Бесплатный автореферат и диссертация по биологии на тему
Регуляторные гены, опосредующие генетическую стабильность и радиочувствительность дрожжей Saccharomyces cerevisiae
ВАК РФ 03.00.01, Радиобиология

Автореферат диссертации по теме "Регуляторные гены, опосредующие генетическую стабильность и радиочувствительность дрожжей Saccharomyces cerevisiae"

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им М. В. ЛОМОНОСОВА

19-2006-147

На правах рукописи ---

КОЛТОВАЯ НАТАЛИЯ АЛЕКСЕЕВНА

РЕГУЛЯТОРНЫЕ ГЕНЫ, ОПОСРЕДУЮЩИЕ ГЕНЕТИЧЕСКУЮ СТАБИЛЬНОСТЬ И РАДИОЧУВСТВИТЕЛЬНОСТЬ ДРОЖЖЕЙ &4ССНАКОМУСЕБ СЕКЕУШАЕ

03.00.01 —Радиобиология

Автореферат диссертации на соискание ученой степени доктора биологических наук

Москва 2006

Работа выполнена в Лаборатории радиационной биологии Объединенного института ядерных исследований

Официальные оппоненты:

Ведущая организация:

доктор биологических наук В. Г. Королев доктор биологических наук А. В. Глазунов доктор медицинских наук, профессор Г. Д. Засухина Институт биологии гена РАН, г. Москва

Защита состоится ¿>?>л:<ягГс>,я в /Г ч ¿о мин на

заседании диссертационного совета Д.501.001.65 в Московском государственном университете им. М. В. Ломоносова по адресу: 119899, г. Москва, Воробьевы горы, биологический факультет.

С диссертацией можно ознакомиться в библиотеке МГУ.

Автореферат разослан " У " У/_2006 г.

Ученый секретарь диссертационного совета

кандидат биологических наук Т. В. Веселова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Изучение генетических механизмов, обеспечивающих поддержание целостности геномов клеток и органелл несомненно является важным направлением фундаментальных исследований. В поддержании наследственного материала существенную роль играют, в частности, процессы восстановления повреждений ДНК, вызываемых как эндогенными, так и экзогенными факторами. К настоящему времени накоплен значительный объем сведений относительно механизмов, опосредующих стабильное поддержание хромосомного аппарата клеток. Сведения по генетике поддержания наследственных структур органелл в целом более скромны, хотя актуальность этого вопроса возрастает, в частности, в связи с тем, что делеции, дупликации и точечные мутации митохондриального генома вызывают заболевания у человека. Наиболее изучено поддержание митохондриального генома у почкующихся дрожжей Saccharomyces cerevisiae.

Дрожжи-сахаромицеты неоднократно успешно использовались в качестве модели для изучения консервативных генетических и биохимических механизмов, опосредующих жизнедеятельность эукариотической клетки. Функциональные гомологи генов, ассоциированных с серьезными заболеваниями человека, и десятки генов, которые необходимы для репарации повреждений ДНК, вызванных в частности, ионизирующей радиацией, в клетках человека, вначале были охарактеризованы у дрожжей. Классические методы радиационной генетики позволили выделить у дрожжей мутанты с высокой чувствительностью к радиации. Идентифицированные таким образом гены группы RAD52 кодируют репарационные ферменты. Современные методы скрининга генома с помощью делеционных мутантов позволяют идентифицировать дополнительные гены радиочувствительности (Bennett et al., 2001; Game et al., 2003). Идентификация всех генов, опосредующих радиочувствительность клеток, способствует более полному пониманию механизмов восстановления клетками поврежденной ДНК. Показано, что толерантность к повреждениям ДНК, помимо специализированных процессов репарации ДНК, опосредуют многочисленные иные факторы, в т. ч. ассоциированные с активностью митохондрий. Представления о функциональной значимости митохондрий в жизнедеятельности клетки постоянно расширяются, например, выявлено участие митохондрий в активации апоптоза (Li et al., 1997). Роль митохондрий и ядерно-митохондриальных генетических взаимодействий в определении радиорезистентности и стабильности генома клеток представляет несомненный интерес.

Однако тотальный анализ делеционных мутантов имеет ограничения. Вне поля зрения остаются жизненно важные гены, для выделения которых необходимы иные подходы. Кроме того, при тотальном скрининге генов по признаку радиочувствительности возникают методические сложности с отбором генов, мутации в которых слабо влияют на чувствительность к

радиации или снижают жизнеспособность клеток. Часто именно такие гены оказываются регуляторными. Поэтому остается актуальным целенаправленное выделение и функциональный и структурный анализ отдельных генов. В настоящей работе использовали новый подход для выделения генов радиочувствительности. Поскольку вариации генетической стабильности часто коррелируют с изменениями радиочувствительности клеток, отбирали радиочувствительные штаммы среди мутантов, у которых одновременно изменены как ядерная, так и митохондриальная генетическая стабильность. Для селекции таких мутантов использовали специально разработанный метод.

Цель и задачи исследования. Цель данного исследования идентификация генов, опосредующих поддержание одновременно как митохондриального генома, так и хромосом, и анализ влияния этих генов на радиочувствительность у дрожжей-сахаромицетов. Задачи исследования предусматривают: 1) разработку методики отбора мутантов по генам, опосредующих поддержание как митохондриальных, так и ядерных наследственных структур в клетках S. cerevisiae; 2) определение и анализ нуклеотидных последовательностей генов, мутантные аллели которых отобраны с использованием разработанной селективной системы; 3) анализ влияния отобранных мутантных аллелей на радиочувствительность клеток; 4) исследование возможной роли этих генов в механизмах, опосредующих способность клеток дрожжей переживать повреждения ДНК, в частности, в механизмах репарации и checkpoint-контроля; 5) анализ ядерно-митохондриальных взаимодействий в определении генетической стабильности и радиочувствительности.

Научная новизна. Идентифицированы десять новых генов SRM {spontaneous rho~ mutability), опосредующие изменчивость митохондриального генома и хромосом у дрожжей. Из этих генов наиболее детально изучены три SRM5/CDC28, SRM8, SRM12. Их идентификация основана на генетическом картировании, клонировании и частичном секвенировании. Секвенированы также их мутантные аллели. Установлено, что ген SRM8 аллелен гену NET1 и кодирует белок, локализованный в ядрышке и необходимый для удерживания там фосфатазы Cdcl4p и деацетилазы Sir2p. Ген SRM12 идентичен ADA1/HFI1, продукт которого входит в состав комплексов транскрипционных коактиваторов, обладающих гистонацетилтрансферазной активностью. У мутантов по изучаемым генам изменение генетической стабильности сопровождается повышением (SRM1, SRM5, SRM8, SRM12) или понижением (SRM2) радиочувствительности. Впервые показано участие генов протеинкиназы SRM5/CDC28, белка ядрышка SRM8/NET1 и транскрипционного коактиватора SRM12/HFI1 в определении радиочувствительности и checkpoint-контроле, выявлены новые аспекты взаимосвязи между изменчивостью ядерного и митохондриального геномов и радиочувствительностью у дрожжей, обнаружены новые ядерно-митохондриальные взаимодействия, опосредованные генами SRM. Полученные данные позволяют предположить, что гены SRM5/CDC28, SRM8/NET1, SRM12/HFII опосредуют формирование характерных особенностей организации хроматина (как ядерного, так и

митохондриального). По-видимому, именно мутационными изменениями этих особенностей обусловлены изученные параллельные изменения генетической стабильности и радиочувствительности клеток Saccharomyces cerevisiae.

Научно-практическая значимость. Разработанный подход к отбору мутантов с нарушением генетической стабильности может быть использован для выявления новых генов, контролирующих генетическую стабильность и радиочувствительность у дрожжей. Функциональный анализ генов, охарактеризованных в ходе данного исследования, расширяет наши представления о механизме поддержания генетического материала как в процессе митотического деления, так и при действии радиации, и может помочь при изучении этих процессов у высших эукариот после обнаружения соответствующих гомологов. Настоящая работа открывает перспективы для дальнейшего изучения молекулярных механизмов координации митотической стабильности наследственных структур, взаимосвязи радиочувствительности и стабильности митохондриального генома. Изучение стабильности хромосом и митохондриального генома представляет интерес в связи с заболеваниями человека, обусловленными нарушением поддержания и целостности ядерного и митохондриального геномов.

На защиту выносятся:

- новый способ отбора у дрожжей генных мутаций, сопровождающихся изменениями митотической стабильности как митохондриального генома, так и хромосом;

- идентификация генов, в которых локализованы отобранные мутации, и результаты анализа их участия в определении радиочувствительности клеток дрожжей, а также в репарации и регуляции механизмов checkpoint-контроля, останавливающих клеточный цикл в ответ на повреждение ДНК;

- гипотеза, согласно которой: а) гены CDC28, HFJ1 и NET1 опосредуют ремоделирование хроматина и митохондриальных нуклеопротеиновых структур (в частности, в сайтах повреждений) в результате химической модификации белков, и б) нарушение упомянутого ремоделирования приводит к изменениям как генетической стабильности клеток, так и их толерантности к действию радиации.

Апробация работы. Материалы диссертации доложены или представлены на 1 Всесоюзном радиобиологическом съезде (Москва, 1989), на 7 Всесоюзном симпозиуме "Молекулярные механизмы генетических процессов" (Москва, 1990), на международном симпозиуме "Трансмиссия хромосом" (Ленинград, 1990), на 15 международной конференции "Генетика и молекулярная биология дрожжей" (Гаага, Голландия, 1990), на 4 конференции "Актуальные проблемы радиационной биологии и радиационной генетики", посвященной памяти Н. В. Тимофеева-Ресовского (Обнинск, 1990), на 2 Радиобиологическом съезде (Киев, 1993), на 1 съезде ВОГиС (Саратов, 1994), на 17 международной конференции "Генетика и молекулярная биология дрожжей" (Лиссабон, Португалия, 1995), на европейской конференции "Успехи ядерной физики и ее применения" (Фессалоники, Греция, 1997), на 3 съезде по радиационным исследованиям (Москва, 1997), на 19 международной

конференции "Генетика и молекулярная биология дрожжей" (Римини, Италия, 1999), на 2 съезде ВОГиС (Санкт-Петербург, 2000), на конференции "Современные проблемы радиобиологии, радиоэкологии и эволюции", посвященной памяти Н. В. Тимофеева-Ресовского (Дубна, 2000), на международной конференции "Проблемы радиационной генетики на рубеже веков" (Москва, 2000), на Всероссийском симпозиуме "Клеточная биология на пороге XXI века" (Санкт-Петербург, 2000), на 2 международном симпозиуме "Проблемы биохимии, радиационной и космической биологии" (Дубна, 2001), на 4 съезде по радиационным исследованиям (Москва, 2001), на 20 международной конференции "Генетика и молекулярная биология дрожжей" (Прага, 2001), на 3 съезде ВОГиС "Генетика в XXI веке: современное состояние и перспективы развития" (Москва, 2004), на международной конференции "Молекулярно-динамические исследования в науках о веществе и биологии" (Дубна, 2004), на международной конференции "Современные проблемы генетики, радиобиологии, радиоэкологии и эволюции" (Ереван, 2005), на международной конференции "Молекулярно-динамические исследования в науках о веществе и биологии" (Дубна, 2006).

Структура и объем работы. Диссертационная работа включает в себя введение, обзор литературы, экспериментальную часть из 4 глав, заключение, выводы, список цитируемой литературы (1098 наименований). Диссертация изложена на 362 страницах машинописного текста и содержит 85 рисунков и 55 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

ГЛАВА 1. МИТОХОНДРИАЛЬНЫЙ ГЕНОМ ДРОЖЖЕЙ вАССАКОМУСЕв СЕИЕУШАЕ (обзор литературы)

Присутствие митохондрий характерно для всех эукариотических организмов. Три аспекта функционирования митохондрий важны как для функционирования клетки дрожжей, так и с точки зрения патогенеза заболеваний человека, связанных с дисфункцией митохондрий: генерирование энергии, образование активного кислорода (АФК) и регуляция апоптоза (запрограммированной гибели клетки). Обзор содержит, сводку основных данных о генетических факторах, опосредующих поддержание митохондрий и мтДНК у сегеушае. Для этого вида дрожжей характерна высокая частота митохондриальных дегенеративных мутаций гЬо", нарушающих дыхание. В митохондриях обнаружены активности репарационных ферментов. В репарации повреждений мтДНК участвуют мтДНК-полимераза, эксцизионный путь репарации оснований, репарация ошибочно спаренных оснований. Обнаружены также некоторые ферментативные активности рекомбинационного пути репарации. Вместе с тем механизмы поддержания мтДНК и клеточные механизмы, опосредованные ядерно-митохондриальными генетическими взаимодействиями, исследованы далеко не полностью.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ

Количественная оценка спонтанной rho'-мутабильности. Для определения частоты мутантов rho" из моноспоровых культур с помощью микроманипулятора изолировали отдельные клетки на агаровых блоках и инкубировали блоки в течение 5 сут. Выращенные колонии суспендировали в воде и высевали на БС. Спустя 5 сут инкубации определяли долю колоний rho", которые идентифицировали по уменьшенным размерам, характерному изменению пигментации и неспособности расти на среде с несбраживаемым источником углерода или с помощью тетразольной методики по отсутствию окрашивания у мутантных колоний, выращенных на среде с тетразолом. Оценка митотической стабильности VII хромосомы. Мутациями трех локусов маркировали один из гомологов VII хромосомы диплоидных клеток (локусы cyh2 и leul расположены в левом плече, а локус ade6 - в правом плече), второй гомолог нес их нормальные аллели. Потеря немаркированной VII хромосомы ас/<?2-клетками приводит к одновременному проявлению мутаций ade6, cyh2 и leul. Колонии, выращенные на полной среде БС в течение 5 сут из отдельных диплоидных клеток, суспендировали в воде и рассевали на среды БС и БС+cyh. Отбирали белые (ade6 - блокирует накопление красного пигмента у <зй?е2-штаммов) циклогексимид-резистентные (cyh2) колонии и проверяли их на ауксотрофность по лейцину {leul) на селективной среде. Клетки, имевшие все три мутантных признака, считали утратившими немаркированный гомолог VII хромосомы.

Оценка митотической стабильности IV и XIV хромосом. Дисомия по IV и XIV хромосомам ослабляет пигментацию аденинзависимых колоний. Спонтанная потеря дисомиком п+1 одной из двух — IV или XIV - хромосом обусловливает гетерогенность рассевов дисомиков - присутствие красных колоний наряду с розовыми. Для количественной оценки митотической стабильности дисомиков колонии, выращенные на БС в течение 5 сут из отдельных клеток с дисомией по IV или XIV хромосомам, суспендировали в воде и рассевали на БС. В каждом рассеве подсчитывали: N, — количество мозаичных красно-розовых колоний с красным сектором не менее 180° и N2 -суммарное количество целиком розовых и красно-розовых колоний с красным сектором менее 180°. Величина а) = N|/(N|+N2) служила оценкой темпа спонтанной утраты лишней хромосомы в первом почковании после посева. Определение митотической стабильности рекомбинантных плазмид. Культуры гаплоидных трансформантов выращивали на неселективной среде YPD в случае присутствия в клетках центромерной плазмиды (CEN) или на селективной среде в случае трансформантов, несущих бесцентромерную плазмиду. Водные суспензии выращенных культур высевали на неселективную среду. В рассевах определяли долю плазмидо-содержащих колоний, служившую мерой митотической стабильности плазмиды.

Определение у-чувствительности. Водные суспензии клеток (103 -103 кл/мл) 7-суточных стационарных культур, выросших на агаризованной среде БС, облучали во льду на установке "Свет" в ОИЯИ (i:i7Cs, мощность дозы 25 Гр/мин) или на «Материаловедческой» гамма-установке в ГУ Федеральном

научном центре "Курчатовский институт" (60Со, мощность дозы 180 Гр/мин). Контрольные и облученные суспензии рассевали на чашки со средой БС и инкубировали 5 сут при 30°С.

Облучение УФ-светом. Для облучения использовали лампу ДБ 30w (мощность лампы 0.28 Дж/м2 сек). Клетки, нанесенные на поверхность агаризованной среды, облучали в темноте. Во избежание фотореактивации облученные чашки помещали в пенал и инкубировали в течение 5 сут при 30°С. Синхронизация культур в фазе G1 с помощью а-фактора. Гаплоидные культуры типа спаривания МАТа выращивали в течение ночи в жидкой питательной среде YPD до концентрации 2-5х106 кл/мл при 30°С. Клетки осаждали центрифугированием и ресуспендировали 3x107 клеток в 1 мл свежей питательной среды YPD (рН 4,0), содержащей 5 мкг/мл а-фактора S. cerevisiae (Peptide Institute, Inc). После полуторачасовой инкубации при 30°С добавляли вторую порцию а-фактора и инкубацию продолжали еще 1,5 часа. Степень синхронизации контролировали микроскопированием культуры по отсутствию почкующихся клеток.

Выделение ДНК из клеток и генетическую трансформацию, рестрикцию и секвеиироваиие ДНК выполняли по стандартным методикам (Sambrook et al., 1989).

МД моделирование. Для МД моделирования использовали модуль SANDER программного пакета AMBER7.0 для специализированного компьютера MDGRAPE-2. Начальная геометрия комплекса задана согласно кристаллической решетке, полученной с помощью рентгеноструктурного анализа (Brookhaven Protein Data Bank http://wvvw.pdb.org'). Температура системы комплекс-водное окружение поддерживалась постоянной (300 К) с помощью алгоритма Берендсена. Интегрирование классических уравнений осуществляли по схеме Верле с шагом 1 фс на протяжении периода времени 2 не. Результаты моделирования белкового комплекса анализировали с помощью пакетов RasMol и MOLMOL.

ГЛАВА 3. ПОЛУЧЕНИЕ И СВОЙСТВА МУТАЦИЙ srm, ОДНОВРЕМЕННО СНИЖАЮЩИХ СПОНТАННУЮ rho" МУТАБИЛЬНОСТЬ И МИТОТИЧЕСКУЮ СТАБИЛЬНОСТЬ ХРОМОСОМ

3.1 Получение мутаций srm

Для дрожжей характерен высокий уровень митохондриальной мутабильности. Повышенный уровень спонтанной митохондриальной rho"-мутабильности на фоне красной пигментации у д<Аг7-штаммов можно качественно определить по морфологии колоний. Мутации дыхательной недостаточности блокируют накопление красного пигмента. Колонии с высоким содержанием гЬо'-мутантов имеют "звездчатую" морфологию Sta (рис. 1). Мутанты со сниженной rho" -мутабильностью образуют колонии с ровными краями (Sta).

В качестве исходных использовали штаммы 71а и 71а, являющиеся производными штамма Х2180-1А из Центра генетических культур дрожжей в Беркли (США), ныне включенный в АТСС. Первоначально для индукции мутаций srml-srmS (jpontaneous rho" wutability) использовали азотистую кислоту и УФ-свет. Мутанты отбирали по фенотипу Sta". В дальнейшем для отбора мутантов, у которых, параллельно со снижением гЬо'-мутабильности, нарушено поддержание хромосом, разработали специальную методику.

j3ta+ sta"

Рис. 1. "Звездчатые" {Sta*) и гладкие (Sta) колониии

Для разработки методики отбора мутантов с одновременным снижением спонтанной гЬо"-мутабильности и митотической стабильности хромосом использовали дисомик по хромосоме IV. Присутствие в дрожжевых клетках дополнительной хромосомы IV вызывает заметное снижение спонтанной митохондриальной гЬо'-мутабильности у этих клеток, что в свою очередь, определяет правильную форму колоний (круглые колонии с ровными краями) в отличие от «звездчатых» колоний, образуемых исходными гаплоидными клетками 71а. Кроме того, дисомия по хромосоме IV обусловливает заметное ослабление красной пигментации, характерной для ade 1-мутз.птпых колоний.

Потеря дисомиком одной из двух IV хромосом сопровождается восстановлением интенсивной пигментации клеток и повышением спонтанной гЬо'-мутабильности (соответственно, восстановлением «звездчатой» формы колонии). Мутации, обновременно снижающие стабильность хромосом и спонтанную гЬо"-мутабильность, при введении их в генотип дисомиков должны вызывать частое выщепление интенсивно пигментированных гаплоидных колоний, сохраняющих, однако, правильную форму. Схема получения мутаций srm приведена на рис. 2. Для получения мутаций srm культуры дисомиков по IV хромосоме облучали УФ-светом, просматривали рассевы после 4 сут инкубации и отбирали колонии правильной формы с измененной пигментацией. Проведя генетический анализ отобранных мутантов и несколько последовательных бэккроссов, изолировали десять мутаций srm. В дальнейшем для анализа использовали помимо ранее выделенных мутаций srml-srmS новые мутации srm8, srml2, srmlS и srml7, имеющие наиболее выраженные фенотипические проявления.

Рис. 2. Схема получения мутаций $гт у дисимика

8Р0\/1+ абе1 дисомик

V

Розовые круглые (5/а-) колонии

У

Потеря лишней хромосомы

1)\/ свет

ЭЯМ* абе1 гаплоид

Утрата лишней хромосомы частью клеток

Звездчатые (3?а+) колонии

V

Утрата лишней хромосомы всеми потомками

вгт айв 1 мозаичная дисомик/гаплоид

5гт айв 1 гаплоиды

Красно/розовые (5/а-) мозаичные колонии

Красные круглые (5/3-) колонии

3.2 Взаимодействие мутаций $/тя

Генетический анализ показал, что выделенные мутации не аллельны и затрагивают различные гены. Попарные сочетания мутаций ьгт5 згт12, $гт1 згт8 и ¡гт!2, сравнительно с одиночными мутациями, не оказывают

значительного влияния на жизнеспособность и скорость размножения клеток. В то же время споры генотипов $гт5 ¡гт8 и ¡гт8 5гт12 нежизнеспособны. Вероятно, мутации $гт5, згт8 и $гт12 блокируют различные жизненно важные механизмы, способные к взаимной компенсации.

3.3 Фенотипические особенности отобранных мутантов згт

Мутантные клетки $гт1-$гт4, $гт15 и ¡гт17 не обнаруживают выраженных морфологических отклонений от нормы. Гаплоидные клетки $гт5 и диплоиды згт5/згт5 крупнее нормальных клеток и имеют вытянутую форму. Большинство клеток в культурах линий ягтв имеет отчетливо вытянутую форму. Клетки с мутацией ьгт8 при 37°С размножаются существенно медленнее, чем при 30°С, их морфологические аномалии при повышенной температуре выражены сильнее. В мутантных культурах $гт12 значительное количество клеток имеет несколько вытянутую форму; даже при микроскопировании очевидно наличие в таких культурах большого количества нежизнеспособных клеток.

При споруляции диплоидных клеток «г/и5Дгт5 часто образуются линейные аски. Мутации эгт8 и $гт12 практически полностью блокируют споруляцию у гомозиготных мутантных диплоидов.

В связи с вытянутостью формы клеток йгт5, $гт8 и ¡гт12 анализировали характер почкования мутантных клеток. Известно, что для круглых гаплоидных клеток типично аксиальное почкование, т. е. образование новых почек парой, состоящей из материнской и дочерней клеток, вблизи места их соединения, тогда как более вытянутым диплоидным клеткам свойственно биполярное почкование (Рге1ГеШег, 1960).

