V. 74. P. 323-

187. Norman AW, Bishop JE, Collins ED, Seo EG, Satchell DP, Dormanen MC, Zanello SB, Farach-Carson MC, Bouillon R and Okamura WH Differing shapes of 1 alpha,25dihydroxyvitamin D3 function as ligands for the D-binding protein, nuclear receptor and membrane receptor: a status report J Steroid Biochem Mol Biol. 1996. V. 56. P. 13-

188. Novosyadlyy R, Dudas J, Pannem R, Ramadori G and Scharf JG Crosstalk between PDGF and IGF-I receptors in rat liver myofibroblasts: implication for liver fibrogenesis Lab Invest. 2006. V. 86. P. 710-723. 125

189. Ohyama Y, Ozono K, Uchida M, Shinki T, Kato S, Suda T, Yamamoto O, Noshiro M and Kato Y Identification of a vitamin D-responsivc element in the 5-fianking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene J Biol Chem. 1994. V. 269. P. 10545-10

190. Okabe-Kado J, Honma Y, Hayashi M and Hozumi M Effects of transforming growth factorbeta and activin A on vitamin D3-induced monocytic differentiation of myeloid leukemia cells//Anticancer Res. 1991. V. 11. P. 181-

191. Okano T, Nakagawa K, Tsugawa N, Ozono K, Kubodera N, Osawa A, Terada M and Mikami К Singly dehydroxylated A-ring analogues of 19-nor-lalpha,25dihydroxyvitamin D3 and 19-nor-22-oxa-lalpha,25-dihydroxyvitamin D3: novel vitamin D3 analogues with potent transcriptional activity but extremely low affinity for vitamin D receptor//Biol Pharm Bull. 1998. V. 21. P.1300-1

192. Okazaki T, Igarashi T and Kronenberg HM 5-flanking region of the parathyroid hormone gene mediates negative regulation by l,25-(OH)2 vitamin D3 J Biol Chem. 1988. V. 263. P. 2203-2

193. Olapade-Olaopa EO, MacKay EH, Taub NA, Sandhu DP, Terry TR and Habib FK Malignant transformation of human prostatic epithelium is associated with the loss of androgen receptor immunoreactivity in the surrounding stroma Clin Cancer Res. 1999. V. 5. P. 569-

194. Omdahl JL, Gray RW, Boyle IT, Knutson J and DeLuca HF Regulation of metabolism of 25hydroxycholecalciferol by kidney tissue in vitro by dietary calcium Nat New Biol. 1972. V. 237. P. 63-

195. Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN and Goltzman D Inactivation of the 25-hydroxyvitamin D 1 alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis J Biol Chem. 2004. V. 279. P. 16754-16

196. Parada D, Arciniegas E, Moreira О and Trujillo E Transforming growth factor-beta2 and beta3 expression in carcinoma of the prostate Arch Esp Urol. 2004. V. 57. P. 93-

197. Paralkar VM, Vail AL, Grasser WA, Brown ТА, Xu H, Vukicevic S, Ke HZ, Qi H, Owen ТА and Thompson DD Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family J Biol Chem. 1998. V. 273. P. 13760-13

198. Pavasant P, Yongchaitrakul T, Pattamapun К and Arksornnukit M The synergistic effect of TGF-beta and 1,25-dihydroxyvitamin D3 on SPARC synthesis and alkaline phosphatase activity in human pulp fibroblasts Arch Oral Biol. 2003. V. 48. P. 717722. 126

199. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS and Portale AA Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25dihydroxyvitamin D metabolism in mice Endocrinology. 2005. V. 146. P. 53585

200. Petrioli R, Pascucci A, Francini E, Marsili S, Sciandivasci A, De Rubertis G, Barbanti G, Manganelli A, Salvestrini F, Francini G Weekly high-dose calcitriol and docetaxel in patients with metastatic hormone-refractory prostate cancer previously exposed to docetaxel BJU Int. 2007. V. 100(4). P. 775-

201. Peyssonnaux С and Eychene A The Raf/MEK/ERK pathway: new concepts of activation Biol Cell. 2001. V. 93. P. 53-

202. Pfaffl MW A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res. 2001. V. 29. P. 45 Pike JW, Gooze LL and Haus sler MR Biochemical evidence for 1,25-dihydroxyvitamin D receptor macromolecules in parathyroid, pancreatic, pituitary, and placental tissues Life Sci. 1980. V. 26. P. 407-