Анализ начальных этапов образования колоний на стадии четырех клеток показал, что для клеток БЯМ\ 5гт5 типично образование почек рядом с местом соединения материнской и дочерней клеток. У мутантов ьгт12 и $лти<§ довольно часто (20%) наблюдается возникновение почки с противоположной стороны от места соединения материнской и дочерней клеток. У двойных мутантов ¿гт5 $гт12 с еще более высокой частотой обнаруживались микроколонии биполярного типа. Клетки упомянутых двойных мутантов, по сравнению с клетками згт8, имели ещё более неправильную форму. По-видимому, гены 571М8 и Б11М12 играют существенную роль в механизме, определяющем аксиальный характер почкования нормальных гаплоидных клеток. Ген ЖМ5 также участвует в этом процессе, так как усиливает эффект мутации

Скорость деления клеток у мутантов ьгт2, $гт5, згт8, згт12 и згт15 существенно снижена, мутации £гт/ и $гт17 не влияют на скорость деления клеток. В культурах клеток згт8 и $гт12 доля нежизнеспособных клеток резко возрастала с возрастом культуры. Гаплоидные клетки згт5 $гт12, по сравнению с одиночными мутантами згт12 и згт5, более и менее жизнеспособны, соответственно. Элиминация митохондриального генома бромистым этидием на фоне мутаций ьтт!, згт8, $гт 12 снижала жизнеспособность клеток. Сами мутации ягтв и $гт12 снижают жизнеспособность как у дыхательно-компетентных, так и дыхательно-недостаточных клеток, а соответствующий эффект мутации згт1 обнаруживается только на фоне дыхательной недостаточности. В течение 2 недель клетки БЯМ* гЬо°, 5гт2 гЬю° и $гт5 гЬо° сохраняют высокую жизнеспособность.

3.4 Влияние мутаций згт на митохондриальную гЬо" -мутабильность

Мутации ягт снижают частоту спонтанных мутантов гЬо" в культурах в несколько десятков раз (табл. 1). Влияние мутации БгтП на спонтанную гЬо"-мутабильность выражено слабее, но статистически значимо. Все изученные мутации рецессивны, кроме мутации ягт2, которая проявляет полудоминантный характер наследования в отношении рассматриваемого признака.

Таблица 1 ■ Частота спонтанных цитоплазматических мутантов гЬо

Генотип Частота мутантов гЬо", %

74,6±6,5

ягтв 3,4±1,1

згт12 1,8±0,8

згт15 2,7±0,9

згт17 23,7±18,4

Для анализа влияния мутаций згт на индуцированный гЬо"-мутагенез использовали бромистый этидий и УФ-свет. От скрещиваний каждого из мутантов 5г/и с родительскими линиями дикого типа отобрали по 2 полные тетрады.

Время обработай БЭ (10 мкг/мл), час

Рис. 3. Зависимость выхода индуцированных мутаций гЬо" от времени обработки культур бромистым этидием. Представлены данные для моноспоровых клонов, происходящих из двух тетрад: БЛМ8 х 5гт8 (а); 5ЯМ12 х вгт12 (б)

Для каждого моноспорового клона из этих тетрад определили чувствительность к мутагенному действию бромистого этидия. Мутации и ягт12 существенно снижали чувствительность клеток к мутагенному действию бромистого этидия, как и ранее полученные мутации 5гт1 и згт5 (рис. 3). Мутации ягт15 и згт17 не оказывали существенного влияния на гЬо~-мутабильность клеток под действием бромистого этидия, и в этом плане они похожи на мутации згт2, ягтЗ и $гт4.

Поскольку бромистый этидий является специфическим химическим агентом, индуцирующим мутации гЬо" с высокой эффективностью, мы также изучали влияние мутаций хгт на индукцию мутаций гЬо' под действием физического фактора - УФ-света.

Как видно из рис. 4 УФ-свет эффективно индуцировал мутации гЬо" как у клеток дикого типа, так и у мутантов ¿гт, однако мутации вгт1 и ¡гт5 снижали эффективность индукции мутаций гЬо' под действием УФ-света.

Таким образом, мутации ¡гт модифицируют спонтанный, а некоторые мутации згт и индуцированный бромистым этидием и УФ-светом гЬо"-мутагенез. У мутантов гЬо" утрачена значительная или подавляющая часть последовательностей мтДНК, а сохранившиеся последовательности амплифицированы (ВегпагсИ, 1979). Предполагается, что в образовании этих перестроек мтДНК участвуют рекомбинационные процессы. Такая клетка исходно является гетероплазмической; в ходе становления гЬо'-мутанта гетероплазмия в значительной степени уменьшается или полностью исчезает.

Изучение поведения маркированных молекул мтДНК показало, что в результате сегрегации очень быстро образуются клетки, содержащие митохондриальный геном одного типа. Модификация этого процесса устранения гетероплазмии будет, видимо, сказываться на выходе мутантов гЬо". Относительно быстрое исчезновение исходно существовавшей гетероплазмии должно иметь место также при возникновении митохондриальных генных

100

Рис. 4. Индукция мутаций гИо~ под действием УФ-света у мутантов ¡гт1 и $гт5. Приведены усредненные результаты по 3

экспериментам

—впп!

0 60 100 150 200

Доза, Дж/м2

мутантов и образовании гомоплазмических потомков гетероплазмических диплоидных зигот. Не исключено, что мутации вгт угнетают гЬо'-мутагенез, препятствуя устранению гетероплазмии. В этом случае они, вероятно, должны модифицировать и точечный митохондриальный мутагенез, и выщепление гомоплазмических сегрегантов.

3.5 Мутации «тя и точечный митохондриальный мутагенез

Характеристикой точечного митохондриального мутагенеза может служить частота возникновения мутаций устойчивости к антибиотикам. Поскольку такие мутации могут быть и митохондриальными, и ядерными, обычно рецессивными, для опытов использовали диплоидные штаммы, митохондриальный геном которых не несет мутаций резистентности к антибиотикам.

Таблица 2. Частота спонтанных митохондриальных генных мутаций

Генотип Ек Частота мутаций, х 10"9 С* Ок

йгл/Уядм* 1,7±1,7 3,9±3,1 2,2±1,6

згт!/згт1 • 1,7±0,9 2,8±1,2 280±801

вгт2Ьгт2 1,0±0,4 4,2±3,5 150±80

хгт5^гт5 2,8±1,5 10,0±7,0 90±70

Как видно из табл. 2, мутации згт могут сопровождаться изменениями частоты возникновения спонтанных митохондриальных точечных мутаций резистентности к антибиотикам, хотя и избирательно. А именно, у мутантов 5практически не модифицирован выход мутаций резистентности к эритромицину (Ек) и хлорамфениколу (Ск), но достоверно повышена частота возникновения мутаций резистентности к олигомицину (Ок).

3.6 Рекомбинация и сегрегация митохондриальных генетических

маркеров у мутантов «/м

Для изучения рекомбинации и сегрегации митохондриальных генетических маркеров у мутантов угт/ и йгт5 были сконструированы штаммы гЬо+, несущие митохондриальные маркеры устойчивости к антибиотикам эритромицину (ЕК22:)» хлорамфениколу (СК32|Х олигомицину (Ок7) и паромомицину (Рк), и скрещены со штаммами гЬо+, чувствительными к этим антибиотикам. Анализировали гомополярные скрещивания со+ х со+.

В скрещиваниях 57?А/н х БЯМ* и ¿тот/ х ягт! родительские типы митохондриального генома передаются потомкам зигот с равной частотой и общая частота рекомбинантов между СиЕ, Си О, Ей О, СиР была такова, как и ожидалось для 4-факторного скрещивания (Ощоп е1 а1., 1974). Иными словами, мутация згт! не влияет на передачу и рекомбинацию митохондриальных маркеров. Однако для мутанта ¡гт5 наблюдается полярность передачи родительских митохондриальных геномов и соответственно низкая частота рекомбинантных типов.

Если скрещиваемые гаплоидные культуры вносят одинаковый вклад в зиготический пул митохондриальных генов, и сегрегация митохондриальных маркеров носит симметричный, несмещенный, характер, то, например, маркер Ек должен наследоваться в среднем половиной гомозиготических вегетативных потомков зигот. В реальных, имеющих конечные размеры, выборках потомков частота встречаемости Ея будет несколько менее 0,5. Соответственно, и средняя частота минорного аллеля в потомстве скрещиваний будет ниже 0,5.

Таблица 3. Частота встречаемости минорного аллеля Ек или Е8 в вегетативном потомстве гетероплазмических зигот

Скрещивание Частота минорного аллеля в потомстве

SRM* х SRM* srml xsrml srmS х srm5 0,42 ± 0,06 0,36 ± 0,05 0,17 ±0,03

Частота минорного аллеля Е / Е в потомстве SRM' х SRAf в наших опытах составила 0,423 ± 0,055 (табл. 3), близкими значаниями частоты минорного аллеля характеризуется и сегрегация маркеров в потомстве скрещиваний srml х srml, которая практически может считаться симметричной, несмещенной, тогда как для потомства скрещиваний srm5 х srm5 обнаружено статистически значимое смещение сегрегации. К аналогичным выводам можно прийти, анализируя сегрегацию еще трех митохондриальных маркеров: CR/CS, Or/Os, PR/PS. Обнаруженное смещение сегрегации митохондриальных маркеров в потомстве скрещиваний srmS х srm5 позволяет предположительно связывать влияние мутаций srmS на спонтанный rho'-мутагенез с участием гена SRM5 в контроле рекомбинации и/или трансмиссии мтДНК.

3.7 Влияние мутаций srm на темп возникновения ядерных генных мутаций и митотической рекомбинации

Для выявления роли мутаций srm в ядерном мутагенезе и/или генетической рекомбинации анализировали частоту спонтанного возникновения прямых can, nysr и обратных Leu* мутаций у штаммов, несущих мутацию leul-12. Из табл. 4 видно, что частоты спонтанных прямых (cari и nysr) и обратных (Leu*) мутаций у всех мутантов srm (кроме srm 12) и штаммов дикого типа SRM* различаются незначительно в 2-3 раза. Мутация srm 12 снижает частоту спонтанных мутаций сапг на порядок.

Генотип cari Частота мутаций, x 10"8 nysr Leu*

SRM* 11±4 5±1,5 0,6±0,2

srml 4±3 2,8±1,6 1,1±1,1

srm2 6±5 2,3±1,5 0,7±0,2

srm5 12±3 1,0±0,6 0,3±0,2

srm8 4±1 - -

srm 12 1,8±1,3 - -

Анализ индукции генных мутаций сап при у-облучении выявил снижение индуцированного мутагенеза у мутантов згт2, ягт8 и $гт!2 (рис. 5).

Рис, 5. Зависимость частоты прямых ядерных мутаций сапг от дозы у-облучения для

гаплоидных штаммов дикого типа и мутантов Бгт

"о 40 80 120 160

Доза,Гр

Анализ митотического кроссинговера на участке (237,8 тпн) между центромерой хромосомы XV и локусом ADE2 и митотической генной конверсии Leu (leul-l/leul-12) к Leu показал, что изученные мутации не оказывают значительного влияния на выход обоих типов спонтанных и у-индуцированных митотических рекомбинантов, хотя и наблюдаются некоторые различия: мутация srm2 снижает спонтанный и индуцированный мутагенез и индуцированную рекомбинацию (конверсию и кроссинговер), а мутации srml и srm8 повышают индуцированную рекомбинацию, соответственно, конверсию и кроссинговер. В то же время уровень спонтанной генной конверсии у мутанта cdc28-srm увеличен в 10 раз по сравнению с клетками дикого типа, а частота индуцированной митотической рекомбинации в клетках этого мутанта подавлена, при этом снижается как частота генной конверсии, так и кроссинговера (табл. 5). Эти данные свидетельствуют об участии генов SRM1, SRM2, SRM8, SRM5 в гомологичной рекомбинации.

Таблица 5. Частота'спонтанной митотической рекомбинации

Генотип Частота (xl0"J) Leu+-конвертантов Частота (xlO"4) красно-розовых колоний

SRAf/SRAT - 1Д (3)

srml/SRMl 1,43±1,08 1,1 (8)

srml/srml 2,38±1,44 0,8 (7)

srm2/SRM2 - 1Л (3)

srm2/srm2 1,45±0,06 0,21 (2)

srm5/srm5 16±3 2,7(15)

Таким образом, гены SRM, влияющие на стабильность мтДНК, влияют также на ядерную генетическую стабильность, а именно, на спонтанный (srml 2) и индуцированный (srm2, srm8, srml2) точечный мутагенез, спонтанную (srm5) и индуцированную (srml, srm2, srm5, srm 12) рекомбинацию хромосомной ДНК.

3.8 Влияние мутаций srm на митотическую стабильность хромосом

Хромосомный набор эуплоидной клетки дрожжей довольно устойчив. У дрожжей частота потери одной из 16 хромосом происходит приблизительно один раз на сто тысяч клеточных делений. Дрожжевые клетки толерантны к наличию лишних хромосом, т. е. анэуплоиды также довольно стабильны. Это позволяет изучать стабильность хромосом как у эуплоидных, так и у анэуплоидных клеток. Нами разработан качественный тест на утрату избыточных хромосом IV и XIV,. использующий ослабление пигментации у аденинзависимых дисомиков по этим хромосомам. При утрате дисомии происходит восстановление красной пигментации. Тест позволил оценить влияние мутаций srm на стабильность хромосом у дисомиков. Утрату хромосомы VII оценивали по проявлению рецессивных маркеров.

Как было показано ранее, мутации srml и srm5 существенно повышали темп утраты хромосом IV и XIV у дисомиков, мутации srm3 и srm4 не оказывали заметного влияния на поддержание хромосом, однако у мутанта srm2 наблюдалась стабилизация хромосом IV и XIV. Проведенный нами качественый анализ выявил снижение митотической стабильности хромосом IV и XIV у мутантов srm8, srml2, srml5, srml7 и хромосомы VII у мутанта srm5 (табл. 6).

Таблица 6. Темп спонтанной потери лишней хромосомы у дисомиков

Генотип Частота потери хромосом, %

SRKf (VII) (п+1) 0,0042

srml (VII) (п+1) <0.0001

srm5 (VII) (п+1) 0,43±0,15

SRAf(XlV) (п+1) 0,26±0,07

srml (XIV) (п+1) 9,61±3,43

srm2 (XIV) (п+1) 0,042

srm 12 (XIV) (п+1) 5,6±0,8

srml5 (XIV) (п+1) 0,16±0,03

Для анализа утраты хромосом у эуплоидов использовали цис-гетерозиготы по маркерам хромосомы VII adeó/+ cyh2/+ leul/+, следили за утратой гомолога, несущего нормальные аллели указанных генов. Влияния мутаций srml и srm5 на стабильность хромосомы VII у диплоида не обнаружено (табл. 7). У линий srm8/srm8, сравнительно с линиями SRM*/SRM выявлено повышение частоты спонтанной утраты VII хромосомы примерно на два порядка, а у линий srml2/srml2 — на порядок. Мутации srmlS и srml7 не влияли на стабильность хромосомы VII.

Генотип Частота потери хромосом, %

БИМ^/БИМ* $гт1/згт1 $гт5Ьгт5 вгт8/$гт8 згт12/вгт12 хгт!5Лгт15 хгт!7Агт17 (1.5±0.6) х 10'7 1.4 х 10"7 0.9 х 10"7 (4.2+2.1) х 10'5 (6.2±3.9) х 10'7 1.6 х 10'7 2.9 х Ю-7

3.9 Влияние мутаций «ти на стабильность рекомбинаитных плазмид

Возможность конструирования минихромосом позволяет изучать взаимодействие мутаций йгт с различными структурными элементами, необходимыми для воспроизведения хромосом. Влияние мутаций ягт на стабильность плазмид было изучено на примере кольцевой минихромосомы УСр50 (СЕЫ4 АК51 1Л1АЗ) в неселективных условиях и бесцентромерной кольцевой плазмиды УИр12 (АЯБ! ТЕ1Р1 УКАЗ) в селективных условиях.

Таблица 8. Митотическая стабильность плазмид УСр50

Генотип клонов Доля (%) колоний, сохранивших плазмиду УСр50 Доля (%) колоний, сохранивших плазмидуУКр12

БЯМ* гко* 41.6+11.6 34.3+2.6

гко' 42.3±3.8 38.9+2.4

гко" 38.9±5.4 38.2+1.7

$пп1 гко* 31.9+4.6 6.5+1.7

гЪо" 59.9+10.8 -

¡пп5 гко+ 2.9±1.2 -

гко" 9.3+1.5 -

згт1 ¡гт5 гко4 1.23+0.38 -

гко' 2.88+1.65 -

хгт2 гко+ 31.1+5.9 9.18+1.25

гко' 35.8+2.3 6.95+0.45

згт8 гко* 23.1±5.4 34.1+5.5

гко' 41.3+10.2 48.7+4.0

8гт12 гко+ 18.0+3.1 6.4+1.7

гко' 13.1+3.0 -

ягт 15 гко+ 18.1+5.1 10.1+1.3

гко" 20.6+7.0 5.8+1.4

$гт17 гко+ 28.7+2.0 16.8+0.9

Достоверное снижение митотической стабильности плазмиды УСр50 наблюдали для всех изученных мутантов (табл. 8), наиболее сильным эффект был для мутации ягт5, у двойного мутанта $гт1 ^гт5 обнаружено дальнейшее

снижение митотической стабильности плазмиды. Снижение митотической стабильности бесцентромерной плазмиды YRpl2, сравнительно с клонами SRMобнаружили у всех исследованных мутантов, кроме клонов srm8 (табл. 8). Очевидно, гены SRM1, SRM2, SRM5, SRM8, SRM12, SRM15, SRM17 участвуют в поддержании дрожжевыми клетками кольцевых рекомбинантных плазмид, содержащих хромосомный элемент ARS. Мутации srml и srmS вызывали заметное повышение исходной низкой стабильности бесцентромерных плазмид со слабыми ARS-последовательностями - Rcp21/ll (Зрш-ДНК) и рА2 (ARS ADE2) (данные не приведены). По-видимому, соответствующие два гена принимают участие в механизмах, определяющих эффективность репликации кольцевых рекомбинантных плазмид и/или асимметрическую передачу бесцентромерных плазмид при делении клеток. Мутации srml и srm5 не оказывали влияния на митотическую стабильность плазмид YEpl3 и pYF91, несущих ori-сайт 2|Ш1-плазмиды (данные не приведены). Очевидно, механизм, обеспечивающий относительно' высокую митотическую стабильность плазмид с ori-сайтом 2(хт-ДНК и зависимый от функций, кодируемых этой эндогенной плазмидой, не зависит сколько-нибудь значительно от генов SRM1 и SRM5,

3.10 Влияние повреждения митохондриального генома на стабильность плазмид

Некоторые литературные данные указывают на связь между митотической стабильностью плазмид и функционированием митохондриального генома дрожжевых клеток. Поскольку изучаемые мутации srm оказывают влияние на поддержание митохондриального генома и нельзя исключить возможность влияния этих мутаций на его функционирование, мы сочли целесообразным параллельно с анализом поддержания плазмид в клетках srm оценить митотическую стабильность этих плазмид в дыхательно-недостаточных клетках rho" с дефектами генома митохондрий и клетках rho°, вообще утративших мтДНК.

Спонтанно возникшие цитоплазматические мутации petite в большинстве своем являются мутациями rho", т. е. необратимыми дегенеративными перестройками митохондриального генома. У штаммов SRM* повреждение митохондриального генома не вызывало изменения митотической стабильности плазмид. Анализ спонтанно возникших мутантов petite в полученных группах трансформантов выявил, по меньшей мере, семь случаев модификации поддержания плазмид у мутантов rho" (табл. 8). А именно, возникновение rho"-мутаций сопровождалось повышением митотической стабильности плазмиды YCp50 у мутантов srml, srm2, srmS и srmlS и обеих плазмид в клетках srm8, а также снижением митотической стабильности YRpl2 в клетках srml5 (хг==21,2; Р<0,001). Таким образом, получены дополнительные данные о роли ядерно-митохондриальных генетических взаимодействий в поддержании дрожжевыми клетками рекомбинантных генетических структур.

ГЛАВА 4. КАРТИРОВАНИЕ, КЛОНИРОВАНИЕ И СЕКВЕНИРОВАНИЕ ГЕНОВ БЯМ

4.1 Ген 5ДМ5

Ранее ген БКМ5 был генетически картирован между генами ЬУБ2 и ТУЯ! на хромосоме II в непосредственной близости от локуса СИС28. Результаты тестов на аллелизм и на функциональную комплементацию мутации ягт5 геном СБС28, клонированным в составе кольцевой плазмиды, подтвердили, что згт5 является мутантной аллелью СОС28, и соответственно ее обозначали как сс1с28-5гт. Проведенный в данной работе анализ известных температуро-чувствительных аллелей сс/с25-73[К283(2] и сй?с25-У[Н128У] показал, что они имеют сходные с аллелью сс1с28-$гт фенотипические проявления, влияя на скорость размножения, гЬо'-мутагенез и радиочувствительность. Среди проанализированных мутаций мутация сс!с28-вгт имеет наиболее сильные фенотипические проявления при 30°С.

Ген СИС28 длиной 897 пн кодирует протеинкиназу с молекулярной массой 34 кДа, регулирующую прохождение клеточного цикла и имеющую высокую гомологию с циклин-зависимыми киназами (СОК) человека (МепёепЬаП е1 а1., 1998). Поскольку, в частности, при злокачественном перерождении клеток очень часто имеют место изменения активности или дерегуляция ингибиторов СБК, постольку структурно-функциональный анализ киназ важен для медицины.

Анализ нуклеотидной последовательности аллеля сс1с28-$гт выявил единственную замену глицина на серин в позиции 20 (020Б). Этот глицин локализован в консервативной последовательности ОхСххС20 в О-богатой петле, расположенной между 01- и р2-структурами (рис. 6).

1Л р| Ъ2 р2 ьз рз

НвСОКг МЕ№(}КУЕК1 СЕСТУСУУУКАЯЫК ЬТСЬ УУАЬККПШЭ 38

НзСОС2 МЕОУТК I ЕК1ОЕСТУСУУУКСЯНК ГГСО УУАМККШЬЕ 38

Брс<)с2 МЕЫУОКУЕК! СЕСТУОУУУКАЯНК ЬБОЯ IУАМККГЯЬЕ 38

БсСОС28 MSGELANYKRLEK.VGEGTYGVVYKALD1.RP СОСОКУУАЬККШЬЕ 45

I в

Рис. 6. Выравненные Ы-концевые фрагменты последовательности циклинзависимых киназ человека и дрожжей (НзСОК2, СОК2 человека; НзСБСг, СБС2 человека; 5рсс!с2, cdc2 £ ротЪе\ 8сСОС28, СВС2& Б. cerevisiae).

Мутация сс1с28-вгт представляет большой интерес, так как имеет многочисленные фенотипические проявления, что свидетельствует о значимости соответствующего глицина. Для анализа структурных изменений, к которым приводит замена 0208, использовали кристаллическую структуру киназы человека СОК2, проявляющую высокую гомологию с дрожжевой киназой (62%). Кристаллические решетки нескольких каталитических субъединиц киназ показали, что они имеют- схожую структуру.

Кристаллическая структура киназы человека CDK2 в составе различных комплексов CDK2/Mg2+-ATP (De Bondt et al., 1993) и СОК2/циклин A/ATP (Jeffrey et al., 1995) хорошо изучена и служит моделью киназ, в том числе и дрожжевой киназы Cdkl/Cdc28p.

Циклин-зависимые протеинкиназы CDK относятся к семейству серин-треониновых протеинкиназ. Фермент этого семейства осуществляет каталитическую передачу у-фосфата АТФ на серин или треонин в S/T-P-мотиве белковых субстратов. В клетке молекулы АТФ существуют преимущественно в форме комплексов с ионами Mg2+. В большей части ферментативных реакций, в которых АТФ играет роль донора, участвует активная форма АТФ, а именно комплекс М§2+-АТФ. Полная активация CDK обычно требует двух событий -связывания с циклинами и последующего фосфорилирования Т160 у CDK2 (Т169 у CDC28). Подавление активности происходит при связывании с белками ингибиторами (CKI) и ингибирующем фосфорилировании Т14 и Y15 у CDK2 (Т18 и Y19 у CDC28).

Для динамического моделирования структуры мутантного белка мы использовали структуру активного комплекса киназы pT160-CDK2/cyclin A/ATP-Mg1+ из базы данных PDB (1QMZ), у которого фосфорилирован Т160 киназной субъединицы. В комплекс входят также активная молекула АТФ, связанная с ионом Mg2+, фрагмент циклина (остатки 173-432) и пентамер субстрата (HHASPRK),- содержащий сайт фосфорилирования. Комплекс окружен 2287 молекулами воды.

На рис. 7 приведены результаты динамического моделирования немутантного (G16) и мутантного (S16) комплексов (G16-CDK2 соответствует G20-CDC28). Белковая молекула CDK2 состоит из одной полипептидной цепи (298 аминокислотных остатков), упакованной в два кулака: N-концевой (остатки 1-85 для CDK2), свернутый в р-лист, состоящий из 5 антипараллельных Р-нитей (Р1-Р5) и единственной большой спирали (al), и более крупный С-концевой (остатки 86-298 для CDK2), по преимуществу состоящий из a-спиралей. Мутация G16S локализована в N-конце киназы в линкерном участке между pi- и р2-структурами.

N-концевой кулак функционально важен и консервативен для всех известных киназ, он содержит регуляторный сайт фосфорилирования Y15, закрытый Т-петлей в неактивной форме киназы (de Bondt et al., 1993). АТФ располагается в щели между кулаками. N-концевой кулак участвует в связывании АТФ атомами главной цепи pi-структуры, амидами G-петли и КЗЗ в Р3-структуре (de Bondt et al., 1993). Мутация G16S вызывает сильную деформацию N-концевой G-петли, она удлиняет ее на 2,5 А. В результате происходит изменение ориентации АТФ, структуры всей киназной субъединицы, а также циклина. В результате расстояние между фосфорилируемым серином субстрата и у-фосфатом АТФ увеличилось на 3 А. Кроме того, сильно деформировалась поверхность узнавания циклином (спираль al, L4 и Т-петля). Изменилось положение структурных элементов киназы, отвечающих за связывание с регуляторным белком Ckslp.

G16

S16

Рис. 7. Схематическое изображение релаксированного 2 нс-комплекса рТ160-СВК2/циклин А/АТФ-Mg2*/субстрат. CDK2 (вверху, черная линия), Т-петля CDK2 (толстая линия, отмечен рТ160), G-петля (толстая короткая линия, отмечен Y15), циклин А (внизу, тонкая линия), АТФ (шары), субстрат (стержни)

Эти изменения, по-видимому, приводят к различным последствиям, в частности, влияют на киназную активность и регуляторное фосфорилирование, связывание с циклинами и субстратами. Известно, что замены глицинов в G-петле, в частности первого и второго глицина (GxGxxG) на аланин или серин, приводит к резкому снижению активности цАПК (Hemmer et al., 1997). В данной работе продемонстрировано значение третьего консервативного глицина. Данные МД-моделирования имеют предсказательную силу и могут быть проверены экспериментально.

4.2 Ген SRM8

Привязку гена SRM8 к хромосоме осуществляли с помощью анализа дисомиков. Ген SRM8 картирован вблизи центромеры на хромосоме X. Клонирование гена SRM8 осуществили, используя температуро-чувствительность аллеля srm8. С этой целью мутантный штамм srm8 трансформировали банком дрожжевой ДНК, сконструированном на основе бесцентромерной плазмиды YEp351 (2цт-оп LEU2). Среди трансформированных клонов, утративших температуро-чувствительность, идентифицировали варианты с морфологически нормальными круглыми клетками, образующими звездчатые колонии. Клон, комплементирующий мутацию srm8, отобрали в результате анализа шести тысяч индивидуальных трансформантов.

Мутацию srm8 комплементировал фрагмент размером 3,5 тпн. Анализ нуклеотидной последовательности фрагмента выявил его локализацию на хромосоме X вблизи центромерного локуса в полном соответствии с данными генетического анализа и наличие двух урезанных открытых рамок считывания. С помощью ПЦР фрагмент был достроен до полноразмерной величины рамки YJL077c и получен фрагмент, полностью утративший рамку. Нулевой мутант по открытой рамке считывания YJL077c фенотипически не отличался от мутанта srm8 и оказался ему аллелен: скрещиваясь с ним, он давал диплоиды, характеризующиеся, как и диплоиды srm8/srm8, существенно сниженной скоростью деления, специфическими морфологическими изменениями клеток, утратой способности спорулировать. Таким образом, гену SRM8 соответствовала малоизученная на тот момент времени открытая рамка считывания YJL077C длиной 3566 пн, кодирующая белок с молекулярной массой 128,5 кДа. Согласно базе данных SGD для этого гена принято обозначение NET1. Показано, что он кодирует белок ядрышка.

Секвенирование нуклеотидной последовательности мутантного аллеля srm8, обозначенного netl-srm, выявило вставку АА, приводящую к сдвигу рамки считывания. В результате мутации неизмененным оказался фрагмент белка длиной 287 аминокислотных остатков, терминирующий кодон приводит к образованию усеченного белка длиной 300 аминокислотных остатков. По данным, полученным двумя группами исследователей, белок Netlp имеет сайты связывания с белком Cdcl4p (91-341 ао) и Sir2p (566-801 ао) (Cuperus et al., 2000; Traverso et al., 2001). Мутация srm8 локализована в сайте связывания с белком Cdcl4p, и, по-видимому, нарушает связывание с обоими белками (сайт связывания с Sir2p в укороченном мутантном белке просто отсутствует). Клонированный нами фрагмент кодирует часть белка длиной 935 аминокислотных остатков и содержит оба этих сайта.

4.3 Ген SRM12

Исходно ген SRM12 клонирован в составе фрагмента протяженностью 11,6 тпн с помощью геномного банка дрожжей, сконструированного на основе центромерной плазмиды р366 (CEN3 ARS1 LEU2). Последующее субклонирование позволило показать идентичность гена SRM12 гену SUP 110 длиной 1464 пн, локализованному на хромосоме XVI. Плазмида с геном SUP] 10 комплементировала мутацию srml2, а штамм дрожжей с инактивированным геном SUP110::LEU2 при скрещивании с мутантом srml2 образовывал медленно размножающиеся и не способные спорулировать диплоиды, фенотипически неотличимые от гомозигот srml2/srml2. Перечисленные данные свидетельствуют об идентичности SRM12 гену SUP110. Этот ген обозначается в базе данных SGD как HFI1, кодирует белок с молекулярной массой 54,5 кДа и входит в состав транскрипционных коактиваторов, обладающих гистонацетилтрансферазной активностью (Horiuchi et al., 1997).

Секвенирование аллеля srml2, обозначенного hfil-srm, выявило 2 замены нуклеотидных пар: СТТА —> ССТТ. Замена U на С в лейциновом кодоне (CUU)

приводит к появлению пролинового кодона (CCU), а замена А на U приводит к появлению «бессмысленной» мутации (UAA) и к преждевременной терминации транскрипции. Таким образом, мутант srml2 несет двойную мутацию - миссенс плюс нонсенс (L196P Stop), нарушающую синтез белка Hfilp.

ГЛАВА 5. МОДИФИКАЦИЯ ГЕНАМИ ЯИМ ЧУВСТВИТЕЛЬНОСТИ К у-ИЗЛУЧЕНИЮ И СНЕСКРОШТ-КОНТРОЛЯ

5.1 Чувствительность мутантов ьгт к у-излучению

Нами показано участие идентифицированных генов БЯМ в определении уровня чувствительности к ДНК-тропным агентам (для генов 811М5/СОС28, 8ЯМ8/МЕТ1 и ЕКМ12/НР11 впервые). Для оценки влияния рецессивной мутации ягт на чувствительность клеток к летальному действию ионизирующей радиации сопоставляли данные для двух групп близкородственных штаммов, гомо- и гетерозиготных по данной мутации «г/я. Диплоидные штаммы вгт1, вгтЗ, 8гт4, згт15 и вгтП не отличались по радиочувствительности от клеток дикого типа. Мутанты $гт5, згт8 и вгт12 более чувствительны к летальному действию у-излучения, чем немутантный штамм (рис. 8).

Доза, Гр

Рис. 8. Кривые выживания после у-облучения

диплоидных штаммов

Мутация $гт2 приводила к заметному повышению радиорезистентности диплоидных клеток. Полудоминантный характер мутации 5тт2 проявился и в отношении радиочувствительности. Мутанты $гт21БЯМ2 менее резистентны, чем гомозиготные мутанты вгт2/$гт2, но более резистентны, чем диплоиды БШ2тМ2 (рис. 9).

0,1

5Ö0 1000 1500 2Й0 Доза, Гр

0,1

500 1000 1500 2000

Доза, Гр

Рис. 9. Кривые выживания компетентных по дыханию и дыхательно-недостаточных диплоидов после у-облучения

Получены сведения относительно участия ядерно-митохондриальных взаимодействий в определении радиочувствительности. Из рис. 9 видно, что элиминация митохондриального генома приводит к повышению радиочувствительности штаммов БЯМ^/БКМ' и згт1Агт1. Элиминация митохондриального генома у радиорезистентного мутанта $гт2 приводит к исчезновению радиорезистентности. Клетки вгт2 гко" даже более чувствительны к у-излучению, по сравнению с клетками БЯМ* гко". По-видимому, для повышенной радиорезистентности, помимо мутации агт2, требуется наличие функционального митохондриального генома.

5.2 Взаимодействие генов БКМ с генами репарации и сЬескрот^

Известны две эпистатические группы генов, контролирующих чувствительность клеток дрожжей к ионизирующей радиации и опосредующих пострадиационную репарацию ДНК. Мутации генов, относящихся к одной и той же группе, эпистатичны или гипостатичны по отношению друг к другу. Упомянутые две группы обозначены RAD52 и RAD6 по наиболее изученным генам из каждой группы. Гены группы RAD52 ответственны за репарацию основной доли у-индуцированных повреждений. Мутации генов группы RAD6 нарушают репарацию меньшей, хотя и существенной, части летальных повреждений ДНК.

контроля

Для анализа принадлежности генов БИМ к известным эпистатическим группам генов радиочувствительности сконструировали серию штаммов. На рис. 10 представлены кривые выживания двойных сс1с28-$гт гас1б-1, сс1с28-бггп гси!52-1 и одиночных сс!с28-згт, гас!б-1, гас152-1 мутантов. Видно, что двойные мутанты более у-чувствительны, чем любой из одиночных мутантов. Скорее всего, действие пар мутаций сс1с28-$гт, гас16-1 и сс1с28-.';гт, гас152-1 на у-чувствительность у двойных мутантов имеет синергический характер.

100

ю

Ж '1ч

ссЬгв-ягт'

\ '¿X

V \ гасЮ-1

Т\

V * АШ:

Тч

Т

сс!с28-згтгас16-1 '

Дэза,Гр

ю 80 120 160 Два,Гр

Рис. 10. Кривые выживания диплоидных штаммов с различными сочетаниями мутаций сс1с28-игт, гас16-1 и гас152-1 после у-облучения

Таким образом, ген СБС28 нельзя отнести к группам эпистаза НАйб или ЯА052. Влияние мутации с(1с28-зпп на радиочувствительность, по-видимому, не сводится к специфическому нарушению одного из соответствующих путей репарации. Влияние этой мутации на спонтанную и индуцированную рекомбинацию предполагает причастность гена СОС28 к рекомбинационной репарации. Поскольку наблюдается синергизм при взаимодействии мутаций сс!с28-згт и гас152-1, по-видимому, ген СБС28 принимает участие также в минорном пути репарации у-индуцированных повреждений ДНК. Мутации згт8/пе11-вгт и вгт12Лф1-8гт влияют на спонтанный и индуцированный мутагенез, можно предположить участие генов ИЕТ1 и НЕП в мутагенном пути репарации.

Повреждения ДНК вызывают в клетке серию ответных реакций, включающих остановку клеточного цикла, индукцию программ транскрипции генов репарации и модификацию/активацию факторов репликации и репарации. Остановку цикла клеточного деления при повреждении ДНК (сЬескро1ги-контроль) опосредуют множественные гены. У дрожжей &

cerevisiae к таким генам относятся RAD9, RAD] 7, RAD24 и RAD53. Известно, что мутации в генах checkpoint-контроля приводят к умеренному повышению радиочувствительности клеток и снижению их генетической стабильности. Поскольку мутанты srm проявляют умеренную радиочувствительность и сниженную стабильность хромосом, представляло интерес исследовать их участие в checkpoint-контроле.

Ввиду разветвленности путей checkpoint-контроля и контроля радиочувствительности вначале предстояло исследовать взаимодействие между checkpoint-генами, проявляющими чувствительность к у-излучению. В литературе имеются многочисленные данные, в основном касающиеся взаимодействия генов при индукции остановки деления под действием УФ-света. Нам известна единственная работа по изучению влияния радиации на остановку в S-фазе у checkpoint-мутантов (King et al., 2003). Мы изучали радиочувствительность у диплоидных штаммов в стационарной фазе клеточного цикла.

Результаты изучения взаимодействия генов RAD9, RAD 17 и RAD24 показали, что чувствительность двойных мутантов rad9A radl7A и radl7A rad24A не превосходит чувствительности одиночных мутантов и существенно ниже теоретической аддитивной. Таким образом, мутация гена RAD17 взаимодействует эпистатически с мутациями генов RAD9 и RAD24 в отношении у-чувствительности. По данным литературы в отношении чувствительности к УФ-свету мутация гена RAD 17 взаимодействует эпистатически с мутацией гена RAD24, но аддитивно с мутацией гена RAD9 (Lydall, Weinert, 1995).

10

0,01

WT

\ гас!24д

4VNî •• » ▼

\ rad9A гас!24л -. гас!9д

ADD

О 150 300 450 600 Доза,Гр

Рис. п. Кривые выживания диплоидных штаммов после у-облучения

Мутант более чувствителен к у-излучению, чем мутант гаЛ24А, а

двойной мутант занимает промежуточное положение (рис. 11). Таким образом, гены ЯА09 и ЯА024 относятся к одной эпистатической группе генов, по-видимому, к одному пути, определяющему радиочувствительность дрожжевых клеток.

Анализ взаимодействия мутации rad53 с мутациями rad9A, radl7A и rad24A показал, что чувствительность двойных мутантов близка к чувствительности одиночных мутантов, что свидетельствует об эпистатическом взаимодействии мутации rad53 с мутациями rad9A, radl7A и rad24A в отношении действия у-излучения (рис. 12, а), что не противоречит данным литературы, полученным при анализе других свойств мутантов (Navas et al., 1996; de la Torre-Ruiz et al., 1998). Таким образом, гены RAD9, RAD 17, RAD24 и RAD53 входят в одну эпистатическую группу, определяющую чувствительность к у-излучению .

2

Доза, Гр Дзза, Д*Лл

Рис. 12. Кривые выживания диплоидных штаммов разного генотипа

после у- (а) и УФ-облучения (б)

Однако при УФ-облучении этих же диплоидных культур в стационарной фазе роста (рис. 12, б) чувствительность двойного мутанта rad53 rad24A значительно выше чувствительности каждого из одиночных мутантов rad53 и rad24A. В данном случае можно говорить об аддитивном взаимодействии мутаций генов RAD24 и RAD53 в отношении летального действия УФ-света. Таким образом, взаимодействие checkpoint-генов в отношении радиочувствительности зависит от типа повреждения ДНК и пути, определяющие чувствительность клеток к у-излучению или УФ-свету, различаются.

Для анализа взаимодействия между генами SRM и checkpoint-генами RAD9, RAD17, RAD24 и RAD53 были сконструированы группы близкородственных диплоидных одиночных, двойных и тройных мутантов. После у-облучения диплоидных стационарных культур двойные мутанты cdc28-srm rad9A, cdc28-srm rad 17А и cdc28-srm rad24A проявляли ту же радиочувствительность, что и наиболее чувствительный из одиночных

мутантов (данные не приведены). Эффекты мутаций cdc28-srm и rad53 аддитивны (рис. 13). Таким образом, можно говорить об эпистатическом взаимодействии между мутацией cdc28-srm, с одной стороны, и мутациями rad9A, radl 7А и rad24A с другой стороны, т.е. киназа CDC28 функционирует на одном пути с генами RAD9, RAD17 и RAD24. Однако протеинкиназы CDC28 и RAD53 контролируют разные пути, определяющие радиочувствительность клеток.

0,01 •

cdc28-srrh саа53 ADD

О 100 200 300 400 500 600

Доза, Гр

Рис. 13. Кривые выживания диплоидных штаммов после у-облучения

У двойных мутантов cdc28-srm rad53 у-чувствительность выше, чем у каждого из соответствующих одиночных мутантов, и выше, чем у двойных мутантов rad9A cdc28-srm и rad9A radS3. Можно предположить существование /MDP-независимого регуляторного механизма, блокируемого при одновременном повреждении киназ CDC28 и RAD53. Тройной мутант cdc28-srm rad53 rad52-l не более чувствителен, чем двойной мутант cdc28-srm rad52-1 (рис. 14).

Анализ взаимодействия гена SRM8/NET1 с генами RAD9, RAD17, RAD24 и RAD53 показал, что радиочувствительность двойных мутантов srm8 rad9A и srm8 rad53 совпадает с радиочувствительностью одиночных мутантов. Радиочувствительность двойных мутантов srm8 radl7A и s г m 8 rad24A выше радиочувствительности одиночных мутантов и совпадает с теоретической аддитивной кривой. Следовательно, ген NET1 и гены RAD] 7, RAD24 контролируют различные пути, определяющие радиочувствительность клеток, но ген SRM8 и гены RAD9, RAD53 контролируют тот же путь, определяющий радиочувствительность клеток. Ген HFI1/SRM12 также взаимодействует эпистатически с геном RAD9, но аддитивно с геном RAD24. По-видимому, гены

ИЕТ1 и НР11 функционируют на одном пути контроля радиочувствительности с геном КА09, но на разных с геном ЯА024.

Доза, Гр

Рис. 14. Кривые выживания после у-облучения

диплоидных одиночных

(сс1с28-ягт, гас!52), двойных (гас152 сс!с28-$гт) и тройных (гас!52 гас!53 сс1с28-$гт) мутантов. Для сравнения дана кривая, ожидаемая при аддитивном влиянии мутаций сс1с28-.чгт и гас152 на радиочувствительность клеток

Таким образом, эффекты мутаций генов RAD 17, RAD24, RAD53, CDC28, NET1, HFI1 эпистатичны эффекту мутации гена RAD9.

5.3 Участие генов SRM в checkpoint-контроле

Эпистатический характер взаимодействия генов SRM с checkpoint-гвнами свидетельствует о возможном участии генов SRM в checkpoint-рвгуляции. Представляло интерес непосредственно изучить участие генов SRM в остановке клеточного цикла, вызванной повреждениями ДНК. Целостность генома контролируется на нескольких стадиях клеточного цикла, в частности, при переходе из фазы Gl в фазу S, в процессе синтеза ДНК, при переходе из фазы G2 в фазу М и при выходе из митоза.

Влияние мутаций srm на выход клеток из фаз G0 и Gl

Остановку в G1/S под действием УФ-света изучали у клеток дикого типа и мутантов srm5, srm8 и srml2, для сравнения использовали мутацию rad9A в хорошо изученом checkpoint-гене. Экспоненциально растущие культуры клеток типа спаривания а синхронизовали в фазе Gl с помощью а-фактора. Синхронизованные культуры облучали УФ-светом на поверхности чашки. В этих условиях выживаемость клеток дикого типа при дозе облучения 33,6 Дж/м2 составляла 44%, для мутантов srm5, srm8, srml2, rad9A - 27%, 34%, 38%, 2%, соответственно. После облучения клетки отмывали от а-фактора, ресуспензировали в свежей среде YPD и инкубировали при 30°С в условиях интенсивной аэрации. Критерием выхода из фазы Gl и вступления клеток в фазу S служило появление почек. По данным литературы возобновление клеточного цикла после прекращения действия а-фактора у облученных клеток

дикого типа значительно замедлено, а у мутанта rad9A эта задержка снижена (Siede, Friedberg, 1990; Siede et al., 1993; 1994; Longhese et al., 1996).

Анализ выхода клеток из фазы Gl у облученных и необлученных культур показал, что необлученные клетки дикого типа после синхронизации а-фактором начинали делиться спустя примерно 20 мин, а при облучении в дозе 33,6 Дж/м2 примерно через 30 мин. Таким образом, при облучении УФ-светом задержка в фазе Gl составляла около 10 мин. У мутанта rad9A наблюдалась задержка порядка 5 мин. Для мутантов srm5, srm8 и srml2 облученные и необлученные клетки начинают делиться практически одновременно, хотя облученные культуры делятся медленнее.

Проводили также мониторинг почкования при облучении стационарных культур (G0). Для этого растили культуры в жидкой питательной среде в течение 36-48 час в условиях интенсивной аэрации. Необлученные культуры начинали делиться спустя примерно 50 мин. Мутации srm8 и srml2 сильно увеличивали время генерации и мутанты начинали делиться значительно позже. Облучение стационарных культур дикого типа вызывало длительную задержку (— 50 мин), у мутантов rad9A, srm5 и srm8 задержка была меньше (~ 20 мин).

Таким образом, мутации srm5, srm8 и srml2 полностью или частичнго элиминируют задержку деления в фазах G0 и Gl перед вступлением в фазу S, вызванную индуцированными УФ-светом повреждениями ДНК.

Участие генов SRM8 и SRM12 в остановке деления в фазе S под

действием гидроксимочевины

Ингибирование гидроксимочевиной (HU) рибонуклеотидредуктазы приводит к неспособности синтезировать дезоксирибонуклеотиды и блоку синтеза ДНК. Клетки дикого типа в присутствии HU обратимо останавливают деление, активируя S-checkpoint. Мутанты по S-checkpoint проявляют чувствительность к HU, поскольку неспособность задерживать деление приводит к митозу в условиях незавершенного синтеза ДНК.