203. Polly P, Herdick M, Moehren U, Baniahmad A, Heinzel T and Carlberg С VDR-Alien: a novel, DNA-selective vitamin D(3) receptor-corepressor partnership Faseb J. 2000. V. 14. P.1455-1

204. Porojnicu A, Robsahm ТЕ, Berg JP, Moan J Season of diagnosis is a predictor of cancer survival. Sun-induced vitamin D may be involved: a possible role of sun-induced Vitamin D J Steroid Biochem Mol Biol. 2007. V. 103(3-5). P. 675-

205. Pouponnot C, Jayaraman L and Massague J Physical and functional interaction of SMADs and p300/CBP J Biol Chem. 1998. V. 273. P. 22865-22

206. Putkey JA, Spielvogel AM, Sauerheber RD, Dunlap CS and Norman AW Vitamin Dmediated intestinal calcium transport. Effects of essential fatty acid deficiency and spin label studies of enterocyte membrane lipid fluidity Biochim Biophys Acta. 1982. V. 688. P. 177-

207. Qiao S, Pennanen P, Nazarova N, Lou YR and Tuohimaa P Inhibition of fatty acid synthase expression by lalpha,25-dihydroxyvitamin D3 in prostate cancer cells J Steroid Biochem Mol Biol. 2003. V. 85. P. 1-

208. Rachez С and Frecdman LP Mechanisms of gene regulation by vitamin D(3) receptor: a network of coactivator interactions Gene. 2000. V. 246. P. 9-

209. Rachez C, Gamble M, Chang CP, Atkins GB, Lazar MA and Freedman LP The DRIP complex and SRC-l/pl60 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes Mol Cell Biol. 2000. V. 20. P. 2718-2726. 127

210. Racz A and Barsony J Hormone-dependent translocation of vitamin D receptors is linked to transactivation J Biol Chem. 1999. V. 274. P. 19352-19

211. Roche S, McGIade J, Jones M, Gish GD, Pawson T and Courtneidge SA Requirement of phospholipase С gamma, the tyrosine phosphatase Syp and the adaptor proteins She and Nek for PDGF-induced DNA synthesis: evidence for the existence of Rasdependent and Ras-independent pathways Embo J. 1996. V. 15. P. 4940-4

212. Rochel N, Wurtz JM, Mitschler A, Klaholz В and Moras D The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand Mol Cell. 2000. V. 5. P. 173-

213. Rosenkranz S and Kazlauskas A Evidence for distinct signaling properties and biological responses induced by the PDGF receptor alpha and beta subtypes Growth Factors. 1999. V. 16. P. 201-

214. Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MJ and Oudet CL МЕРЕ, a new gene expressed in bone marrow and tumors causing osteomalacia Genomics. 2000. V. 67. P. 54-

215. Saramaki A, Banwell CM, Campbell MJ and Carlberg С Regulation of the human p21(wafl/cipl) gene promoter via multiple binding sites for p53 and the .vitamin D3 receptor Nucleic Acids Res. 2006. V. 34. P. 543-

216. Schrader M, Bendik I, Becker-Andre M and Carlberg С Interaction between retinoic acid and vitamin D signaling pathways J Biol Chem. 1993. V. 268. P. 17830-17

217. Schrader M, Muller KM, Nayeri S, Kahlen JP and Carlberg С Vitamin D3-thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation Nature. 1994. V. 370. P. 382-

218. Schwartz GG and Hulka BS Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis) Anticancer Res. 1990. V. 10. P. 1307-1

219. Schwartz GG, Wang MH, Zang M, Singh RK and Siegal GP 1 alpha,25-Dihydroxyvitamin D (calcitriol) inhibits the invasiveness of human prostate cancer cells Cancer Epidemiol Biomarkers Prev. 1997. V. 6. P. 727-

220. Schwartz GG, Whitlatch LW, Chen TC, Lokeshwar BL and Holick MF Human prostate cells synthesize 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3 Cancer Epidemiol Biomarkers Prev. 1998. V. 7. P. 391-