Рис. 15. Отпечатки клеток разного генотипа (1ряд-SRM2 ряд- srml, 3 ряд-srm5, 4 ряд-srm8, 5 ряд-srml2, 6 ряд- rad53, 7 ряд-rad24A, 8 ряд- radl7A, . 9 ряд- rad9A) на чашки со средами БС+0.2М HU и БС

Б00.2М HU БС

Для определения чувствительности клеток к HU использовали качественный тест. Помимо мутаций srm для сравнения анализировали мутации

в известных checkpoint-генах rad9A, radl7A, rad24A и rad53. Результаты тестирования гаплоидных штаммов разного генотипа (SRAf, srml, srm5, srm8, srml2, rad53, rad24A, radl7A, rad9A) приведены на рис. 15. Видно, что в условиях роста на среде с 0.2М HU мутации srm8 и srml2 влияли на чувствительность к HU. В соответствии с чувствительностью к HU можно выстроить ряд по мере возрастания чувствительности к ингибирующему действию HU:

SRM*<srm5<rad9A<srml<rad24A<srm8<radl7A<srml2<rad53. Генетический анализ подтвердил, что именно мутации srm8 и srml2, а не какие-либо сопутствующие генетические, факторы, определяют повышенную чувствительность клеток к HU. Таким образом, гены SRM8 и SRM12 принимают участие в активации S-checkpoint.

Ген CDC28 необходим для остановки клеточного цикла в фазе G2 при повреждении ДНК у мутантов cdc9-l и cdc6-l при непермиссивной температуре

У S. cerevisiae известны температуро-чувствительные мутации cdc, вызывающие при непермиссивной температуре остановку деления клеток в фазе G2. Соответствующие гены кодируют продукты, участвующие в метаболизме ДНК, например, ДНК-лигазу (CDC9), компонент пререпликативного комплекса (CDC6), белок, участвующий в репликации теломер (CDC13). Остановка клеточного цикла у этих температуро-чувствительных мутантов cdc при непермиссивной температуре зависит от checkpoint-генов (Weinert et al., 1994). Так клетки мутанта cdc9, кодирующего ДНК-лигазу, останавливаются в фазе G2 с завершенным синтезом ДНК, но с несшитыми фрагментами Оказаки (Johnston, Nasmyth, 1978). Временная инактивация ДНК-лигазы не летальна для большинства клеток, мутантные клетки cdc9 сохраняют жизнеспособность после краткой инкубации при рестриктной температуре. Однако в отсутствие RAD9 дефектные по ДНК-лигазе клетки гибнут гораздо быстрее при рестриктной температуре, поскольку вступают в митоз с поврежденными молекулами ДНК.

Для анализа функционирования G2-checkpoint у мутантов srm мы использовали две cdc мутации — cdc9-1 и cdc6-l. Одиночные и двойные мутанты, выросшие при 28°С, ограниченное время содержали в условиях рестриктной температуры (37°С), а затем рассевали на чашки, которые инкубировали при пермиссивной температуре (28"С). Мутация cdc28-srm не блокировала рост клеток при 37°С (происходило размножение клеток, кривая роста не приведена), но существенно усиливала термоинактивацию клеток cdc9-l и cdc6-l в условиях культивирования при повышенной температуре (рис. 16). Таким образом, ген CDC28 необходим для остановки клеточного цикла в фазе G2 при повреждениях ДНК, образующихся в результате нарушения репликации ДНК.

-■—а!с9-1 • - «Зс9-1 С<1С28-5гш

100Ш"

—С£к;6-1 —•— ак6-1 СС1С28-5гш

О 4 8 12 . 16 20 24

Время инкубации (37°С), час

0 2 4 6 8 Время инкубирования (37°С), час

Рис. 16. Кинетика гибели клеток разного генотипа при температуре 37°С

Остановка деления клеток в фазе при повреждении ДНК под

действием у-излучения

Известно, что у-повреждения ДНК вызывают длительную остановку клеточного цикла в фазе 02. Мутации $гт5, $гт8 и вгт12 повышают чувствительность к у-излучению и можно предположить их участие в регуляции сЬекрот!:. У мутантов згт5, ьгтв и $гт12 исследовали задержку клеточного цикла после у-облучения. Для этого облучали гаплоидные асинхронные культуры разного генотипа и анализировали кинетику роста микроколоний. Показано, что необлученные клетки дикого типа через 2 час в основном уже поделились и образуют колонии из 4 клеток, через 5 час прошла еще одна генерация. Через 10 час и 24 час доля неподелившихся клеток совпадает. Через 2 и 5 час после облучения в дозе 20 Гр у заметной доли клеток наблюдается задержка деления. У мутанта гас19А задержка почти не наблюдается, через 2 час картина практически как у необлученных клеток и только через 5 час наблюдается некоторая задержка. Мутация згт5 не влияла заметным образом на задержку деления после облучения. Для мутаций згт8 и ягтП в первые два часа картина такая же, как и для необлученных клеток. Однако надо иметь в виду, что время генерации у мутантов ¡гт8 и згт12 увеличено. На 10 часах наблюдается значительное число микроколонии размером до 9 клеток, в то время как у клеток дикого типа уже все колонии размером больше 15 клеток. Задержка деления наблюдается на 5 и 10 часах. Увеличение дозы облучения до 40 Гр не приводит к увеличению задержки деления.

Для количественной характеристики остановки клеточного цикла использовали отношение доли остановившихся клеток (микроколонии, прервавшие свой рост на стадии клетки с большой почкой, либо две соседние клетки с большими почками) к доле погибших клеток. Для клеток дикого типа

этот параметр соответствует 1.0, потому что практически все клетки с нерепарируемыми повреждениями ДНК гибнут и останавливаются в фазе G2. Гаплоидные клетки в фазе G1 или в стадии постанафазы при у-облучении не могут репарировать двунитевые разрывы, останавливаются в последующей фазе G2 и гибнут, при этом они представлены клетками с большой почкой или двумя соседними клетками с большими почками, соответственно. Клетки дикого типа, которые могут репарировать двунитевые разрывы (S и С2-клетки) образуют большие микроколонии, которые не учитываются. Клетки checkpoint-мутантов, которые гибнут под действием у-облучения, обычно не останавливаются немедленно, чаще они продолжают делиться в течение нескольких генераций. Поэтому у нормальных по checkpoint-контролю штаммов отношение числа арестованных к числу нежизнеспособным клеток составляет величину >0.8, а у checkpoint-мутантов «1.0 (обычно <0.3) (Weinert et al., 1994). Гибель облученных клеток приписывается нерепарируемым повреждениям ДНК, хотя возможно обусловлена не только дефектом ареста. Метрическую характеристику остановки клеточного цикла определяли как долю микроколоний, состоящих из 2 (1 клетка с большой почкой) или 4 (2 клетки с большими почками) спустя 10 часов после облучения и рассева. Летальность определяли как долю микроколоний спустя 24 часа после облучения. Анализ показал, что величина метрической характеристики выше 0.74 для всех мутантов, а для мутанта rad9A составляет величину 0.16. Таким образом, только мутация rad9A влияла на остановку клеточного цикла в G2 после у-облучения, у мутантов srm5, srm8 и srml2 этим методом не удалось выявить нарушения checkpoint-контроля в фазе G2.

Влияние checkpoint-генов на мутабилъность митохондриального генома

Нами было показано, что гены CDC28, NET1, HFI1 опосредуют поддержание различных генетических структур, таких как природные хромосомы и рекомбинантные структуры. Мутации в этих генах приводят к повышению частоты утраты хромосом, однако в отношении митохондриального генома наблюдается стабилизация, т. е. снижение частоты возникновения митохондриальных делеционных мутантов petite.

Поскольку мутации в генах CDC28, NET1, HFI1 влияют на checkpoint-контроль, представляло интерес выяснить влияют ли мутации в других checkpoint-генах на стабильность митохондриального генома. Для этого сконструировали гетерозиготы по checkpoint-мутациям rad9A, radl7A, rad24A, rad53 и отобрали по четыре тетрады постмейотических потомков для каждой мутации. В культурах сегрегантов определяли частоту мутантов petite и усредняли по группам с одинаковым генотипом.

Как видно из таблицы 9 все проанализированные мутации rad9A, radl7A, ' rad24À и rad53 повышают частоту мутантов petite. Таким образом, снижение мутабильности митохондриального генома у мутантов по генам CDC28, NET1, HFI1, по-видимому, не вызвано нарушением checkpoint-регуляции per ser.

Таблица 9. Частота спонтанных мутантов petite у гаплоидных сегрегантов

Генотип Частота petite, %

RAD9 39.5±4.9

rad9A 55.1±8.8

RAD17 23.5±5.9

гad 17А 43.1±7.8

RAD24 19.8±6.8

rad24A 23.2±4.9

RAD53 22.2±3.4

rad53 32.2±6.6

ОБСУЖДЕНИЕ

В настоящей работе с помощью специально разработанного селективного метода получена коллекция ядерных генных мутаций srm, модулирующих надежность наследования как ядерного, так и митохондриального генетического материала клетками дрожжей Saccharomyces cerevisiae при их митотическом размножении. Некоторые из полученных мутаций плейотропны и вызывают у клеток морфологические изменения, нарушение деления, снижение скорости размножения и жизнеспособности.

Три мутации, которые удалось картировать и клонировать, локализованы в регуляторных генах, а именно, гены SRM5, SRM8 и SRM12 аллельны генам CDC28, NET1 и HFI1, соответственно. Известно, что протеинкиназа CDC28 играет центральную роль в регуляции клеточного цикла. Белок Netlp входит в состав RENT-комплекса и регулирует выход из митоза и локализацию в ядрышке фосфатазы CdcMp и деацетилазы Sir2p. Adalp/Hfllp является компонентом транскрипционных коактиваторов (например, SAGA), обладающих гистонацетилтрансферазной Ссп5р-активностью, и участвует в экспрессии генов и глобальном ацетилировании гистонов по всему геному дрожжей (Imoberdorf et al., 2006).

Поскольку мутация в гене NET1, но не в гене CDCJ4, приводит к повышению скорости потери хромосом, по-видимому, обеспечение точной сегрегации хромосом не связано с регуляцией выхода из митоза (Shou, Deshaies, 2002), а связано с регуляцией локализации деацетилазы. Снижение митртической стабильности ARS-содержащих рекомбинантных структур у мутантов srm показывает, что действие продуктов этих генов на поддержание генетических структур может быть опосредовано ARS-элементами и обусловлено влиянием на репликацию ДНК. Из данных литературы известно, что субстратами киназы CDC28 являются белки пререпликативного комплекса и инициирующие репликацию белки (Ubersax et al., 2003).

Нами впервые показано, что мутации в генах CDC28, NET1 и HFI1 сопровождаются не только падением митотической стабильности природных и рекомбинантных ядерных генетических структур, но и повышением

чувствительности к летальному действию у-излучения. Актуальность проводимых исследований определяется открытием в конце 80-ых годов у дрожжей S. cerevisiae регуляторного механизма, контролирующего прохождение клеточного цикла, репликацию, транскрипцию и репарацию, так называемого checkpoint-контроля прохождения клеточного цикла (Weinert, Hartwell, 1988). При наличии эндогенных или экзогенных повреждений ДНК checkpoint-контроль осуществляет остановку клеточного цикла, индукцию транскрипции некоторых генов и активацию репарационных процессов. Ионизирующая радиация вызывает двунитевые разрывы ДНК (ДНР ДНК). ДНР ДНК активируют репарацию и checkpoint-остановку. У дрожжей за устранение ДНР ДНК отвечают главным образом А4£>52-зависимая рекомбинационная репарация HR (homolog recombination). Соединение негомологичных концов NHEJ (non-homolog end joining) и индуцированная разрывами репликация BIR (break-induced replication) используются как альтернативные пути. После исправления повреждения клетка возобновляет деление. Последствиями нарушений checkpoint-регуляции клеточного деления в ответ на повреждения ДНК во многих случаях являются снижение точности митотической передачи компонентов наследственного аппарата и повышение чувствительности клеток к летальному действию ДНК-тропных агентов. Значительный интерес исследователей к рассматриваемому регуляторному механизму связан, в частности, с широко распространившимися представлениями о тесной связи между нарушениями checkpoint-контроля и малигнизацией клеток. Несмотря на значительные успехи последних лет в этих исследованиях многие конкретные детали остаются неясными.

Проведенный нами анализ радиочувствительности мутантов показал, что мутации checkpoint-генов RAD9, RAD17, RAD24 и RAD53 попадают в одну эпистатическую группу, в отношении у-чувствительности при облучении диплоидных культур в стационарной фазе роста. Эпистатический эффект мутаций генов RAD9 и RAD24 наблюдался также в случае процессирования онДНК у мутанта cdc!3-l (Lydall, Weinert, 1995) и в отношении выживаемости клеток при индукции нуклеазой одиночного ДНР ДНК (Aylon, Kupiec, 2003). Однако имеются многочисленные данные, указывающие на то, что при повреждении ДНК мутации генов RAD9 и RAD24 характеризуются аддитивностью эффектов в отношении задержки клеточного цикла и активации транскрипции индуцибельных генов (de la Torre et al., 1998; Lydall, Weinert, 1995). Таким образом, взаимодействие checkpoint-генов в определении уровня чувствительности к у-излучению отличается от их взаимодействия в checkpoint-контроле и свидетельствует о независимой от checkpoint-контроля роли checkpoint-генов в определении уровня радиочувствительности клеток. Наши предположения в дальнейшем получили потверждение. Было показано, что гены RAD9, RAD24, RÄD17, RAD53 необходимы для эффективной работы минорного пути репарации NHEJ, но в отношении репарации NHEJ мутации генов RAD9 и RAD24 проявляют аддитивность (de la Torre, Lowndes, 2000).

В отношении радиочувствительности мутация гена CDC28 взаимодействует гипостатически с мутациями checkpoint-генов RAD9, RADI 7 и

RAD24, и аддитивно с мутацией в гене RAD53. У двойных мутантов cdc28-srm rad53 у-чувствительность выше, чем у каждого из соответствующих одиночных мутантов, и выше, чем у двойных мутантов rad9A cdc28-srm и rad9A rad53. Можно предположить существование А4£>9-независимого механизма контроля радиочувствительности, блокируемого при одновременном повреждении киназ CDC28 и RAD53.

Полученные нами данные о влиянии киназы CDC28 на спонтанную и индуцированную рекомбинацию указывают, что киназа CDC28, возможно, модулирует рекомбинационную репарацию. Влияние мутации cdc28-srm на радиочувствительность клеток менее выражено по сравнению с мутацией rad52. Однако ее введение в генотип мутанта rad52, у которого нарушена рекомбинационная репарация, вызывает дальнейшее повышение радиочувствительности клеток. По-видимому, киназа принимает участие также в минорном пути репарации ДНР ДНК и/или в checkpoint-контроле. Действительно, нами впервые показано модулирование различных механизмов checkpoint-контроля мутацией cdc28-srm. У клеток cdc28-srm, сравнительно с клетками CDC28, наблюдается уменьшение времени задержки в фазах GO или G1 при УФ-облучении синхронизованных культур и снижение эффективности ареста деления в фазе G2 у репликативных мутантов cdc9-l и cdc6-l в условиях рестриктной температуры. Мутация cdc28-srm не влияет на арест в фазе S под действием HU.

Позднее другими исследователями было подтверждено участие киназы CDC28 в рекомбинационной репарации и активации ДНР ДНК checkpoint-контроля (Ira et al., 2004). Киназа CDC28 необходима для протяженной деградации концов ДНР ДНК, осуществляемой MRX-комплексом, и участвует в инициации checkpoint-контроля, активируя Мес1р-зависимую остановку. Предполагается, что киназа CDC28 фосфорилирует MRX-комплекс и возможно другие факторы, необходимые для рекомбинации и репарации, включая Xrs2p, IIP A, Srs2p (Ubersax et al., 2003) и метилазу Dotlp, которая метилирует Lys79-НЗ, необходимый для репарации у-повреждений (Game et al, 2005). В фазе G2 на фоне высокой активности протеинкиназы CDC28 и эффективной деградации концов ДНР ДНК могут репарироваться путем HR. В фазе G1 репарация осуществляется путем NHEJ. Кроме того, CDC28, по-видимому, участвует в BIR. С использованием дигибридной системы показано взаимодействие между С1Ь2 и белком Mus81p, участвующим в BIR-репарации (Uetz Р et al. 2000). Ингибирование киназной активности CDC28 не влияет на активацию checkpoint-контроля в фазе S при обработке HU (Liberi et al. 2000), в результате которой возникают участки онДНК в застрявших репликативных вилках.

Помимо активации checkpoint-контроля киназа CDC28 участвует на финальных этапах регуляции остановки клеточного цикла. Для выхода из митоза и завершения клеточного цикла требуется инактивация киназы CDC28/CLB2. При остановке клеточного цикла в фазе G2/M киназа RAD53 поддерживает высокую активность киназы CDC28 через ингибирование киназы CDC5, которая необходима для деградации циклинов и выхода из митоза (Sanchez et al., 1999). Таким образом, CDC28 и RAD53 принадлежат к одной

ветви checkpoint-пути, но по нашим данным к разным ветвям, контролирующим радиочувствительность клеток. По-видимому, влияние этих генов на радиочувствительность не исчерпывается нарушениями checkpoint-контроля.

Нами впервые показано участие генов NET1 и HFI1 в определении уровня радиочувствительности, а также в различных механизмах checkpoint-контроля -G0/G1- (NET/), G1/S- (NETJ, HFI1), S- (NETJ, HFI1) checkpoints. В отношении радиочувствительности мутация гена NET1/SRM8 взаимодействует эпистатически с мутацией гена RAD9, но аддитивно с мутациями генов RAD17, RAD24 и RAD53. Мутация гена HF11/SRM12 также взаимодействует эпистатически с мутацией гена RAD9, но аддитивно с мутацией гена RAD24. По-видимому, гены NET1/SRM8 и HFI1/SRM12 функционируют на одном пути с геном RAD9, но на разных с геном RAD24.

Таким образом, в отношении у-чувствительности клеток мутация rad9A эпистатична по отношению к каждой из мутаций rad24A, radl7A, rad53, cdc28-srm, netl-srm, hfil-srm, и можно полагать, что соответствующие гены попадают в одну эпистатическую группу. Однако на фоне нормального аллеля RAD9 эффекты некоторых парных сочетаний упомянутых мутаций могут быть, по меньшей мере, частично аддитивны, что свидетельствует о разветвленности путей контроля у-чувствительности клеток.

Представляется вероятным, что регуляторная роль наиболее изученных нами генов SRM опосредуется частично через модификацию нуклеосомной структуры хромосом. В процессе репарации и checkpoint-контроля происходит ремоделирование и модификация нуклеосом. В клетках дрожжей к ДНР ДНК специфически доставляется НАТ-комплекс NuA4. Было показано, что ацетилирование хвостов гистона Н4 необходимо для двух путей репарации ДНК - NHEJ и BIR (Bird et al., 2002). Показана модификация гистона Н4 комплексами HAT-NuA4 (Megee et al., 1990; 1995; Clarke et al., 1999) и гистондеацетилтрансферазы (HDAC) Sin3p/Rpd3p в Л/Ш9-зависимом G2/M checkpoint-пути (Scott, Pion, 2003). Кроме того, HDAC-комплекс Sin3p/Rpd3p регулирует время репликации поздних orí и участвует в intra S-checkpoint контроле (Aparicio et al., 2004). Полученные нами данные указывают на возможность участия НАТ-комплексов (в состав которых входит белок) и HDAC-активности Sir2p (в регуляции активности которой принимает участие Netlp) в ремоделировании хромосом в процессе репарации и checkpoint-контроля.

Известны данные об участии ацетилирования/деацетилирования негистоновых белков в контроле апоптоза и радиочувствительности клеток человека (Sakaguchi et al., 1998; Liu et al., 1999; Barlev et al., 2001; Luo et al., 2001; Vaziri et al., 2001). В клетках человека hSTAGA/ySAGA-комплекс является кофактором активации транскрипционного фактора р53 (Wang et al., 2001), участвующего в остановке клеточного цикла в фазе G1 и апоптозе. Ацетилтрансфераза PCAF/yGCN5, ацетилирующая белок р53, и деацетилаза NAD-Sir2a, опосредующая модификацию гистонов в клетках млекопитающих (Luo et al., 2001; Vaziri et al., 2001), регулируют активность белка р53 в ответ на повреждения ДНК (Gu, Roeder, 1997; Liu et al., 1998; 1999; Sakaguchi et al.,

1998; Barlev et al., 2001). Экспрессия каталитически неактивного белка hSIR2 активирует р53-зависимый апоптоз и влияет на радиочувствительность.

В наших исследованиях обнаружено взаимодействие между генами CDC28, HFI1/ADA1 и NET1. Так сочетания аллелей cdc28-srm с netl-srm и netl-srm с hfil-srm представляют собой синтетические летали. Кроме того, наблюдается взаимодействие мутаций генов CDC28 и HFI1/ADA1 в определении жизнеспособности клеток с возрастом культуры. Взаимодействие между CDC28 и комплексами SAGA и RENT, компонентами которых являются ADA1/HFI1 и NETI, подтверждается выявлением субстратов киназы, к которым относятся белки этих комплексов Ada3p и Netlp, соответственно. Кроме того, ацетилирование Lysl4 ацетилазой Gcn5p облегчается предварительным фосфорилированием гистона НЗ по Ser 10 киназой Snflp (субъединицей комплекса SWI/SNF) (Lo et al., 2001; Clements et al., 2003), негативный регулятор которой Sip2p является субстратом протеинкиназы CDC28 (Ubersax et al., 2003). У дрожжей SAGA-комплекс имеет дополнительную НАТ-независимую функцию, заключающуюся в повышении эффективности доставки ремоделирующего комплекса SWI/SNF к промоторам (Yoon et al., 2003). В отношении радиочувствительности, также как и в отношении транскрипции, показано, что нарушение НАТ-активности (Gcn5p) имеет меньший эффект по сравнению с нарушением структурного компонента Hfilp (Game et al., 2005).

Таким образом, хотя бы некоторые из генов SRM принимают участие в контроле прохождения клеточного цикла, и фенотип мутантов обусловлен, хотя бы частично, нарушением репарации и checkpoint-контроля. Ответ клетки на повреждения ДНК включает доставку checkpoint- и репарационных факторов к месту повреждения ДНК, и в этом процессе важную роль играют модификации хроматина. Можно предположить, что гены CDC28/SRM5, HFI1/ADA1/SRM12 и NET1/SRM8 участвуют в отклике клетки на повреждения ДНК в результате модификации гистонов и/или других белков.

Малоизученным вопросом остается генетическая стабильность мтДНК. Повышенное количество повреждений мтДНК и низкая эффективность их репарации, а также отсутствие блокирования репликации поврежденной ДНК в митохондриях в значительной степени способствуют формированию мутаций в мтДНК с частотой, превышающей таковую в яДНК (Wallace, 1999; Marcelino, Thilly, 1999; Khrapko et al., 1997; Ozawa, 1997). В этих условиях одним из факторов стабильности митохондриального генома служит многокопийность мтДНК. Обнаружено два независимых пути регуляции стабильности и копийности мтДНК. Один из них опосредован ДНК-связывающим белком митохондриального нуклеоида Abf2p (Zelenaya-Troitskaya et al., 1998). Другой, Meclp/Rad53p-checkpoint путь, включает регуляцию активности генов RNR и пула нуклеотидов (Taylor et al., 2005). Киназа CDC28, по-видимому, принимает участие в регуляции копийности мтДНК. Белок Abf2p фосфорилируется протеинкиназой ПКА, регуляторная субъединица которой Bcylp является субстратом киназы CDC28. Это фосфорилирование ингибирует взаимодействие с ДНК и способность к суперспирализации мтДНК (Cho et al., 2001).

В данной работе показано участие генов CDC28, HFI1, NET1 в checkpoint-контроле и регуляции стабильности митохондриального генома. Мутации в некоторых генах Meclp/Rad53p-checkpoint пути, включая RNR (Huang, Elledge, 1997), DUN1 (Zhao, Rothstein, 2002), MECI и RAD53 (Zhao et al., 2001) увеличивают частоту образования мутаций petite. Проведенный нами анализ влияния генов RAD9, RAD17, RAD24 и RAD53 подтвердил повышение частоты мутаций petite при нарушении checkpoint-контроля. Выделенные нами гены SRM, участвующие в checkpoint-контроле, снижают частоту митохондриальных мутаций petite. По-видимому, существует баланс копийности и стабильности мтДНК, в плане выщепления делеционных мутантов. Можно предположить, что мутации в генах CDC28, NET1, HFI1 могут смещать баланс копийности и стабильности мтДНК в сторону снижения частоты выщепления мутаций petite. Анализ показал, что мутации в гене CDC28 влияют на рекомбинацию и сегрегацию мтДНК.

Стабильность мтДНК лишь частично обусловлена копийностью мтДНК. В ядре задержка репликации активирует intra S-checkpoint, предохраняющий ядерную ДНК от повреждений, в митохондриях соответствующий механизм отсутствует. В отсутствии митохондриальных геликаз PIF1 и RRM3 образуются репликативные паузы, повышающие вероятность повреждения застрявшей репликативной вилки, что ведет к нестабильности генома. Можно предположить, что влияние генов CDC28, HFII, NET1 на стабильность мтДНК обусловлено влиянием на упаковку и репликацию мтДНК. Гены CDC28, NET1, HFI1 могут модифицировать митохондриальные комплексы, связанные с моделированием структуры мтДНК.

В свою очередь нами показано, что митохондрии могут влиять на генетическую стабильность наследственных структур, локализованных в ядре, а также на радиочувствительность и жизнеспособность клеток с возрастом культур, и это влияние опосредовано генами S RM. Феноменология и механизмы этих явлений требуют дальнейших исследований. О важности ядерно-митохондриальных взаимодействий в радиорезистентности клеток свидетельствует участие митохондрий в активации апоптоза и Mecl/Rad53-checkpoint пути в увеличении пула нуклеотидов и копийности мтДНК.

ВЫВОДЫ:

1. Разработан метод отбора мутантов со сниженной стабильностью хромосом и rho" -мутабильностью митохондриального генома. С помощью этого метода получены новые ядерные генные мутации srm (spontaneous rho' mutability). Мутации srm снижают частоту спонтанных митохондриальных мутаций rho"

■ (в среднем на порядок), митотическую стабильность природных хромосом у дисомиков (снижение до двух порядков) и рекомбинантных минихромосом (в несколько раз).

2. Клонированы и секвенированы гены SRM8 и SRMJ2, показана их аллельность генам регулятора выхода из митоза и локализации деацетилазы NET1 и компонента гистонацетилтрансферазных комплексов HFI1,

соответственно. Определена нуклеотидная последовательность мутантных аллелей srm8/netl-srm (+2А), srml2/hßl-srm [L196P Stop] и srm5/cdc28-srm [G20S]. Мутация srm5/cdc28-srm представляет собой единичную замену глицина на серин в консервативной G-богатой петле киназы CDC28. Проведено МД моделирование мутантного белка с использованием киназы человека CDK2 в качестве модельной системы. Показано, что упомянутая аминокислотная замена вызывает заметные изменения структуры киназы, которые влекут за собой, по-видимому, изменения взаимодействия киназы с циклинами, субстратами и молекулой АТФ.

3. Впервые показано участие генов CDC28, NET1 и HFI1 в регуляции радиорезистентности клеток. Мутации srm5/cdc28-srm, srm8/netl-srm, srml2/hfil-srm снижают резистентность клеток к летальному действию у-излучения, мутация srm2 повышает радиорезистентность клеток. Мутации srm2, srm8/netl-srm, srml2/hßl-srm снижают частоту индукции генных мутаций и рекомбинации. Влияние мутации cdc28-srm на чувствительность клеток дрожжей к у-излучению, а также на спонтанную и индуцированную рекомбинацию позволяет предположить участие гена CDC28 в рекомбинационной репарации. Ген CDC28 не относится к RAD6- и RAD52-эпистатическим группам генов. У двойных мутантов cdc28-srm radö и cdc28-srm rad52 наблюдается синергический эффект. Полученные данные позволяют предположить участие киназы CDC28 в минорном пути репарации и/или checkpoint-контроле.

4. Checkpoint-гены RAD9, RAD17, RAD24 и RAD53 относятся к одной эпистатической группе генов, опосредующих чувствительность к у-излучению диплоидных штаммов в стационарной фазе клеточного цикла. Мутация гена CDC28 взаимодействует эпистатически с мутациями checkpoint-генов RAD9, RADI 7, RAD24, но аддитивно с мутацией гена RAD53 в отношении чувствительности к у-излучению. У двойных мутантов cdc28-srm rad53 у-чувствительность выше, чем у каждого из соответствующих одиночных мутантов, и выше, чем у двойных мутантов rad9A cdc28-srm и rad9A rad53. Можно предположить существование RAD9-независимого регуляторного механизма, блокируемого при одновременном повреждении киназ CDC28 и RAD53. Мутация гена SRM8/NETJ взаимодействует эпистатически с мутациями генов RAD9 и RAD53, но аддитивно с мутациями генов RAD17 и RAD24. Мутация гена SRM12/HFI1 также взаимодействует эпистатически с мутацией гена RAD9, но аддитивно с мутацией гена RAD24. Таким образом, эффекты мутаций генов RAD17, RAD24, RAD53, CDC28, NET1, HFI1 эпистатичны эффекту мутации гена RAD9. Изученные гены контролируют один механизм определения радиочувствительности, но образуют разветвленную сеть контроля чувствительности к у-излучению.

5. Впервые показано участие генов CDC28, NET1 и HFI1 в checkpoint-контроле. Мутации srm5/cdc28-srm, srm8/netl-srm, srml2/hfil-srm сокращают остановку клеточного цикла при повреждении ДНК и влияют на G0/G1 (srm5/cdc28-srm, srm8/netl-srm), Gl/S (srm5/cdc28-srm, srm8/netl-srm,

srml2/hfil-srm), S (srmB/netl-srm, srml2/hfil-srm) и G2/M (srm5/cdc28-srm) checkpoint-контроль. По-видимому, гены CDC28/SRM5, NET1/SRM8 и HFI1/ADA1/SRM12 участвуют в формировании отклика клетки на повреждения ДНК через регуляцию репарации и остановку клеточного цикла (checkpoint).

6. Мутации в checkpoint-генах RAD9, RAD17, RAD24, RAD53 вызывают повышение частоты возникновения мутаций petite. Мутации в генах CDC28, NET1, HFI1, хотя и нарушают checkpoint-контроль, но приводят к снижению частоты возникновения мутаций petite. По-видимому, влияние мутаций генов CDC28, NET], HFI1 на митохондриальную мутабильность не обусловлено непосредственно нарушением задержки клеточного цикла. Анализ показал, что ген CDC28 принимает участие в регуляции рекомбинации и сегрегации мтДНК.

7. Выявлены ядерно-митохондриальные генетические взаимодействия с участием генов SRM, способные модулировать: а) резистентность клеток дрожжей к повреждающему действию ионизирующей радиации, б) поддержание клетками рекомбинантных генетических структур и в) жизнеспособность клеток с возрастом культур.

8. Представленные данные показывают, что эффекты мутаций генов CDC28, NET1 и HFI1, являющихся глобальными регуляторами множественных жизненно важных клеточных механизмов, проявляются, в частности, в координированных изменениях генетической стабильности и радиочувствительности клеток, а также в нарушениях регуляции клеточного цикла и, вероятно, опосредованы химической модификацией структурных элементов хроматина (в частности, фосфорилированием, ацетилированием и деацетилированием белков). Полученные данные позволяют предположить существование общих регуляторных элементов упаковки хромосом и мтДНК.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ

ДИССЕРТАЦИИ:

1. Колтовая Н.А., Девин А.Б. 1990. Координация митотической стабильности генетических структур и радиочувствительность дрожжей-сахаромицетов. Докл. АН СССР, т.315. № 4. с. 986-990.

2. Колтовая Н.А., Девин А.Б. 1990. Ген старта CDC28 и радиочувствительность дрожжевых клеток. Тезисы докладов на VII Всесоюзном симпозиуме "Молекулярные механизмы генетических процессов". Москва, с.232.

3. Koltovaya N.A., Devin А.В., Arman I.P. 1990. The start gene CDC28 and radiation sensitivity of Saccharomyces cerevisiae. Yeast 6(spec iss):l 17.

4. Колтовая H.A., Девин А.Б. 1990. Стабильность митохондриального генома и радиочувствительность дрожжей сахаромицетов. Материалы IV Всесоюзной конференции "Актуальные проблемы радиационной биологии и радиационной генетики". Обнинск, с.65.

5. Devin A.B., Prosvirova T.Yu., Peshekhonov V.T., Chepurnaya O.V., Smirnova M.Ye., Koltovaya N.A., Troitskaya E.N., Arman I.P. 1990. The start gene CDC28 and the genetic stability of yeast. Yeast 6:231-243.

6. Колтовая H.A., Девин А.Б. 1993. Регуляция клеточного цикла и радиационная чувствительность дрожжей сахаромицетов. Тезисы докладов на II радиобиологическом съезде. Пущино. с. 481-482.

7. Девин А.Б, Колтовая Н.А, Гаврилов Б.В, Арман И.П. 1994. Получение и характеристика новых ядерных генных мутаций srm, вызывающих координированные изменения поддержания ядерных и митохондриальных генетических структур у дрожжей сахаромицетов. Генетика, т.30. №9. с.1194-1201.

8. Смирнова М.Е., Арман И.П., Девин А.Б., Пешехонов В.Т., Чепурная О.В., Колтовая Н.А., Троицкая Е.Н. 1995. Анализ поддержания избыточных генетических структур у дрожжей Saccharomyces cerevisiae: эффекты мутаций cdc28-srm и srml. Генетика, т.31. №4. с.464-470.

9. Koltovaya N.A, Devin А.В. 1995. New nuclear gene mutations that cause coordinate changes in mitotic stability of various genetic structures in Saccharomyces cerevisiae. Yeast 11:S72.

10.Koltovaya N.A., Kadyshevskaya K.Yu., Devin A.B. 1995. DNA repair and cell cycle regulation: CDC28 gene and new mitotic checkpoint genes. Yeast 11:S73.

11.Koltovaya N.A., Devin A.B. 1996. Yeast genes involved in both cell cycle regulation at checkpoints and maintenance of various genetic structures. Biochemical Society Transactions. 24:516.

12.Koltovaya N.A., Kadyshevskaya E.Yu., Osipova I.A., Shvaneva N.V., Devin A.B. 1997. Response of cell on DNA damage induced by irradiation. Abstracts of the conference "Advances in nuclear physics and related areas". Thessaloniki-Greece.p.66.

13.Колтовая H.A., Кадышевкая Е.Ю. 1997. Ген CDC28 и checkpoint-контроль клеточного цикла у дрожжей сахаромицетов. Докл. РАН. т.357. №5. с.710-712.

14-Осипова И.А., Кадышевская Е.Ю., Шванева Н.В., Девин А.Б., Колтовая Н.А. 1997. Существует ли четвертая эпистатическая группа? Тезисы докладов на III Съезде по радиационным исследованиям. Пущино. с.26-27.

15.Koltovaya N. A., Arman I.P., Devin A.B. 1998. Mutations of the CDC28 gene and the radiation sensitivity of Saccharomyces cerevisiae. Yeast 14:133-146.

16.Колтовая H.A., Карвига Т.Д., Любимова К.А., Майорова Е.С., Арман И.П., Девин А.Б. 1998. Радиочувствительность дрожжей-сахаромицетов и^гены SRM: эффекты мутаций srml и srm5. Генетика. т.34.№5. с.610-624.

17.Колтовая Н.А., Карташева Н.Н., Кадышевская Е.Ю., Чехута И.А., Синеокая И.В., Смирнова М.Е., Шванева Н.В., Арман И.П., Девин А.Б. 1998. SRM8 и SRM12 — два гена Л4.09-зависимого пути, контролирующего радиочувствительность Saccharomyces cerevisiae. Докл. РАН. т.360. №5. с.420-422.

18.Арман И.П., Глазкова Д.В., Девин А.Б., Ефименко И.Г., Карташева H.H., Колтовая H.A. и др. 1999. Генетика дрожжей в ИМГ РАН (1958-1998), некоторые итоги и перспективы. Мол. Биол. т.ЗЗ. №1. с.48-54.

19.Arman I.P., Kartasheva N.N., Koltovaya N.A., Devin A.B. 1999. A novel gene that modulates the genetic stability is involved in both glucose repression and dimorphic switch in Saccharomyces cerevisiae. Current Genetics 35: 323.

20.Koltovaya N.A., Kadishevskaya E.Yu., Shvaneva N.V., Devin A.B. 1999. New epistasis group of RAD genes required for checkpoint control: does it exist? Current Genetics 35:336.

21.Арман И.П., Герасимова A.C., Девин А.Б., Кадышевская Е.Ю., Карташева H.H., Колтовая H.A., Синеокая И.В., Смирнова М.Е., Чехута И.А., Шванева Н.В. 2000. Гены SRM почкующихся дрожжей: взаимосвязь между генетической стабильностью, регуляцией клеточного цикла и дифференцировкой клеток. Тезисы докладов на II Съезде ВОГиС. С-Петербург. т.2. с.71-72.

22.Koltovaya N., Kadyshevskaya Е., Shvaneva N., Sergeeva E., Nikulushkina Yu., Devin A. 2000. Checkpoint control in the yeast Saccharomyces and the SRM genes. Abstracts of the conference "Modem problems of radiobiology, radioecology and evolution". JINR. Dubna. p.70.

23 .Колтовая H.A., Кадышевская Е.Ю. 2000. Checkpont-контроль у дрожжей Saccharomyces cerevisiae. Тезисы докладов на Международной конференции "Проблемы радиационной генетики на рубеже веков". Москва, с.130-131.

24.Колтовая H.A., Майорова Е.С., Рзянина A.B., Герасимова A.C., Девин А.Б.

2000. Новые мутации генов SRM Saccharomyces cerevisiae и некоторые особенности их фенотипического проявления. Препринт ОИЯИ. PI9-2000-273. 20 с.

25.Колтовая H.A., Майорова Е.С., Рзянина A.B., Герасимова A.C., Девин А.Б.

2001. Новые мутации генов SRM Saccharomyces cerevisiae и некоторые особенности их фенотипического проявления. Генетика. т.37.№9.с.1213-1224

26.Koltovaya N.A., Nikulushkina Y.V., Devin A.B. 2001. Checkpoint genes and radiation sensitivity in budding yeast. Yeast 18:S42.

27.Колтовая H.A. 2001. Механизм checkpoint-контроля у дрожжей Saccharomyces cerevisiae. Сообщение ОИЯИ. PI9-2001-29.

28.Колтовая H.A., Девин А.Б. 2001. О роли некоторых checkpoint-генов в определении радиочувствительности дрожжей Saccharomyces cerevisiae. Препринт ОИЯИ. PI9-2001-284. 8 с.

29.Колтовая H.A., Никулушкина Ю.В., Девин А.Б. 2001. Checkpoint-гены, поддержание наследственных структур и радиочувствительность Saccharomyces cerevisiae. Тезисы докладов на IV Съезде по радиационным

■ исследованиям. Москва, с. 125.

30.Колтовая H.A., Кадышевская Е.Ю., Шванева Н.В., Никулушкина Ю.В., Девин А.Б. 2001. Чекпоинт-контроль у дрожжей сахаромицетов и гены SRM. Цитология, т.43. №4. с. 353-354.

31 .Колтовая H.A., Никулушкина Ю.В., Девин А.Б. 2002. Checkpoint-контроль и радиочувствительность. Труды II Международного симпозиума "Проблемы

биохимии и радиационной и космической биологии". ОИЯИ. Дубна, с.151-157.

32.Колтовая Н.А., Девин А.Б. 2002. О роли некоторых checkpoint-генов в определении радиочувствительности дрожжей Saccharomyces cerevisiae. Докл. РАН. т.387. №6. с.1-4.

33.Koltovaya N.A., Guerasimova A.S., Tchekhouta I.A., Devin A.B. 2002. ADA I and NET1 genes of yeast mediate both chromosome maintenance and mitochondrial rho" mutagenesis. Препринт ОИЯИ. El8-2002-174. 33 с.

34.Koltovaya N.A., Guerasimova A.S., Tchekhouta I.A., Devin A.B. 2003. NET1 and HFI1 genes of yeast mediate both chromosome maintenance and mitochondrial rho" mutagenesis. Yeast 20:955-971.

35.Koltovaya N.A., Guerasimova A.S., Kretov D.A., Kholmurodov Kh.T. 2005. Sequencing analysis of mutant allele cdc28-srm of protein kinase CDC28 and molecular dynamics study of glycine-rich loop in wild type and mutant allele G16S of CDK2 as model. FEBS Journal 272(sl) E1-037P.

36.Koltovaya N.A., Guerasimova A.S., Kretov D.A., Kholmurodov Kh.T. 2005. Sequencing analysis of mutant allele cdc28-srm of protein kinase CDC28 and molecular dynamics study of glycine-rich loop in wild type and mutant allele G16S of CDK2 as model. Nova Science Publishers. ISBN: 1-59454-912-5.

37.Koltovaya N.A., Guerasimova A.S., Kretov D.A., Kholmurodov Kh.T. 2005. Sequencing analysis of mutant allele cdc28-srm of protein kinase CDC28 and molecular dynamics study of glycine-rich loop in wild type and mutant allele G16S of CDK2 as model. Препринт ОИЯИ. El9-2005-19. 12 с.

38.Kretov D.A., Koltovaya N.A., Kholmurodov Kh.T. 2005. Sequencing analysis of mutant allele cdc28-srm of protein kinase CDC28 and molecular dynamics study of glycine-rich loop in wild type and mutant allele G16S of CDK2 as model. Papers of International conference "Modern problems of genetics, radiobiology, radioecology and evolution". Dubna.p.278-280.

39.Холмуродов X.T., Кретов Д.А., Герасимова А.С., Колтовая Н.А. 2006. Молекулярно динамическое моделирование замены консервативного глицина на серин в G-петле у мутанта cdc28-srm дрожжей с использованием кристаллической решетки киназы CDK2 человека. Препринт ОИЯИ. Р19-2006-21. 18 с.

40.Кретов Д.А., Холмуродов Х.Т., Колтовая Н.А. 2006. Анализ связей между АТФ и каталитической субъединицей киназы (нативной и мутантной) с помощью МД-моделирования кристаллической решетки активной киназы CDK2. Препринт ОИЯИ. Р19-2006-90. 19 с.

41.Кретов Д.А., Холмуродов Х.Т., Колтовая Н.А. 2006. МД моделирование протеинкиназы человека: влияние замены консервативного глицина на серин в G-петле активного комплекса CDK2. Mendeleev Commun 16:211-212.

42.Kretov D., Koltovaya N., Kholmurodov Kh. 2006. Molecular dynamics study of radiosensitive mutant allele of protein kinase ycdc28-srm [G20S] using hcdk2 as model. Radiation risk estimates in normal and emergency situations. Cigna A.A. and Durante M. (eds.). Springer. 327-339.

43 .Колтовая Н. 2006. Чекпоинт и репарация двунитевых разрывов ДНК. Сборник трудов кафедры биофизики Университета Дубна. Изд. РАЕН. с. 3646.

44.Холмуродов Х.Т., Кретов Д.А., Герасимова A.C., Колтовая H.A. 2006. Молекулярно динамическое моделирование замены консервативного глицина на серин в G-петле у мутанта cdc28-srm дрожжей с использованием кристаллической решетки киназы CDK2 человека. Биофизика 51:679-691.

Получено 27 октября 2006 г.

Отпечатано методом прямого репродуцирования с оригинала, предоставленного автором.

Подписано в печать 30.10.2006. Формат 60 х 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 2,75. Уч.-изд. л. 3,59. Тираж 100 экз. Заказ № 55524.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/

Содержание диссертации, доктора биологических наук, Колтовая, Наталия Алексеевна

ВВЕДЕНИЕ.

ГЛАВА 1. МИЮХОНДРИАЛЬНЫЙ ГЕНОМ ДРОЖЖЕЙ Saccharomyces cerevisia обзор литературы).

1.1 Структура митохондриальной ДНК.

1.2 Структурная организация митохондрий.

1.3 Функции митохондрий.

1.3.1 Образование энергии.

1.3.1.1 Окислительное фосфорилирование.

1.3.1.2 РеМе-позитивные и реШе-пегативные дрожжи.

1.3 2 Образование активных форм кислорода.

1 3.3 Метаболизм железо-серных белков.

1.3.4 Апоитоз.

1.3.4.1 Программируемая гибель клеток млекопитающих.

1.3.4.2 Программируемая гибель дрожжей.

1.4 Наследование митохондрий.

1.5 Наследование митохондриальнои ДНК.

1.6 Реиликация митохондриального генома.

1.7 Сегрегация митохондриального генома.

1.8 Индукция мутаций petite бромистым этидием.

1.9 Репарация митохондриальной ДНК.

1.10 Нарушения митохондриального генома и его наследования вызывают заболевания человека.

1.11 Выделение мутаций srm, снижающих спонтанную г/го"-мутабильность.Ю

1.11.1 Получение мутаций srml-srm5.

1.11.2 Попарное взаимодействие мутаций srml, srm2, srm3 и srm5.

1 11.3 Влияние мутаций srml-srmS па спонтанную гАо'-мутабильность.

1.11.4 Влияние мутаций srml-srm5 па r/zo'-мутагенез под действием БЭ.

1.11.5 Влияние мутаций srml-srm5 на стабильность хромосом.

1.11.6 Влияние мутаций srml-srm5 на стабильность рекомбинантных нлазмид

1.11.7 Картирование мутации srm5.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1 Линии.

2.2 Плазмиды и библиотека геномной ДНК дрожжей.

2.3 Состав сред и растворов.

2.4 Основные методики.

ГЛАВА 3. ПОЛУЧЕНИЕ И СВОЙСВА МУТАЦИЙ ыт, ОДНОВРЕМЕННО СНИЖАЮЩИХ СПОНТАННУЮ гЬо- -МУТАБИЛЬНОСТЬ И МИ ГОТИЧЕСКУЮ СТАБИЛЬНОСТЬ ХРОМОСОМ.

3.1 Получение мутаций чгт8, эгтП, згт15 и БгтП.

3.2 Попарное взаимодействие мутаций чгт8, ¿>гт12, 5ш/и .мж5.