221. Serda RE, Bisoffi M, Thompson ТА, Ji M, Omdahl JL, Sillerud LO. lalpha,25Dihydroxyvitamin D3 down-regulates expression of prostate specific membrane antigen in prostate cancer cells Prostate. 2008. V. 68(7). P. 773-783. 128

222. Shaw AJ, Hayes ME, Davies M, Edwards BD, Ballardie FW, Chalmers RJ and Mawer EB Cyclosporin A and vitamin D metabolism: studies in patients with psoriasis and in rats Clin Sci (Lond). 1994. V. 86. P. 627-

223. Shen X, Mula RV, Li J, Weigel NL, Falzon M PTHrP contributes to the anti-proliferative and integrin alpha6beta4-regulating effects of 1,25-dihydroxyvitamin D(3) Steroids. 2007. V. 72(14). P. 930-938. Shi Y, Wang YF, Jayaraman L, Yang H, Massague J and Pavletich NP Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling Cell. 1998. V. 94. P. 585-

224. Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T, Takeuchi Y, Fujita T, Fukumoto S and Yamashita T FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type Ha// Biochem Biophys Res Commun. 2004. V. 314. P. 409-

225. Shimizu A, Persson C, Heldin CH and Ostman A Ligand stimulation reduces plateletderived growth factor beta-receptor susceptibility to tyrosine dephosphorylation J Biol Chem. 2001. V. 276. P. 27749-27

226. Shinki T, Shimada H, Wakino S, Anazawa H, Hayashi M, Saruta T, DeLuca HF and Suda T Cloning and expression of rat 25-hydroxyvitamin D3-lalpha-hydroxylase cDNA Proc Natl Acad Sci U S A 1997. V. 94. P. 12920-12

227. Silver J, Russell J and Sherwood LM Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells Proc Natl Acad Sci U S A. 1985. V. 82. P. 4270-4

228. Sinkkonen L, Malinen M, Saavalainen K, Vaisanen S and Carlberg С Regulation of the human cyclin С gene via multiple vitamin D3-responsive regions in its promoter Nucleic Acids Res. 2005. V. 33. P. 2440-2

229. Skowronski RJ, Peehl DM and Feldman D Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines Endocrinology. 1993. V. 132. P. 1952-1

230. Skowronski RJ, Peehl DM and Feldman D Actions of vitamin D3, analogs on human prostate cancer cell lines: comparison with 1,25-dihydroxyvitamin D3 Endocrinology. 1995. V. 136. P. 20-

231. Song K, Krebs TL and Danielpour D Novel pennissive role of epidermal growth factor in transforming growth factor beta (TGF-beta) signaling and growth suppression. Mediation by stabilization of TGF-beta receptor type II J Biol Chem. 2006. V. 281. P. 7765-7

232. Song X, Bishop JE, Okamura WH and Norman AW Stimulation of phosphorylation of mitogen-activated protein kinase by lalpha,25-dihydroxyvitamin D3 in 129

233. Soriano P Abnormal kidney development and hematological disorders in PDGF betareceptor mutant mice Genes Dev. 1994. V. 8. P. 1888-1

234. Soriano P The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites Development. 1997. V. 124. P. 2691-2

235. Story MT, Hopp KA and Molter M Expression of transforming growth factor beta 1 (TGF beta 1), -beta 2, and- beta 3 by cultured human prostate cells J Cell Physiol. 1996. V. 169. P. 97-

236. Strelau J, Bottner M, Lingor P, Suter-Crazzolara C, Gaiter D, Jaszai J, Sullivan A, Schober A, Krieglstein К and Unsicker К GDF-15/MIC-1 a novel member of the TGF-beta superfamily J Neural Transm Suppl. 2000. P. 273-

237. Stumpf WE, Sar M, Clark SA and DeLuca HF Brain target sites for D3 Science. 1982. V. 215. P. 1403-1405. 1,25-dihydroxyvitamin Stumpf WE, Sar M, Reid FA, Tanaka Y and DeLuca HF Target cells for 1,25dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid Science. 1979. V. 206. P. 1188-1

238. Sung V and Feldman D 1,25-Dihydroxyvitamin D3 decreases human prostate cancer cell adhesion and migration Mol Cell Endocrinol. 2000. V. 164. P. 133-