3.3 Феиотинические особенности отобранных мутантов чгт.

3.3.1 Форма клеток.

3.3.2 Время генерации.

3.3.3 Хронологическое старение.

3.3.4 Характер почкования.

3.4 Влияние мутаций на митохондриальную г/ш'-мутабилыюсть.

3.4.1 Влияние мутаций эгт на спонтанную г/го'-мутабильиость.

3.4.2 Влияние мутаций зпя на г/ш"-мута1 енез под действием бромистого этидия.

3.4.3 Влияние мутаций чгт на индукцию мутаций гИо' под действием УФ-света

3.5 Мутации бгш и точечный митохондриальный мута1 енез.

3.6 Рекомбинация и сегрегация митохондриальных генетических маркеров у мутантов 5гт.

3.7 Влияние мутаций згт на теми возникновения ядерных генных мутаций и митотической рекомбинации.

3.8 Влияние мутаций эгт на митотическую стабильность хромосом.

3 9 Влияние мутаций 5гт на митотическую стабильность рекомбинантных плазмид.

3.10 Влияние нарушений митохондриального генома на стабильность плазмид.

3.11 Обсуждение.

ГЛАВА 4. КАРТИРОВАНИЕ, КЛОНИРОВАНИЕ И СЕКВЕПИРОВАНИЕ ГЕНОВ 5ЯМ.

4.1Ген£Ш5.

4.1.1 Локализация гена ЯЯМЗ.

4.1.2 Влияние различных аллелей сс1с28 на скорость размножения.

4.1.3 Влияние различных аллелей сс!с28 на спонтанный г/го" -мутагенез.

4.1.4 Влияние различных аллелей cdc28 на радиочувствительность.

4.1.5 Определение нуклеотидной последовательности аллеля cdc28-srm.

4.1.6 Молекулярно-динамическое моделирование киназы.

4.1.7 Ген CDC28 (обсуждение).

4.2 Ген SRM8.

4 2.1 Картирование мутации ыт8.

4.2.2 Клонирование и идентификация нуклеотидной последовательности гена SRM8.

4.2.3 Определение нуклеотидной последовательности аллеля srm8/netl-srm.

4.2 4 Ген CFI1/NET1 (обзор литературы).

4.3 Ген SRMI2.

4.3.1 Клонирование и идентификация нуклеотиднои последовательности гена SRM12.

4.3.2 Определение нуклеотидной последовательности аллеля srml 2/hfll-srm.

4.3.3 Ген HFJI (обзор литературы).

4.4 Обсуждение.

ГЛАВА 5. МОДИФИКАЦИЯ ГЕНАМИ SRMЧУВСТВИТЕЛЬНОСТИ К у- ИЗЛУЧЕНИЮ И СНЕСКРОШТ-КОНТРОЛЯ.

5.1 Чувствительность мутантов srm к у-излучению.

5.1.1 Чувствительность гаплоидных клеток мутантов чгт к летальному действию у-излучения и УФ-света.

5.1.2 Чувствительность диплоидных мутантов srm к летальному действию у-излучения.

5.1.3 Взаимодействие мутаций srml, srm2 и srm5.

5.1.4 Влияние элиминации митохондриального генома на радиочувствительность штаммов дикого типа и мутантов srml и srm2.

5.1.5 Пострадиационное восстановление жизнеспособности мутантов srm2 и srm5.

5.1.6 Пострадиационное восстановление жизнеспособности дыхательно-недостаточных мутантов с генотипом SRMt, srm2, srm5.

5.2 Взаимодействие i еиов SRM с генами репарации и checkpoint-контроля.

5.2.1 Мутация cdc28-srm и эпистатические группы мутаций чувствительности к ионизирующему излучению RAD6 и RAD52.

5.2.2 Взаимодействие гена SRM5/CDC28 с checkpoint-генами RAD9, RAD17, RAD24, RAD53.

5.2.3 Взаимодействие между checkpoint-генами RAD9, RADI 7, RAD24.

5.2.4 Взаимодействие гена RAD53 с ¡енами RAD9, RAD 17, RAD24.

5 2.5 Взаимодействие гена SRM8/NET1 с checkpoint-генами RAD9, RAD17, RAD24,

RAD53.

5.2 6 Взаимодействие гена SRM12/HF11 с checkpoint-генами СОС28, RAD9, RAD24, RAD53.

5.3. Участие генов SRM в checkpoint-контроле.

5 3 1 Влияние мутаций srm на остановку клеточного цикла в GO и G1/S под действием УФ-света.

5.3.2 Участие генов SRM8 и SRM12 в остановке деления клеток в фазе S под действием гидроксимочевины.

5.3 3 Ген CDC28 необходим для остановки клеточного цикла в фаю G2 при повреждении ДНК у мутантов cdc9-l и cdc6-l при нспермиссивнои температуре.

5.3.4 Остановка деления клеток в фазе G2 при повреждении ДНК под действием у-излучения.

5.3.5 Влияние checkpoint-генов на мутабильность митохондриального генома 277 5.4 Обсуждение.

Введение Диссертация по биологии, на тему "Регуляторные гены, опосредующие генетическую стабильность и радиочувствительность дрожжей Saccharomyces cerevisiae"

Изучение генетического контроля поддержания целостности геномов, как ядерного, так и митохондриального, является фундаментальной проблемой генетики В поддержании наследственного материала участвуют различные процессы, в том числе процессы восстановления от эндогенных и экзогенных повреждений ДНК, часто наблюдается корреляция между генетической стабильностью и радиочувствительностью. Изучение действия ионизирующих излучений на живые организмы и генетического контроля воздействия особенно актуально в связи с последствиями радиационных аварий и использованием радиации в диагностических и терапевтических целях.

Дрожжи сахаромицеты служат удобной моделью для анализа важнейших механизмов, действующих в клетках высших эукариот. Функциональные гомологи генов, ассоциированных с некоторыми заболеваниями человека, и многих генов, необходимых для репарации повреждений ДНК, вызванных ионизирующей радиацией в клетках человека, вначале были охарактеризованы у дрожжей (Resnick, Сох, 2000, Yu et al, 1999, Foury, 1997). Результаты анализа изменений экспрессии в масштабе 1енома (genome-wide expression analysis) в ответ на изменения окружающей среды (DeRisi et al., 1997; Causton et al., 2001) и, в частности, на действие различных повреждающих агентов (Jelinsky et al., 2000), существенно расширяют возможности использования дрожжей в качестве модельного организма.

Систематический анализ делеционных мутантов выявил новые локусы, опосредующие у-чувствительность дрожжей (Bennett et al., 2001; Game et al., 2003) Идентифицированные 1ены разбиваются на группы ответственные за репликацию ДНК, генетическую рекомбинацию, ремоделирование хроматина, сегрегацию хромосом, checkpoint, транскрипцию, убиквитин-опосредованную деградацию белков, образование ядерных пор, поддержание клеточных стенок, активность аппарата Гольджи/вакуоли, цитокинез и активность митохондрий. Однако анализ делеционных мутантов имеет ограничения. Вне поля зрения остаются жизненно важные гены, для выделения которых необходимы иные подходы. Кроме того, при тотальном скринише возникают сложности с отбором генов слабо-чувствительных или снижающих жизнеспособность клеток. Часто именно такие гены оказываются регуляторными и являются многофункциональными и многомишенными, знание энзиматической функции которых недостаточно для понимания их роли в восстановлении клетки. Поэтому остается актуальным целенаправленное выделение и функциональный и генетический анализ отдельных генов.

При рассмотрении вопросов генетической стабильности и чувстви!елыюсти к повреждающим агентам, как правило, рассматривают повреждения ядерной ДНК. Однако в клетке наследственный материал обнаруживается и в органеллах. К настоящему времени накоплен значительный объем сведений относительно механизмов, опосредующих стабильное поддержание хромосомного аппарата клеток Сведения по генетике поддержания наследственных структур ор1анелл, в частности митохондрий, в целом более скромны. Для большинства эукариотических организмов митохондриальная ДНК (мтДНК) жизненно важна В частности, было показано, что делеции, дупликации и точечные мутации мтДНК вызывают заболевания у человека (Grossman, Shoubridge, 1996; Howell, 1999; Larsson, Clayton, 1995; Wallace, 1999; Zeviani et al, 1997). Случаи, в которых мутантная мтДНК обнаруживается в культуре клеток вместе с нормальной немутантнои мтДНК определяют как гетероплазмию. Однако отношение двух митохондриальных гаплотипов часто изменяется в течение жизни индивидуума и может сильно отличаться между различными типами клеток. Обнаружено, что некоторые ядерные гены причастны к накоплению нескольких классов делетированных молекул мтДНК у одного и тою же индивидуума Несмотря на важность в фундаментальных и клинических исследованиях, факторы, ответственные за распределение между нормальными и мутантными молекулами мтДНК в процессе развития индивидуума, относительно слабо изучены. Только один из них в настоящее время клонирован и охарактеризован (Nishino et al, 1999) Он кодирует тимидин фосфорилазу, фермент, участвующий в катаболизме тимидина и возможно необходимый для поддержания мтДНК. Направление исследования роли ядерно1 о генофона активно развивается (Dunbar et al., 1995).

Хотя на настоящий момент времени очень мало известно об ядерных генах, прямо или косвенно контролирующих поддержание мтДНК у высших эукариот, имеются многочисленные данные, касающиеся почкующихся дрожжей S cerevisiae, для которых характерна высокая частота выщепления дегенеративных митохондриальных мутантов petite. Обзор этих данных содержится в главе 1 настоящей работы. У этого вида дрожжей развитие митохондриальной 1енетики и изучение ядерного контроля целостности и передачи мтДНК более доступно по двум причинам: 1) эти дрожжи являются факультативными аэробами, и 2) просты и доступны в смысле классической и молекулярной генетики. Несмотря на статус удобной модели их использование ограничено в связи с наличием свойств дрожжей S cerevisiae, которые отличают их от высших эукариот (одноклеточный организм, факультативный аэроб, не поддерживает стабильно гетероплазмическое состояние и структура их мтДНК значительно отличается от таковой для высших эукариот). Тем не менее, можно полагать, что, по крайней мере, некоторые ядерные факторы, контролирующие целостность и передачу молекул мтДНК консервативны в процессе эволюции. Понимание ядерно-митохондриальнот взаимодействия у дрожжей может облегчить поиск соответствующих ядерных генов у высших эукариот.

Представления о функциональной значимости митохондрий в жизнедеятельности клетки постоянно расширяются. Большие усилия в настоящее время направлены на изучение роли митохондрий в апоптозе, запрограммированной i ибели клеток (Li et al, 1997). Внимание исследователей направлено также на изучение интеграции митохондрий в многочисленные клеточные процессы и динамику поведения в качестве субклеточной органеллы внутри клетки. Начинают вырисовываться механизмы репликации и экспрессии митохондриально1 о генома, но еще остается много вопросов в отношении возникновения мутаций, репарации и сегрегации мтДНК (Contamine, Picard, 2000). Главным достижением последних лет является понимание центральной роли мтДНК в некоторых заболеваниях человека. Наконец, расширяется ассортимент многочисленных антибиотиков с новыми мишенями, традиционно используемых для изучения биохимических механизмов в митохондриях. Таким образом, изучение стабильности митохондриального генома и роли митохондрий и ядерно-митохондриальных генетических взаимодействий в определении радиорезистентности и стабильности генома клеток представляет медицинский и общебиологический интерес.

Работа по идентификации ядерных генов (SRM - spontaneous rho~ mutability), необходимых для высокой мутабильности митохондриального генома, и выяснение роли этих генов в жизнедеятельности дрожжевых клеток была начата около трех десятков лет назад. Исследования выявили наличие механизмов, одновременно оказывающих заметное влияние на митотическую стабильность различных генетических структур, митохондриальных и ядерных, природных и рекомбинантных; и связи этих механизмов с регуляцией прохождения клеточного цикла. В настоящей работе продолжено выделение новых i енов SRM. Для целенаправленного выделения мутаций, влияющих на генетическую стабильность различных наследственных систем, был разработан специальный селективный метод. Помимо изучения непосредственно генетического контроля стабильности наследственных структур, сама генетическая стабильность использовалась в качестве инструмента для выделения генов, контролирующих радиочувствительность клеток дрожжей. Исследования, описанные в диссертации, впервые продемонстрировали тесную связь между изменчивостью митохондриального генома, поддержанием хромосом и радиочувствительностью клеток дрожжей, которая, как представляется, заслуживает специального исследования.

Введение митохондриальною генома в рассмотрение генетической стабильности позволяет усилить селекцию регуляторных генов. Поскольку репарация мтДНК осуществляется в основном специфическими митохондриальными ферментами, то мутации влияющие на стабильность одновременно всех наследственных структур, ядерных и митохондриальных, скорее всею затрагивают регуляторные гены Действительно, нами впервые было показано участие генов, контролирующих локализацию деацетилазы (NET1), стабильность ацетилтрансферазных комплексов (HFI1), а также жизненно-важною гена протеинкиназы CDC28, в поддержании целостности генома и контроле радиочувствительности. Влияние гена HFI1 на у-чувствительность было позднее обнаружено и при изучении делеционных мутантов (Bennett et al., 2001).

Известно, что существенный вклад в стабильность генома и определение радиочувствительности вносит репарация и checkpoint-контроль остановки клеточного деления. Значительный интерес исследователей к данному регуляторному механизму связан, в частности, с широко распространившимися представлениями о тесной связи между нарушениями checkpoint и малигнизацией клеток Несмотря на значительные успехи последних лет в этих исследованиях многие конкретные детали остаются неясными. У дрожжей S cerevisiae генетический контроль механизмов репарации и checkpoint наиболее изучен. Однако эпистатические взаимодействия checkpoint-генов, отражающиеся на у-чувствительности клеток, исследованы недостаточно. В настоящей работе среди генов SRM выделены новые гены, участвующие в этих процессах. Анализ взаимодействия между checkpoint-i енами позволил выявить помимо остановки клеточного цикла их дополнительную роль в определении уровня радиочувствительности и охарактеризовать их принадлежность к путям, определяющим чувствительность клеток дрожжей к повреждающему действию ионизирующей радиации. Знаиие энзиматических активностей, определяемых выделенными генами, позволяет предположить, что обнаруженные генетические и радиобиологические эффекты вызваны модификациями белков, в том числе, определяющих нуклеосомную структуру хромосом или нуклеоидную структуру мтДНК. Полученные данные хорошо вписываются в современные представления о молекулярных механизмах репарации и checkpoint, согласно которым для функционирования репарационных комплексов и комплексов, запускающих checkpoint, необходима предварительная модификация хроматина в области повреждения ДНК. Проверка высказанных предположений актуальна и открывает большие перспективы проводимых исследований.

Заключение Диссертация по теме "Радиобиология", Колтовая, Наталия Алексеевна

выводы

1. Разработан метод отбора мутантов со сниженной стабильностью хромосом и rho" -мугабильностью митохондриальною генома С помощью этого метода получены новые ядерные генные мутации srm (spontaneous rho" mutability). Мутации srm снижаю1 часгогу спонтанных миюхондриальных мутаций rho" (в среднем на порядок), митотическую стабильность природных хромосом у дисомиков (снижение до двух порядков) и рекомбинантных минихромосом (в несколько раз)

2 Клонированы и секвенированы 1ены SRM8 и SRM12, показана их аллельиость 1снам регулятора выхода из мигоза и локализации деацетилазы NET1 и компонента гистонацетилтрансферазных комплексов HF11, соответственно. Определена нуклеотидная последовательность мутантных аллелей srm8/netl-srm (+2А), srm!2/hfil-srm [L196P Stop] и srm5/cdc28-srm [G20S]. Мутация srm5/cdc28-srm предсгавчяет собой единичную замену глицина на серии в консервативной G-богатои петле киназы CDC28. Проведегго МД моделирование мутантною белка с использованием киназы человека CDK2 в качестве модельной системы. Показано, что упомянутая аминокислотная замена вьвываег заметные изменения структуры киназы, которые влекут за собой изменения взаимодействия кина}ы с циклинами, субстратами и молекулой АТФ

3 Впервые показапо участие генов CDC28, NET1 и HFI1 в регуляции радиорезистентности клеток Мутации cdc28-srm, netl-srm, hfil-srm снижают резистентность клеток к летальному действию у-излучепия, мутация sгт2 повышает радиорезистентность клеток Мутации srm2, netl-srm, hfil-srm снижают частоту индукции мутаций и рекомбинации. Влияние мутации cdc28-srm на чувствительность клеток дрожжей к у-излучению, а также на спонтанную и индуцированную рекомбинацию позволяет предположить участие гена CDC28 в рекомбипационной репарации Ген CDC28 не относится к RAD6- и /?/Ш52-эпистатическим группам генов

4 Checkpoint-rciibi RAD9, RAD17, RAD24 и RAD53 относятся к одной эпистатической группе генов, опосредующих чувствительность к у-излучению диплоидных штаммов в стационарной фазе клеточною цикла. Мутация гена CDC28 взаимодействует энистатически с мутациями checkpoint-iehob RAD9, RAD 17, RAD24, но аддитивно с мутацией i сна RAD53 в отношении чувствительности к у-излучеиию. У двойных мутантов cdc28-srm rad53 у-чувствительность выше, чем у каждого из соответствующих одиночных мутантов, и выше, чем у двойных мутантов rad9A cdc28-srm и rad9A rad53. Можно предположить существование /¿Л£Н>-независимого ретуляторною механизма, блокируемого при одновременном повреждении киназ

CDC28 и RAD53. Мутация 1ена NET1 взаимодействует эпистатически с мутациями генов RAD9 и RAD53, но аддитивно с мугациями генов RADI7 и RAD24 Мутация гена HF11 также взаимодействует эпистатически с мутацией 1ена RAD9, но аддитивно с мутацией 1ена RAD24. Таким образом, эффекты мутации генов RAD17, RAD24, RAD53, CDC28, NET1, HFII эпистатичны эффекту мутации гена RAD9 Изученные гены контролируют один механизм определения радиочувствителньости, но образуют разветвленную сеть контроля чувствительности к у-излучению

5 Впервые показано участие 1енов CDC28, NET! и HF11 в chcckpoint-конфоле Мутации cdc28-srm, netl-srm, hfil-srm сокращают остановку клеточного цикла при повреждении ДНК и влияют на G0/G1 (cdc28-srm netl-srm), Gl/S (cdc28-srm, netl-srm, hfil-srm), S (netl-srm, hfil-srm) и G2/M (cdc28-srm) checkpoint-контроль По-видимому, 1ены CDC28, NET1 и 11F11/ADA1 участвуют в формировании отклика клетки на повреждения ДНК через регуляцию репарации и остановку клеточного цикла (checkpoint).

6. Мутации в checkpoint-i енах RAD9, RAD17, RAD24, RAD53 вызывают повышение частоты возникновения мугаций rho~ Мутации в генах CDC28, NET1, HFI1, хотя и нарушают checkpoint-контроль, по приводят к снижению частоты возникновения мутаций rho. По-видимому, влияние мутаций генов CDC28, NET!, HF11 на митохондриальную муибильносгь не обусловлено непосредственно нарушением задержки клеточного цикла Анализ показал, что 1ен CDC28 принимает участие в регуляции рекомбинации и сегрегации мтДНК

7. Выявлены ядерно-митохондриальные 1енетические взаимодействия с участием генов SRM, способные модулировать1 а) резистентность клекж дрожжей к повреждающему действию ионизирующей радиации, б) поддержание клетками рскомбинашных диетических структур и в) жизнеспособность клеток с возрастом культур.

8. Представленные данные показывают, что эффекты мутаций генов CDC28, NET1 и HFI1, являющихся пюбальными регуляторами множественных жизненно важных клеточных механизмов, проявляются, в частности, в координированных изменениях генетической стабильности и радиочувствительности клеток, а также в нарушениях рефляции клегочною цикла и, вероятно, опосредованы химической модификацией структурных эпемептов хроматина (в частности, фосфорилированием, апеллированием и деацегилированием белков) Полученные данные позволяют предположить существование общих регуляторных элементов упаковки хромосом и мтДНК

ЗАКЛЮЧЕНИЕ

В настоящей работе разработан метод идентификации генов, влияющих на стабильность митохондриального 1енома и хромосом при митотическом делении клеюк дрожжей S cerevisiae С помощью этой селективной системы была получена колчекция ядерных шшых мутаций srm (spontaneous rho' mutability), влияющих на надежность передачи генетического материала, как митохондриального, так и ядерного (природных хромосом и рекомбинантных структур). Некоторые из них вызывают морфологические изменения, снижение скорости размножения и жизнеспособности клеток. Мутации ыт характеризуются широкими плейотропными проявлениями, что свидетельсгвуег о принадлежности генов к высоким ступеням иерархии. Действительно, три идентифицированных гена SRM5, SRM8 и SRM12 аллельны 1енам CDC28, NEl'l и 11F11, соответственно. Известно, что протеинкиназа CDC28 играет центральную роль в регуляции клеточного цикла; белок NEFI регулирует выход из митоза и локализацию деацетилазы Sir2p; SRMI2/ADAI/HFÜ является компонентом i истонацетилтрансферазных комплексов SAGA, ADA1/GCN5, SLIK и участвует в экспрессии большей части iciiob дрожжей.

Данные, представленные в настоящей работе, показывают, что у дрожжей наблюдается координация стабичыюсти различных генетических структур, но принадлежат ли 1ены SRM к единой системе, контролирующей ¡енетическую стабильность, или механизм их действия различен, несмотря на схожесть фенотипа, пока не известно. Можно предположить, что ре1уляторная роль наиболее и ученных нами генов SRM опосредуется через модификацию нуклеосомной структуры хромосом и нуклеоидной структуры мтДНК. Известно, что субстратами протеинкиназы являются компоненты модифицирующих и ремоделирующих хромосомы комплексов CAF1 (R112p), FACT (Sptlóp), SWI/SNF (Sip2p - Snflp), SAGA (Ngglp/Ada3p), SLIK (Ngglp/Ada3p), a также белки, участвующие в сайленсипге (Net 1 р, Sir4p, ORC). Помимо модифицирования хроматина SAGA-комплекс необходим для сборки ремоделирующих комплексов Эти факторы принимают участие, как в активации транскрипции, так и в саиленсинге. Причем SAGA-комплекс служит не только активатором транскрипции, но и барьером, определяющим область распространения сайленсинга Таким образом, белок Hfilp может оказывать влияние на активацию транскрипции, сайленсиш и активацию ретро1радной системы. Ремоделирование также окашвает влияние на репликацию ДНК. Нарушение правильной упаковки и регуляция упаковки ДНК может влиять на стабильность хромосом. Эти комплексы могут также участвовать в регуляции процессов, протекающих в митохондриях В митохондриях обнаружены белки сайленсинга Sir4p, белки конденсипа

Smc2p (взаимодействует с Smc4p, являющимся субстратом киназы Cdc28p), и белок Spt7p, входящий в состав комтексов SAGA и SLIK. Выделена 1еликаза Rrm3p, локализованная в ядре и митохондриях и облегчающая репликацию в специфических местах (молчащие ARS, области саиленсинга, CEN). Можно предположить, что влияние генов CDC28, HF11, NET1 на стабильность хромосом и мтДНК опосредовано их влиянием на структуру и репликацию ДНК в ядре и митохондриях. Стабильность и копийность мтДНК регулируется несколькими механизмами, в том числе опосредованными ПКА-АЫ2р и Mecl/Rad53-checkpoint Оба пути, по-видимому, зависят от киназы CDC28 Однако высказанные предположения нуждакмся в прямой проверке

Актуальность проводимых исследонаний обусловлена открытием в конце 80-ых юдов у дрожжей S cerevisiae ре1уляторною механизма высокого уровня иерархии, контролирующего прохождение клеточного цикла, репликацию и репарацию, так называемого checkpoint-контроля (Weinert, Hartwell, 1988). При наличии эндогенных ичи экзогенных повреждений ДНК checkpoint-контроль осуществляет остановку клеточного цикла и активацию репарационных процессов. После исправления повреждения клетка возобновляет деление. Последствиями нарушений checkpoint-регуляции клеточного деления в ответ на повреждения ДНК во многих случаях являются снижение точности митотической передачи компонентов наследственного аппарата и повышение чувствительности клеток к летальному действию ДНК-трогшых агентов Значительный интерес исследователей к рассматриваемому peí уляторному механизму связан, в частности, с широко распространившимися представлениями о тесной связи между нарушениями checkpoint-контроля и малигнизациеи клеток. Несмотря на значительные успехи последних лет в этих исследованиях многие конкретные детали остаются неясными.