239. Swamy N, Xu W, Paz N, Hsieh JC, Haussler MR, Maalouf GJ, Mohr SC and Ray R Molecular modeling, affinity labeling, and site-directed mutagenesis define the key points of interaction between the ligand-binding domain of the vitamin D nuclear receptor and 1 alpha,25-dihydroxyvitamin D3 Biochemistry. 2000. V. 39. P. 1216212

240. Sweat SD, Pacelli A, Bergstralh EJ, Slezak JM, Cheng L and Bostwick DG Androgen receptor expression in prostate cancer lymph node metastases is predictive of outcome after surgery J Urol. 1999. V. 16. P. 1233-1

241. Sykaras N and Opperman LA Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? J Oral Sci. 2003. V. 45. P. 57-

242. Sylvia VL, Schwartz Z, Ellis EB, Helm SH, Gomez R, Dean DD and Boyan BD Nongenomic regulation of protein kinase С isoforms by the vitamin D metabolites 1 alpha,25-(OH)2D3 and 24R,25-(OH)2D3 J Cell Physiol. 1996. V. 167. P. 380-

243. Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R and DeLuca HF The Spl transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7 Genomics. 1991. V. 11. P. 168-

244. Tallquist M and Kazlauskas A PDGF signaling in cells and mice Cytokine Growth Factor Rev. 2004. V. 15. P. 205-213. 130

245. Tanaka Y and Deluca HF The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus Arch Biochem Biophys. 1973. V. 154. P. 566-

246. Tatsumi S, Segawa H, Morita K, Haga H, Kouda T, Yamamoto H, Inoue Y, Nii T, Katai K, Taketani Y, Miyamoto KI and Takeda E Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands Endocrinology. 1998. V. 139. P. 1692-1

247. Taylor JA, Hirvonen A, Watson M, Pittman G, Mohler JL and Bell DA: Association of prostate cancer with vitamin D receptor gene polymorphism Cancer Res. 1996. V. 56. P. 4108-4

248. Tennant JR Evaluation of the trypan blue technique for determination of eel viability Transplantation. 1964. V. 2. P. 685-

249. Thomas R, True LD, Lange PH and Vessella RL Placental bone morphogenetic protein (PLAB) gene expression in normal, pre-malignant and malignant human prostate: relation to tumor development and progression Int J Cancer. 2001. V. 93. P. 47-

250. Thomas TZ, Wang H, Niclasen P, OBryan MK, Evans LW, Groome NP, Pedersen J and Risbridger GP Expression and localization of activin subunits and follistatins in tissues from men with high grade prostate cancer J Clin Endocrinol Metab. 1997. V. 82. P.3851-3

251. Thommes KB, Hoppe J, Vetter H and Sachinidis A The synergistic effect of PDGF-AA and IGF-1 on VSMC proliferation might be explained by the differential activation of their intracellular signaling pathways Exp Cell Res. 1996. V. 226. P. 59-

252. Tiffany NM, Ryan CW, Garzotto M, Wersinger EM and Beer TM High dose pulse calcitriol, docetaxel and estramustine for androgen independent prostate cancer: a phase I/II study J Urol. 2005. V. 174. P. 888-

253. Ting HJ, Bao BY, Reeder JE, Messing EM, Lee YF Increased expression of corepressors in aggressive androgen-independent prostate cancer cells results in loss of lalpha,25dihydroxyvitamin D3 responsiveness Mol Cancer Res. 2007. V. 5(9). P. 967-

254. Tokar EJ and Webber MM Cholecalciferol (vitamin D3) inhibits growth and invasion by upregulating nuclear receptors and 25-hydroxylase (CYP27A1) in human prostate cancer cells Clin Exp Metastasis. 2005. V. 22. P. 275-

255. Tokumoto M, Tsuruya K, Fukuda K, Kanai H, Kuroki S and Hirakata H Reduced p21, p27 and vitamin D receptor in the nodular hyperplasia in patients with advanced secondary hyperparathyroidism Kidney Int. 2002. V. 62. P. 1196-1

256. Torii S, Yamamoto T, Tsuchiya Y and Nishida E ERK MAP kinase in G cell cycle progression and cancer// Cancer Sci. 2006. V. 97. P. 697-702. 131

257. Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda К and Nabeshima Y Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system Mol Endocrinol. 2003. V. 17. P. 2393-2

258. Tsujimoto Y Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells. 1998. V. 3. P. 697-

259. Tsukazaki T, Chiang ТА, Davison AF, Attisano L and Wrana JL SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor Cell. 1998. V. 95. P. 779-791. Tu WII, Thomas TZ, Masumori N, Bhowmick NA, Gorska AE, Shyr Y, Kasper S, Case T, Roberts RL, Shappell SB, Moses HL and Matusik RJ The loss of TGF-beta signaling promotes prostate cancer metastasis Neoplasia. 2003. V. 5. P. 267-

260. Tuohimaa P, Golovko O, Kalueff A, NazarovaN, Qiao S, Syvala H, Talonpoika R., Lou YR. Calcidiol and prostate cancer J Steroid Biochem Mol Biol. 2005. V. 93. 2-5. P.183-

261. Tuohimaa P, Tenkanen L, Ahonen M, Lumme S, Jellum E, Hallmans G, Stattin P, Harvei S, Hakulinen T, Luostarinen T, Dillner J, Lehtinen M and Наката M Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries Int J Cancer. 2004. V. 108. P. 104-

262. Uchida K, Chaudhary LR, Sugimura Y, Adkisson HD and Hruska KA Proprotein convertases regulate activity of prostate epithelial cell differentiation markers and are modulated in human prostate cancer cells J Cell Biochem. 2003. V. 88. P. 394-

263. Uehara H, Kim SJ, Karashima T, Shepherd DL, Fan D, Tsan R, Killion JJ, Logothetis C, Mathew P and Fidler IJ Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases J Natl Cancer Inst. 2003. V. 95. P. 458-

264. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA and Van Leeuwen JP Genetics and biology of vitamin D receptor polymorphisms Gene. 2004a. V. 338. P. 143-

265. Uitterlinden AG, Fang Y, van Meurs JB, van Leeuwen H and Pols HA Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states J Steroid Biochem Mol Biol. 2004b. V. 89-90. P. 187-

266. Umesono К and Evans RM Determinants of target gene specificity for steroid/thyroid hormone receptors Cell. 1989. V. 57. P. 1139-1

267. Ustach CV, Taube ME, Hurst NJ, Jr., Bhagat S, Bonfil RD, Cher ML, Schuger L and Kim HR A potential oncogenic activity of platelet-derived growth factor d in prostate cancer progression Cancer Res. 2004. V. 64. P. 1722-1729. 132

268. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, OMalley BW and McDonnell DP Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor В function// Mol Endocrinol. 1993. V. 7. P. 1244-1

269. Vesely DL and Juan D Cation-dependent vitamin D activation of human renal cortical guanylate cyclase Am J Physiol. 1984. V. 246. P. 115-

270. Visser J A, Olaso R, Verhoef-Post M, Kramer P, Themmen AP and Ingraham HA The serine/threonine transmembrane receptor ALK2 mediates Mullerian inhibiting substance signaling Mol Endocrinol. 2001. V. 15. P. 936-

271. Vlahos CJ, Kriauciunas TD, Gleason PE, Jones JA, Eble JN, Salvas D, Falcone JF and Hirsch KS Platelet-derived growth factor induces proliferation of hyperplastic human prostatic stromal cells J Cell Biochem. 1993. V. 52. P. 404-

272. Waki M, Inaba M, Iliura Y, Nagasaki T, Imanishi Y, Ishimura E, Otani S and Nishizawa Y Modulation by cAMP of lalpha,25-dihydroxyvitamin D3 sensitivity of murine erythroleukemia cells Arch Biochem Biophys. 2001. V. 391. P. 265-

273. Walters MR, Wicker DC and Riggle PC 1,25-Dihydroxyvitamin D3 receptors identified in the rat heart J Mol Cell Cardiol. 1986. V. 18. P. 67-

274. Walton MI, Wilson SC, Hardcastle IR, Mirza AR and Workman P An evaluation of the ability of pifithrin-alpha and -beta to inhibit p53 function in two wild-type p53 human tumor cell lines Mol Cancer Ther. 2005. V. 4. P. 1369-1