Некоторые выделенные нами мутации srm сопровождаются не только снижением частоты спонтанных митохондриальных мутаций petite и падением митотической стабильности природных и рекомбинантных ядерных 1енегических струкгур, но и повышением чувствительности к летальному действию у-излучения. Нами впервые показано участие генов CDC28, NET1 и HF11 в определении уровня радиочувствительности и в checkpoint-контроле. В дальнейшем нредаавляе1ся целесообразным детальный анализ peí улягорной роли 1енов SRM и исследование функций этих i енов в chcckpoint-регуляции, репарации и наследовании мтДНК. Изучение механизмов стабилизации митохопдриального генома приобретает все большую важность в свете интенсивных исследований митохондриальных заболеваний человека.

Библиография Диссертация по биологии, доктора биологических наук, Колтовая, Наталия Алексеевна, Дубна

1.а НП, Фоменко Л А, Безлепкин ВГ, Газиев АИ. 2005. Увстичение количества копий митохопдриальной ДНК при низкой эффективности ее репарации в клетках тканей у-облученных мышей. Радиац Биол Радиоэкол 45-389-396

2. Газиев АИ, Подлуцкий АЯ. 2003. Низкая эффективность систем репарации ДНК в митохондриях. Цитология 45:403-417.

3. Гаузе ГГ. 1977. Митохоидриальная ДНК М. "Наука"

4. Глазер ВМ, Глазунов АВ 1999 Молекулярно-гепегический анализ репарации двунитсвых разрывов ДНК у дрожжей-сахаромицетов Генетика 35.1449-1469.

5. Глазунов АВ, Глазер ВМ. 1988 Быстрая репарация двунтевых разрывов ДНК при выдерживании у-облученных дипюидиых клеток ЯассИаготусе^ есге\п\ше в непитательной среде. Мол ген микробиол вирус 8-35-41.

6. Глазунов АВ, Капульцевич ЮГ. 1983 Изучение радиочувствительности диплоидных дрожжей ЗассИаготусеъ сегетше при у-облучении в растворе хлористого натрия Ридиобиология 23:344-348.

7. Гордеева АВ, Лабас ЮА, Звягильская РА 2004 Апогпоз одноклеточных организмов, механизмы и эволюция. Биохимия 69. 1301-1313.

8. Девин АБ, Колтовая НА, Черемухииа НИ. 1986. Генетический анализ митохондриальной тЬо'-мутабильности у дрожжей сахаромицетов. Сообщение II Дисомия но IV хромосоме и спонтанная гИо"- мугабильность Генетика 22-2408-2415.

9. Девин АБ, Коттовая НА 1981 О ¡енешческом контроле спонтанной муыбильности митохопдриальною 1снома дрожжей ДАН СССР 256'466-469.

10. Девин АБ, Кочювая НА 1986 Генетическии анализ мшохондриальпои гИо'-мутабильности у дрожжей сахаромицетов. Сообщение III. Сравнительный анализ влияния различных ядерных мутации чгт и дисомии по хромосоме IV на гИо'-мута1енез. Генетика 22:2768-2774

11. Инге-Вечтомов СГ, Карпова 1С 1984. Доминантные супрессоры, эффективные при пониженной температуре (БЬТ) у дрожжей сахаромицетов Генетика 20:1620-1627

12. Колтовая НА, Девин АБ. 1989. Мутации ъгт и у-чувствительность дрожжей сахаромицетов. Труды рабочею совещания по генетическому действию корпускулярных излучений. Дубна с.145-149.

13. Колтовая НА, Девин АБ. 1990. Координация митотической стабильности генетических структур и радиочувствителньость дрожжей сахаромицетов. Докл АН СССР. 315'986-990

14. Колтовая НА, Девин АБ. 2002. О роли некоторых сЬескротМенов в определении радиочувствительности дрожжей ЯассИаготусеъ сегетше. Дсжл РАН 387:1-4.

15. Колтовая НА, Кадышевская ЕЮ. 1997. Ген СИС28 и контроль клеточного цикла у дрожжеи-сахаромицетов Докл РАН 357.710-712.

16. Колтовая НА, Каргашева НН, Кадышевская ЕЮ, Чехута ИА, Синеокая ИВ, Смирнова МЕ, Шванева НВ, Арман ИП, Девин АБ 1998 Я/ШН и ЯЯМ12 два гена МВ9-зависимою пути, контролирующего радиочувствителньость ЯассИаготусеч сегетше Докл РАН 360 420-422.

17. Колтовая ПА, Карвига ГД, Любимова КА, Майорова ЕС, Арман ИП, Девин АБ 1998 Радиочувствительность дрожжей сахаромицешв и гены ЯЯМ. эффекты муыций \гт1 и ыт5. Генетика 34.610-624.

18. Колтовая НА, Майорова НС, Рзянина АВ, Герасимова АС, Девии АБ. 2001 Новые мутации генов SRM Saccharomyces cerevisiae и некоторые особенности их фенотипическою проявления. Генетика 37.1213-1224.

19. Корогодин ВИ. 1966. Проблемы носградиационного восстановления М Атомиздат.

20. Королев ВГ. 2004. XRS2 один и* ключевых 1енов, контролирующих метаболизм ДНК Успехи Совр Биол 124:216-222

21. Королев ВГ, Грачева ЛМ. 1972. Индуцирование рекомбинации распадом фосфора-32, инкорпорированною в один или оба генома зиготы дрожжей Saccharomyces cerevisiae Генетика 8-111-120.

22. Кретов ДА, Холм>родов XT, Колювая НА. 2006 МД моделирование протеинкипазы человека влияние замены консервативного ¡лицина на серин в G-петлс активною коми юкса CDK2. Mendeleev Commun 16*211-212

23. Куцый МП, Кузнецова ЕА, Газиев АИ. 1999 Участие протеаз в апоптозе. Биохимия 64:149-163.

24. Ларионов ВЛ, Куприна НЮ, 1рауготг МН 1983. Исследование внехромосомной ДНК у дрожжей-сахаромицетов. Мол Биол 17.983-991.

25. Лузиков ВН 1980. Рефляция формирования митохондрии Молекулярные аспекты. М "Наука".

26. Михайлов ВС, Гаузе ГГ 1976. Репарация повреждений, вызванных брунеомицииом в ДНК изолированных митохондрий зрелых ооцитов вьюна. ДАН СССР 229:1477-1480.

27. Самуилов ВД, Олескин АВ, Лгунов ЕМ 2000 Программируемая клеючная смерть Биохимия 65Т029-1046

28. Смирнова ME, Колтовая НА, Арман ИП, Девин АБ. 1988. Ген CDC28 и объединенный контроль ядерной и митохондриальной генетической стабильности у Saccharomyces cerevisiae. Докл. АН СССР. 301:461-464.

29. Смирнова ME, Арман ИП, Девин АБ, Пешехонов ВТ, Чепурная ОВ, Колтовая IIA, Троицкая ЕН. 1995. Анализ поддержания избыточных генетических структур у дрожжей Saccharomyces cerevisiae: эффекты мутаций cdc28-srm и srml. Генетика 31 • 464-470.

30. Спирин АС. 1986. Молекулярная биоло!ия. Структура рибосомы и биосинтез белка М. Высшая школа.

31. Тоныпин АА, Сапрунова ВБ, Солодовникова ИМ, Бакеева JIE, Я1ужинский ЛС. 2003 Биохимия 68 875-881.

32. Чспурная OB, Пешехонов В Г, Кожина ТН, Королев ВГ. 1993. Геи XRS2 контролирует рекомбинационную репарацию у дрожжей. Генетика 29:571-580.

33. Aboussekhra A, Vialard JE, Morrison DE, de la Torre-Ruiz MA, Cernakova L, Fahre F, Lowndes NF. 1996 A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription EMBOJ 15:3912-3922.

34. Abrahams JP, Leslie GW, Lutter R, Walker J. 1994. Structure at 2 8A resolution of l'V ATPase from bovine heart mitochondria Nature 370.621-628.

35. Adams AEM, Botstein D, Drubin DG. 1991. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature (London) 354:404-408.

36. Adams AEM, Pringle JR 1984. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98 934-945

37. Adams RJ, Pollard TD. 1986 Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I Nature 322 754-756.

38. Adams S, Das Gupta G, Chalovich JM, Rcisler F 1990 Immunochemical evidence for the binding of coldesmon to the NH2-terminal segment of actin J Biol Chem 265:19652-19657.

39. Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR. 1998. 1Ъе p53 network. J Biol Chem 273 1-4.

40. Ahn SH, Acurio A, Krön SJ. 1999. Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 10 3301-3316

41. Aiken Hobbs AE, Snnivasan M, McCaffrey JM, Jensen RE. 2001. Mmmlp, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J Cell Biol 152.401-410

42. Aimes RT, Hemmer W, Taylor SS. 2000. Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: Role in catalysis, P-site specificity, and interaction with inhibitors. Biochemistry 39.8325-8332.

43. Albanesi JP, Fujisaki J, Hammer JAIII, Korn ED, Jones R, Sheetz MP. 1985. Monomeric Acanthamoeba myosins-I-support movement in vitro. J Biol Chem 260 8649-8652.

44. Alexander MR, Tyers M, Perret M, Craig BM, Fang KS, Gustin MC. 2001. Regulation of cell cycle progression by Swelp and Hoglp following hypertonic stress. Mol Biol Cell 12-53-62

45. Allan V. 1995. Membrane traffic motors FEBS Lett 369-101-106.

46. Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ. 1994. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8-2401-2415.

47. Arnberg DC 1998. Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle Mol Biol Cell 9.3259-3262

48. Amon A, Surana U, Muroff I, Nasmyth K. 1992. Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S cerevmae. Nature 355:368-371.

49. Anand S, Prasad R 1989 Rise in intracellular pi I is concurrent with "start" progression of Saccharomyces cerevmae J Gen Microbiol 135:2173-2179.

50. Anderson CT, Friedberg EC. 1980. I he presence of nuclear and mitochondrial uracil-DNA glycosylate in extracts of human KÜ cells. Nucl Acids Res 8:875-888.

51. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young 1G 1981 Sequence and organization of the human mitochondrial genome Nature 290 457-465

52. Anson RM, Croteau DL, Stierum RH, Tilburn C, Parsell R, Bohr VA. 1998 Homogenous reapir of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of mitochondrial DNA. Nucl Acids Res 26:662-668.

53. Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. 2004 'I he Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevmae. Mol Cell Biol 24 4769-4780

54. Aravind L, Dixit VM, Koonin EV. 1999. I he domains of death1 evolution of the apoptosis machinery. I rends Biochem Sei 24.47-53

55. Arlt H, lauer R, Feldmann H, Neupert W, Langer I". 1996 The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria Cell 85.875-885.

56. Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schagger H. 1999. AIP synthase of yeast mitochondria Isolation of subunit j and disruption of the ATP 18 gene. J Biol Chem 274:3640.

57. Arselin G, Vaillier J, Graves P-V, Velours J. 1996. AIP synthase of yeast mitochondria Isolation of the subunit h and disruption of the ATP 14 gene J Biol Chem 271-20284-20290

58. Asai T, Sommer S, Ballone A, Kogoma I. 1993. Homologous recombination dependent initiation of DNA replication from DNA damage inducible origins in Escherichia coll. EMBOJ 12.3287-3295.

59. Ashley MV, Laipis PJ, Hauswirth WW. 1989. Rapid segregation of heteroplasmic bovine mitochondria Nucl Acids Res 17:7325-7331.

60. Atherton-Fessler S, Parker LL, Geahlen RL, Piwnica-Worms H. 1993. Mechanisms of p34cdc2 regulation. Mol Cell Biol 13:1675-1685.

61. AttardiG, Schatz G. 1988 Biogenesis of mitochondria Annu Rev Cell Biol 4:289-333.

62. Atwood KC, Norman A 1949. On the interpretation of multi-hit survival curves Proc Natl Acad Sei USA 35 696-709.

63. Awadalla P, Eyre-Walker A, Smith JM 1999 Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 286-2524-2529.

64. Aylon Y, Kupiec M. 2003. The checkpoint protein Rad24 of Saccharomyces cerevmae is involved in processing double-strand break ends and in recombination partner choice. Mol Cell Biol 23 6585-6596.

65. Aylon Y, Kupiec M. 2005. Cell cycle-dependent regulation of double-strand break repair Cell Cycle 4-e61-e63

66. Azpiroz R, Butow RA. 1993. Pattern of mitochondrial sorting in yeast zygotes. Mol Biol Cell 4:21-36.

67. Azzam R, Chen SL, ShouW, Mah AS, Alexandra G, Nasmyth K, Annan RS, Carr S, Deshaies RJ 2004. Phosphorylation by cyclin B-Cdk underlies release of mitotic exit activator Cdc 14 from the nucleolus Science 305-516-519.

68. Bacon JSD, Milne BD, Taylor IF, Webley DM 1965 Features of the cell wall structure of yeast revealed by the action of en/yme from a non-fruiting myxobacterium Cytophaga johnson J Biochem 95 28C-30C.

69. Baldacci G, Bernardi G 1982. Replication origins are associated with transcription initiation sequence in the mitochondrial genome of yeast. EMBO J 1 '987-994.

70. Baldacci G, Cherif-Zahaar B, Bernardi G. 1984. The initiation of DNA replication in the mitochondrial genome of yeast EMBO J 3.2115-2120.

71. Ball EH, Singer SJ. 1982. Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts Proc Natl Acad Sci USA 79 123-126

72. Baranowska H, Swietlinska 7, 7aborowska D, Zuk J. 1982. Cdc and prt mutants of Saccharomyces cerevisiue with increased sensitivity to diepoxybutane and ultraviolet Acta Microbiol Pol Safetyn 31-119-128.

73. Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL. 2001. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetytransferascs Mol Cell 8:1243-1254.

74. Bashkirov VI, King JS, Bashkirova EV, Schmuckli-Maurer J, Heyer W-D. 2000. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol 20.4393-4404.

75. Bastos RN, Mahler HR. 1974. Molecular mechanisms of mitochondrial genetic activity. Effects of ethidium bromide on the DNA and energetics of isolated mitochondria J Biol Chcm 249 6617-6627

76. Bates S, Vousden KH 1999 Mechanisms of p53-mediated apoptosis Cell Mol Life Sci 55 28-37

77. Baugnet-Mahieu L, Baes C, Goutier R. 1970. Comparative sensitivity of the nuclear and mitochondrial DNA syntheses to x-irradiation and to the administration of a sulfhydryl radioprotector (AET) in normal and regenerating rat liver. Biophysik 6-357-366.

78. Bech-Hansen NT, Rank GH 1972 Ethidium bromide resistance and petite induction in Sacchuromyces cerevisiue Canad J Genet Cytol 14 681-689.

79. Bech-Hansen NT, Rank Gil 1973. Cytoplasmically inherited ethidium bromide resistance in suppressive petites of Saccharomyces cerevisiue. Can J Genet Cytol 15:381-387.

80. Beckman KB, Ames BN. 1999. Endogenous oxidative damage of mtDNA. Mutat Res 424:51-58.

81. Beinert II, Holm RII, Munck E. 1997. Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277:653-659.

82. Belmont LD, Drabin DG. 1998 I he yeast V159N actin mutant reveals roles for actin dynamics in vivo. J Cell Biol 142-1289-1299.

83. Bender A, Pringle JR. 1991. Use of a screen for synthetic lethal and multicopy suppressec mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiue Mol Cell Biol 11:1295-1305.

84. Bendich AJ. 1996. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulse-field gel electrophoresis. J Mol Biol 255:564-588.

85. Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR, Resnick MA 2001. Genes required for ionizing radiation resistance in yeast. Nature Genet 29.426-434.

86. Berendsen IIJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. 1984. Molecular dynamics with coupling to an external bath J Chem Phys 81 '3684-3690

87. Berger KU, Sogo LF, Yaffe MP. 1997. Mdml2p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast J Cell Biol 136 545-553.

88. Bergcr KH, Yaffe MP. 1996. Mitochondrial distribution and inheritance. Experientia 52:1111-1116.

89. Berger KH, Yaffe MP. 2000. Mitochondrial DNA inheritance in Saccharomyces cerevinae. Trends Microbiol 8*508-513.

90. Berger T, Bngl M, Hermann JM, Vielhauer V, Luckow B, Schlondorff D, Kret/ler M. 2000. The apoptosis mediator mDAP-3 is a novel member of a conserved family of mitochondrial proteins J Cell Sei 113:3603-3612.

91. Bernardi G, Faurcs M, Pipcrno G, Slonimski PP. 1970. Mitochondrial DNAs from respiratory sufficient and cytoplasmic respiratory-deficient mutant yeast. J Mol Biol 48 2342.

92. Bernardi G. 1979. 1 he petite mutation in yeast '1 rends Biochcm Sei 4:197-201.

93. Bernardi G. 1982. The origin replication of the mitochondrial genome of yeast Trends Biochem Sei 7:404-408

94. Bernardi P, Basso E, Colonna R, Costantini P, Di Lisa T, Eriksson O, Fontaine E, Forte M, Ichas F, Massan S, Nicolli A, Petronilli V, Scorrano L. 1998. Biochcm Biophys Acta 1365:200-206.

95. Bernardi P. 1999. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127-1155.

96. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. 1998. Localization of ASH 1 mRNA particlcs in living yeast Mol Cell 2:437-445.

97. Bhaumik SR, Green MR. 2002. Differential requirement of SAGA components for recruitment ofTATA-box-binding protein to promoters in vivo. Mol Cell Biol 22 7365-7371

98. Bianchet MA, I Iullihen J, Pedersen PL, Amzel LM. 1998. The 2 8-A structure of rat liver Fl-ATPase configuration of a critical intermediate in ATP synthesis/hydrolysis. Proc Natl Acad Sei USA 95:11065-11070.

99. Biggar SR, Crabtree GR. 1999. Continuous and widespread roles for the Swi-Snf complex in transcription. EMBO J 18 2254-2264.

100. Bird AW, Yu DY, Pray-Grant MG, Qlu Q, Harmon KE, Megee PC, Grant PA, Smith MM, Christman MF. 2002. Acetylation of histone H4 by Esal is required for DNA doublestrand break repair. Nature 419.411-415.

101. Birky CW, Strausberg RL, Perlman PS, Forster JL. 1978 Vegetative segregation of mitochondria in yeast estimating parameters using a random model Mol Gen Genet 158-251 -261

102. Birky CW. 1978. Iransmission genetics of mitochondria and chloroplasts. Ann Rev Genet 12 471-512

103. Birky CW. 1983. Relaxed cellular controls and organelle heredity. Science 222:468-475

104. Birky CW. 1983. The partitioning of cytoplasmic organelles at the cell division. Int Rev Cytol. Sup 15 49-89.

105. Birrell GW, Giaever G, Chu AM, Davis RW, Brown JM. 2001 A genome-wide screen in Saccharomyces cereviuae for genes affecting UV radiation sensitivity. Proc Natl Acad Sei USA 98:12608-12613.

106. Blanc H, Dujon B. 1980 Replicator regions of the yeast mitochondrial DNA responsible for suppressiveness Proc Natl Acad Sei USA 77:3942-3946

107. Blankley RT, Lydall D 2004. A domain of Rad9 speciffically required for activation of Chkl in budding yeast. J Cell Sei 117(Pt 4) 601-608.

108. Bleazard W, McCaiTery JM, King EJ, Bale S, Mo/dy A, Tieu Q, Nunnari J, Shaw JM 1999 The dynamin-related GTPase Dnml regulates mitochondrial fission in yeast Nat Cell Biol 1 298-304

109. Bleeg HS, Bäk AL, Christiansen C, Smith KE, Stenderup A 1972 Mitochondrial DNA and glucose repression in yeast Biochem Biophys Res Commun 47 524-530.

110. Bobola N, Jansen RP, Shin '1H, Nasmyth K. 1996. Asymmetric accumulation of Ashlp in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells Cell 84.699-709

111. Bodnar AG, Cooper JM, Holt IJ, Leonard JV, Schapira All. 1993 Nuclear complementation restores mtDNA levels in cultured cells from a patient with mtDNA depletion. Am J Hum Genet 53.663-669.

112. Bodnar AG, Cooper JM, Leonard JV, Schapira AH. 1995. Respiratory-deficient human fibroblasts exhibiting defective mitochondrial DNA replication 305:817-822.

113. Bogenhagen DF, Pinz KG, Jannotti RM. 2001. En/ymology of mitochondrial base excision repair. Nucleic Acids Res 68 257-271.

114. Bogenhagen DF, Wang Y, Shcn EL, Kobayashi R 2003. Protein components of mitochondrial DNA nucleoids in higher eukaryotes Mol Cell Proteomics 2:1205-1216

115. Bohl F, Kruse C, Frank Aferring D, Jansen RP. 2000. She2, a novel RNA-binding prtein tethers ASII1 mRNA to the Myo4p myosin motor via She3p EMBO J 19 5514-5524.

116. Boldogh I, Vojtov N, Karmon S, Pon LA. 1998 Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins, Mmm 1 p and Mdm 1 Op. J Cell Biol 141:1371-81.

117. Boldogh IR, Nowakowski DW, Yang HC, Chung H, Karmon S, Royes P, Pon LA 2003. A protein complex containing Mdm 1 Op, Mdml2p, and Mmmlp links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery Mol Biol Cell 14.4618-4627.

118. Boldogh IR, Yang HC, Nowakowski WD, Karmon SL, Hays LG, Yates JR 3rd, Pon LA 2001. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sei USA 98:3162-3167.

119. Bolotin-Pukuhara M, Grivell LA 1992. Genetic approaches to the study of mitochondrial biogenesis in yeast. Antonie van Leeuwenhoek 62:131-153.

120. Booher RN, Alfa CE, Hyams JS, Beach DH. 1989. The fission yeast cdc2/cdcl3/sucl protein kinase: regulation of catalytic activity and nuclear localization. Cell 58.485-497.