275. Weidner N Tumor angiogenesis: review of current applications in tumor prognostication Semin Diagn Pathol. 1993. V. 10. P. 302-

276. Weinreich T, Landolt M, Booy C, Wuthrich R and Binswanger U 1,25-dihydroxyvitamin D3 stimulates transforming growth factor-beta 1 synthesis by mouse renal proximal tubular cells Kidney Blood Press Res. 1999. V. 22. P. 99-

277. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Jr. and Hampton GM Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer// Cancer Res. 2001. V. 61. P. 5974-5978. 133

278. Wilson JD Recent studies on the mechanism of action of testosterone //N Engl J Med. 1972. V.287. P. 1284-1

279. Wilson LC, Baek SJ, Call A and Eling ТЕ Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells Int J Cancer. 2003. V. 105. P. 747-

280. Wong RG, Norman AW, Reddy CR and Coburn JW Biologic effects of 1,25dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats //J Clin Invest. 1972. V. 51. P. 1287-1

281. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H and Matsumoto К XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB 1-ТАК 1 in the BMP signaling pathway Embo J. 1999. V. 18. P. 179-

282. Yanagi Y, Suzawa M, Kawabata M, Miyazono K, Yanagisawa J and Kato S Positive and negative modulation of vitamin D receptor function by transforming growth factorbeta signaling through smad proteins J Biol Chem. 1999. V. 274. P. 12971-12

283. Yanagisawa J, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashiwagi K, Toriyabe T, Kawabata M, Miyazono К and Kato S Convergence of transforming growth factorbeta and vitamin D signaling pathways on SMAD transcriptional coactivators Science. 1999. V. 283. P. 1317-1321. 134

284. Yasmin R, Williams RM, Xu M and Noy N Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer J Biol Chem. 2005. V. 280. P. 40152-40

285. Zanello LP and Norman AW 1 alpha,25(OH)2 vitamin D3-mediated stimulation of outward anionic currents in osteoblast-like ROS 17/2.8 cells Biochem Biophys Res Commun. 1996. V. 225. P. 551-

286. Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM and Hewison M Extrarenal expression of 25-hydroxyvitamin d(3)-l alpha-hydroxylase J Clin Endocrinol Metab. 2001. V. 86. P. 888-

287. Zeng L, Rowland RG, Lele SM and Kyprianou N: Apoptosis incidence and protein expression of p53, TGF-beta receptor II, p27Kipl, and Smad4 in benign, premalignant, and malignant human prostate Hum Pathol. 2004. V. 35. P. 290-

288. Zerwekh JE, McPhaul JJ, Jr., Parker TF and Рак CY. Extra-renal production of 24,25dihydroxyvitamin D in chronic renal failure during 25 hydroxyvitamin D3 therapy Kidney Int. 1983. V. 23. P. 401-

289. Zhao XY, Ly LH, Peehl DM and Feldman D. lalpha,25-dihydroxyvitamin D3 actions in LNCaP human prostate cancer cells are androgen-dependent Endocrinology. 1997. V. 138. P. 3290-3298. 135

290. Zhao XY, Peehl DM, Navone N M and Feldman D: 1 alpha,25-dihydroxyvitamin D3 inhibits prostate cancer cell growth by androgen-dependent and androgen-independent mechanisms Endocrinology. 2000. V. 141. P. 2548-2

291. Zhao XY, Boyle B, Krishnan AV, Navone NM, Peehl DM and Feldman D: Two mutations identified in the androgen receptor of the new human prostate cancer cell line MDA PCa 2a J Urol. 1999b. V. 162. P. 2192-2

292. Zhou W, Park I, Pins M, Kozlowski JM, Jovanovic B, Zhang J, Lee С and Ilio К Dual regulation of proliferation and growth arrest in prostatic stromal cells by transforming growth factor-betal //Endocrinology. 2003. V. 144. P. 4280-4

293. Zhuang SH and Burnstein KL Antiproliferative effect of lalpha,25-dihydroxyvitamin D3 in human prostate cancer cell line LNCaP involves reduction of cyclin-dependent kinase 2 activity and persistent G l accumulation Endocrinology. 1998. V. 139. P. 11971207. 136