121. Boorstein RJ, Levy DD, Teebor GW. 1987. 5-IIydroxymethyluracil-DNA glycosylase activity may be a differentiated mammalian function. Mutation Res 183:257-263

122. Bouanchaud DH, Scavizzi MR, Chabbert YA. 1969. Elimination by ethidium bromide of antibiotic resistance in enterobacteria and staphylococci. J Gen Microbiol 54:417-421.

123. Boubnov NV, Weaver DI'. 1995 s,cid cells are deficient in Ku and replication protein A phosphorylation by the DNA-depcndent protein kinase Mol Cell Biol 15 5700-5706.

124. Boulton SJ, Jackson SP. 1996 Succhuromyces cerevisiae Ku70 potentiates illigitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways EMBO J 15:5093-5103.

125. Boulton SJ, Jackson SP. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double-strand break rejoining and in telomeric maintenance. Nucl Acids Res 24:4639-4648

126. Bourne Y, Watson MH, Hickey MJ, Holmes W, Rocque W, Reed SI, Tamer JA 1996 Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHsl. Cell 84:863-874.

127. Bowman S, Ackerman SH, Griffiths DE, Tzagoloff A. 1991. Characterization of ATP12, a yeast nuclear gene required for the assembly of the mitochondrial I'VATPase. J Biol Chem 266:7517-7523.

128. Boyer PD. 1993 I he binding change mechanism for AIP synthase some probabilities and possibilities Biochcm Biophys Acta 1140.215-250.

129. Brendel M, Haynes RH. 1972 Kinetics and gcnetic control of the incorporation of thymidinemonophosphate in yeast DNA. Mol Gen Genet 117:39-44.

130. Brandl CJ, Martens JA, Margaliot A, Stenning D, Furlanetto AM, Saleh A, Hamilton KS, Genereaux J. 1996. Structure/functional properties of the yeast dual regulator protein NGG1 that are required for glucose repression. J Biol Chem 271.9298-9306.

131. Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AIL 2000. Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia Hum Mol Genet 9.275-282.

132. Brent TP. 1983. Properties of a human lymphoblast AP-endonuclease associated with activity for DNA damaged by ultraviolet light, gamma-rays, or osmium tetroxide Biochemistry 22:4507-4512.

133. Bretscher A. 2003. Polari/ed growth and organelle segregation in yeast: the tracks, motors, and receptors J Cell Biol 160 811-816

134. Broach JR 1982 The yeast plasmid 2\a circle. Cell 28 2-3-204

135. Broach JR, Strathern JN, Hicks JB. 1979. I ransformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121-133.

136. Brown NG. 1994 Ph D Thesis, lthaka Cornell Univ.

137. Brunner A, Carrasco N, Pena A. 1982 Correlation between resistance to ethidium bromide and changes in monovalent cation uptake in yeast. Arch Biochem Biophys 217:3036.

138. Brunner A, Mas J, Celis E, Matton JR. 1973. Cytoplasmic and nuclear inheritance of resistance to alkyguanidines and ethidium bromide in a petite-negative yeast. Biochem Biophys Res Commun 53:638-644.

139. Brush GS, Kelly TJ 2000 Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response. Nucleic Acids Res 28:3725-3732

140. Brush GS, Morrow DM, Ilieter P, Kelly TJ. 1996. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc Natl Acad Sci U S A 93.15075-15080.

141. Bryant GO, Ptashne M. 2003. Independent recruitment in vivo by Gal4 of two complexes required for transcription Mol Cell 11:1301-1309

142. Buchet K, Godinot C. 1998 Functional Fl-ATPase essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted p" cells. J Biol Chem 273:22983-22989.

143. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. 1999. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269-290.

144. Burgess SM, Delannoy M, Jensen RE. 1994. MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria J Cell Biol 126 1375-1391

145. Burridge K, Phillips JH 1975 Association of actin and myosin with secretory granule membranes Nature 254 526-529

146. Byer B, Goetsch L 1974. Duplication of spindle plaques and integration of the yeast cell cycle Cold Spring Harbor Symp Quant Biol 38 123-131.

147. Cairns BR, Kim Y-J, Sayre MH, Laurent BC, Kornberg RD 1994. A multisubunit complex containing the SWI/ADR6, SW12/SNF2, SW13, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci USA 91-1950-1954.

148. Cali BM, Doyle IC, Botstein D, Fink GR 1998 Multiple functions of actin during filamentous growth of Saccharomyces cereviuae Mol Biol Cell 9.1873-1889.

149. Camougrand N, Grelaud-Coq A, Marza E, Pnault M, Bessoule JJ, Manon S. 2003. The product of the UTII1 gene, required for Bax-induced cell death in yeast, is involved in the response to rapamycin. Mol Microbiol 47-495-506.

150. Campbell CL, Tanaka N, White KH, Thornsness PE. 1994. Mitochondrial morphological and functional defects in yeast caused by ymel are suppressed by mutation of a 26S protease subunit homologue. Mol Biol Cell 5 899-905

151. Campbell CL, Thorsness PE 1998 Escape of mitochondrial DNA to the nucleus in ymel yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments J Cell Sci 11 l(Pt 16):2455-2464.

152. Candau R, Berger L 1996 Structural and functional analysis of yeast putative adaptors: evidence for an adaptor complex in vivo J Biol Chem 271:5237-5345.

153. Cann RL, Wilson AC. 1983 Lenght mutations in human mitochondrial DNA. Genetics 104:699-711

154. Cannon-Carlson SV, Gokhale H, Teebor GW. 1989. Purification and characterization of 5-hydroxymethyluracil-DNA glycosylase from calf thymus. Its possible role in the maintenance of methylated cytosine residues. J Biol Chem 264:13306-13312.

155. Carew JS, Nawrocki ST, Xu RII, et al. 2004 Increased mitochondrial biogenesis in primary leukemia cells: the role of endogenous nitric oxide and impact on sensitivity to fludarabine. Leukemia 18:1934-1940.

156. Caron F, Jacq C, Rouviere-Yaniv J. 1979. Characterization of a histon-like protein extracted from yeast mitochondria Proc Natl Acad Sci USA 76:4265-4269.

157. Carr AM 1997. Control of cell cycle arrest by the Meclsc/Rad3sp DNA structure checkpoint pathway. Curr Opin Genet Deversion 7.93-98

158. Case DA, Pearlman DA, Caldwell JW, Cheatham 111 IE, Ross W S, Simmerling C L, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Ferguson DM, Radmer RJ, Seibel GL, Singh UC, Werner PK, Kollman PA. 2003 AMBER 8.0. University of California

159. Casanova JL, Pannetier C, Jaulin C, Kourilsky P. 1990. Optimal conditions for directly sequencing double-stranded PCR products with sequenase. Nucleic Acids Res 18:4028-4032

160. Caspari T, Murray JM, Carr AM 2002. Cdc2-cyclin B kinase activity links Crb2 and Rqhl-topoisomerase III Genes Dev 16 1195-1208.

161. Caspary F, Shevchenko A, Wilm M, Seraphin B. 1999. Partial purification of the yeast U2 snRNP reveals a novel yeast pre-mRNA splicing factor required for pre-spliceosome assembly. EMBOJ 18:3463-3474.

162. Causton HC et al. 2001. Remodeling of yeast genome expression in response to environmantal changes Mol Biol Cell 12:323-337.

163. Cerutti L, Simanis V. 2000 Controlling the end of the cell cycle. Curr Opin Genet Dev 10.65-69.

164. Chang LO, Looney WB 1966. Incorporation of tritiated thymidine into mitochondrial and nuclear DNA in normal and regenerating rat liver before and after irradiation. Int J Radiat Biol 12:187-192.

165. Chang LO, Looney WB, Morris HP. 1966. A comparison of the effects of x-radiation on the relative rates of incorporation of labelled thymidine and cytidine into mitochondrial and nuclear DNA of Morris hepatomas Int J Radiat Biol 14:75-78.

166. Chen D, Lan J, Pei W, Chen J 2000 Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria J Neurosci Res 61:225-236

167. Chen LB. 1988. Mitochondrial membrane potential in living cells Ann Rev Cell Biol 4:155-181.

168. Chen SR, Dunigan DD, Dickman MB. 2003. Bel-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae. Free Rad Biol Med 34.1315-1325

169. Chen XJ, Clark-Walker GD. 1995. Specific mutations in a- and y-subumts of Fi-AlPase affect mitochondrial genome integrity in the petite-negative yeast Kluyveromyces lactis EMBO J 14:3277-3286

170. Chen XJ, Clark-Walker GD. 1996. The mitochondrial integrity gene, MGI1, of Kluyveromyces lactis encodes the ß-subunit of mitochondrial Fl-AlPase. Genetics 144-1445-1454

171. Chen XJ, Clark-Walker GD. 1999. a and ß subunits of Fl-ATPase arc required for survival of petite mutants in Saccharomyces cerevisiae. Mol Gen Genet 262:898-908.

172. Chen XJ, Guan MX, Clark-Walker GD. 1993. MGM101, a nuclear gene involved in maintenance of the mitochondrial genome in Saccharomyces cerevisiae Nucleic Acids Res 21:3473-3477.

173. Chen XJ, Hansbro PM, Clark-Walker GD. 1998 Suppression of pu lethality by mitochondral AIP synthase Fi mutations in Kluyveromyces lactis occurs in the absence of l;o Mol Gen Genet 259 457-467.

174. Chen XJ, Wang X, Kaufman BA, Butow RA. 2005. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307:714-717.

175. Cheng XJ, Hansbro PM, Clark-Walker GD. 1998. Suppression of p° lethality by mitochondrial ATP synthase Fj mutations in Kluyveromyces lactis occurs in the absence of F0 Mol Gen Genet 259:457-467.

176. Cheung WL, Turner FB, Knshnamoothy T, Wolner B, Ahn SH, Foley M, Dorsey JA, Peterson CL, Berger SL, Allis CD. 2005. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase 11 in S cerevisiae Curr Biol 15 656-660

177. Chi NW, Kolodner RD. 1994. Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches J Biol Chem 269.29984-29992.

178. Chiolo I, Carotenuto W, Maffioletti G, Pctrim JHJ, Foiani M, Liberi G. 2005. Srs2 and Sgsl DNA helicases associate with Mrell in different subcomplexes following checkpoint activation and CDKl-mediated Srs2 phosphorylation. Mol Cell Biol 25:5738-5751.

179. Cho JH, Ha SJ, Kao LR, Megraw TL, Chae C-B. 1998. A novel DNA-binding protein bound to the mitochondrial inner membrane restores the null mutation of mitochondrial histone Abf2p in Saccharomyces cerevisiae. Mol Cell Biol 18:5712-5723.

180. Chow TY, Kunz BA. 1991 Evidence that an endo-exonuclease controlled by the NUC2 gene functions in the induction of 'petite' mutations in Saccharomyces cerevisiae. Current Genet 20 39-44.

181. Chow TY, Resnick MA 1987. Purification and characterization of an endo-exonuclease from Saccharomyces cerevisiae that is influenced by the RAD52 gene J Biol Chem 262:17659-17667.

182. Chow TY, Resnick MA. 1988. An endo-exonuclease activity of yeast that requires a functional RAD52 gene. Mol Gen Genet 2 II :41 -48.

183. Chowdhury S, Smith KW, Gustin MC. 1992. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation J Cell Biol 118*561 -571

184. Christiansen G, Christiansen C. 1976 Comparison of the fine structure of mitochondrial DNA from Saccaharomyces cerevisiae and S carlsbergensis. electron microscopy of partially denatured molecules Nucleic Acids Res 3 465-476

185. Chung HC, Kim SH, Lee MC, Cho CK, Kim IH, Lee DH, Kim SS. 2001. Mitochondrial dysfunction by gamma-irradiation accompanies the induction of cytochrome P450 2E1 (CYP2E1) in rat lever. Toxicology 161:79-91.

186. Ciriacy M. 1975 Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. I Isolation and genetic analysis of adh mutants. Mutation Res 29.315-326.

187. Ciriacy M. 1976 Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADI III) in Saccharomyces cerevisiae. Mol Gen Genet 145:327-333.

188. Clark-Adams CD, Norris D, Osley MA, Fassler JS, Winston F. 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev 2:150-159.

189. Clarke AS, Lowell JE, Jacobson SJ, Pillus L 1999. Esalp is an essensial histone acetyltransferase required for cell cycle progression Mol Cell Biol 19:2515-2526.

190. Clark-Walker GD, Francois F, Chen XJ, Viera Da Silva M, Claisse ML 1997 Mitochondrial AIP synthase subunit 9 is not required for viability of the petite-negative yeast Kluyveromyces laüis Curr Genet 31 '488-493

191. Clark-Walker GD. 1972. Isolation of circular DNA from a mitochondrial fraction from yeast Proc Natl Acad Sei USA 69:388-392.

192. Clark-Walker GD. 1989. In vivo rearrangement of mitochondrial DNA in Saccharomyces cerevisiae Proc Natl Acad Sei USA 86:8847-8851.

193. Clayton DA, Doba JN, Friedberg EC. 1974. The absence of pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sei USA 71:2777-2781.

194. Cleaver JE, Rose R, Mitchell DL 1990. Replication of chromosomal and episomal DNA in X-ray-damaged human cells: a eis- or trans-acting mechanism? Radiat Res 124:294-299.

195. Cleaver JE. 1992. Replication of nuclear and mitochondrial DNA in X-ray-damaged cells: evidence for a nuclear-specific mechanism that down-regulates replication. Radiation Res 131:338-344.

196. Clements A, Poux AN, Lo WS, Pillus L, Berger SL, Marmorstein R. 2003. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 12:461-473.

197. Clerici M, Baldo V, Mantiero D, Lottersberger T, Lucchini G, Longhese MP. 2004 A Tell/MRX-dependent checkpoint inhibits the methaphasc-to-anaphase transition after IJV irradiation in the absence of Mec 1. Mol Cell Biol 24:10126-10144.

198. Cockell MM, Gasser SM 1999. The nucleolus: nucleolar space for RENT. Curr Biol 9:R575-576.

199. Coen D, Deutsch J, Netter P, Petrochilo E, Slonimski PP. 1970. Mitochondrial genetics I Methodology and phenomenology. Symp Soc Exp Biol 24:449-496.

200. Cohen GM. 1997. Caspases: the executioners of apoptosis Biochem J 326: 1-16

201. Conrad MN, Newlon CS 1982 The regulation of mitochondrial DNA levels in Saccharomyces cerevisiae. Curr Genet 6:147-152.

202. Contaminc V, Picard M. 2000. Maintenance and integrity of the mitochondrial genome a plethora of nuclcar genes in the budding yeast. Microbiol Mol Biol Rev 64:281-315

203. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz JrKM, Ferguson DM, Spellmeyer DC, 1'ox T, Caldwell JW, Kollman P.A. 1995. A second generation force field for the simulation of proteins, nucleic acids and organic molecules J Am Chem Soc 117:5179-5197.

204. Cortopassi GA, Shibata D, Soong NW, Arheim N. 1992. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sei USA 89.7370-7374

205. Coru/zi G, rrcmbath MK, Izagoloff A. 1978 Assembly of the mitochondrial membrane system, mutations in the pho2 locus of the mitochondrial genome of Saccharomyces cerevisiae. Eur J Biochcm 92'279-287.

206. Cosma MP, Tanaka I", Nasmyth K. 1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cyclc-and developmentally regulated promotor. Cell 97:24414-24419.

207. Costa V, Moradas-Ferreira P. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22:217-246.

208. Costanzo MC, Fox TD. 1986. Product of Saccharomyces cerevisiae nuclear gene PET494 activates transcription of a specific mitochondrial mRNA. Mol Cell Biol 6:36943703.

209. Costanzo MC, Fox 1D. 1988. Specific transcriptional activation by nuclear gene products occurs in 5' untranslated leader of a yeast mitochondrial mRNA. Proc Natl Acad Sei USA 85:2677-2681.

210. Costanzo MC, Fox 'ID. 1990. Control of mitochondrial gene expression in Saccharomyces cerevisiae Annu Rev Genet 24.91-113.

211. Cote C, Poiricr J, Boulet D 1989. Expression of the mammalian mitochondrial genome Stability of mitochondrial translation products as a function of membrane potential J Biol Chem 264.8487-8490

212. Couchman JR, Rees DA 1982 Organell-cytoskeleton relationships in fibroblasts: mitochondria, Golgi apparatus and endoplasmic reticulum in phases of movement and growth. Eur J Cell Biol 27.47-54.

213. Craig EA, Voisine C, Schilke B. 1999. Mitochondrial iron metabolism in the yeast Saccharomyces cerevisiae. J Biol Chem 380:1167-1173.

214. Crompton M. 1999. The mitochondrial permeability transition pore and its role in cell death Biochem J 341:233-249.

215. Cross FR, Archambault V, Miller M, Klovstad M. 2002. Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13:52-70.

216. Cross FR, Blake CM. 1993. The yeast Cln3 protein is an unstable activator of Cdc28 Mol Cell Biol 13:3266-3271.

217. Cross FR, Lewin K. 1998. Molecular evolution allows bypass of the requirement for activation loop phosphorylation of the Cdc28 cyclin-dcpendent kinase. Mol Cell Biol 18 2823-2931.

218. Cross FR 1995. Starting the cell cycle: what's the point? Curr Opin Cell Biol 7:790-797

219. Croteau DL, ap Rhys CM, Hudson EK, Dianov GL, Hansford RG, Bohr VA. 1997. An oxidative damage-specific endonuclcasc from rat liver mitochondria J Biol Chem 272 27338-27344.

220. Croteau DL, Stierum RH, Bohr VA 1999. Mitochondrial DNA repair pathways. Mutat Res 434:137-148.

221. Cullinanne C, Bohr VA. 1998. DNA interStrand cross-links induced by psoralen are not repaired in mammalian mitochondria Cancer Res 58:1400-1404.

222. Cuperus G, Shafaatian R, Shore D. 2000. Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO J 19:2641-2651.

223. Dake E, Hofmann TJ, Mclntire S, Hudson A, Zassenhaus HP. 1988 Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisae J Biol Chem 263:7691-7702

224. Dammann R, Lucchini R, Koller I', Sogo JM. 1993 Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 21:2331-2338.

225. D'Amours D, Desnoyers S, D'Silva I, Poirier GG. 1999. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342:249-268.

226. Damsky CH. 1976. Environmentally induced changes in mitochondria and endoplasmic-reticulum of Saccharomyces carlsbergensis yeast. J Cell Biol 71*123-135.

227. David-Ferreira KL, David-rerrcira JF. 1980. Association between intermediate-sized filaments and mitochondria in rat leidyg cells Int Cell Biol Rep 4 655-662.

228. De Almeida A, Raccurt I, Peyrol S, Charbonneau M. 1999. The Saccharomyces cerevisiae Cdcl4 phosphatase is implicated in the structural organization of the nucleolus Biol Cell 91:649-663

229. De Bondt HL, Rosenblatt J, Jancank J, Jones HD, Morgan DO, Kim S-H. 1993. Crystal structure of cyclin-dependent kinase 2. Nature 363:595-602.

230. De la Torre-Ruiz M, Lowndes NF. 2000. Dunl defines one branch downstream of RAD53 for transcription and DNA damage repair in Saccharomyces cerevisiae. FEBS Lett 485:205-206

231. De la Torre-Ruiz MA, Green CM, Lowndes NF. 1998. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for rad53 modification and activation. EMBO J 17:2687-2698.

232. De Mase D, Zeng L, Cera C, Fasullo M. 2005. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways. DNA Repair (Amst) 4:59-69.

233. De Zamaroczy M, Bernardi G 1985. Sequence organization of the mitochondrial genome of yeast a review. Gene 37:1-17.

234. De Zamaroczy M, Faugeron-Fonty G, Baldacci G, et al. 1984. The ori sequences of the mitochondrial genome of a wild-type yeast strain1 number, location, orientation and structure. Gene 32-439-457

235. De Zamaroczy M, Marotta M, Faugeron-Fonty G, Goursot R, Mangin M, Baldacci G, Bernardi G. 1981. The origin of replication of the yeast mitochondrial genome and the phenomenon of suppressivity. Nature 292:75-78.

236. De Zamaroczy M, Marotta R, Faugeron-Fonty G, Goursot R, Mangin M, Baldacci G, Bernardi G. 1979. The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity. Nature 292 75-78

237. Deide SJ, Gottschling DE. 2001. Exonuclease activity is required for sequence addition and Cdcl3p loading at adc novo telomere. Curr Biol 11:1336-1340.

238. Del Carratore R, Delia Croce C, Simili M, Taccini E, Scavuzzo M, Sbrana S. 2002. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S cerevisiae. Mutation Res 513:183-191.

239. Demple B, Harrison L. 1994. Repair of oxidative damage to DNA: emzymology and biology. Annu Rev Biochem 63:915-948.

240. Demple B, Linn S. 1980. DNA N-glycosylases and UV repair. Nature 287:203-208

241. DeRisi JL, Iyer VR, Brown PO 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686.

242. Desai SD, Pasupathy K, Chetty KG, Pradhan OS. 1989. Evidence for the presence of a DNA primase in mitochondria of Saccharomyces cerevisiae. Biochem Biophys Res Commun 160.525-534.

243. Devin AB, Koltovaya NA, Cheryomukhina N1. 1987. The disomy for chromosome IV and the spontaneous rho' mutability in Saccharomyces cerevisiae. Curr Genet 11 407-410

244. Devin AB, Koltovaya NA. 1981 Nuclear mutants of yeast with reduced spontaneous mutability of the mitochondrial genome. Mutation Res 91:451-455.

245. Devin AB, Koltovaya NA. 1987. Genetic modification of the spontaneous rho" mutability in Saccharomyces cerevisiae. Curr Genet 11:411-413.

246. Devin AB, Prosvirova TYu, Peshekhonov VT, et al 1990 The Start gene CDC28 and the genetic stability of yeast. Yeast 6:231-243.

247. Dianov Gl, Sou/a-Rinto N, Nyaga SG, Thybo T, Stevnsner T, Bohr VA. 2001. Base excsion repair in nuclear and mitochondrial DNA. Prog Nucleic Acids Res 68.285-297

248. Diaz S, Zinker S, Ruiz-I Ierrera J. 1992 Alterations in the cell wall of Saccharomyces cerevisiae induced by alpha sex factor or a mutation in the cell cycle. Antonie van Leeuwenhoek 61 269-276

249. Diffley JE, Stillman B. 1991. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sei USA 88:7864-7868.

250. Diffley JF, Stillman B. 1988. Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer. Proc Natl Acad Sei USA 85.2120-2124.

251. Diffley J FX, Stillman B. 1992. DNA binding properties of an HMG1-related protein from yeast mitochondria. J Biol Chem 267:3368-3374

252. Dimmer KS, Jakobs S, Vogel F, Altmann K, Westermann B. 2005. Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. J Cell Biol 168:103-115.

253. Dirick L, Böhm T, Nasmyth K. 1995. Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae EMBO J 14.4803-4813.

254. Djaldetti M 1982 Mitochondrial abnormalities in the cells of myeloma patients Acta Haematol 68 241.

255. Doetsch PW, Heiland DE, Ilaseltine WA 1986. Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry 25.2210-2220.

256. Domena JD, Mosbaugh DW. 1985. Purification of nuclear and mitochondrial uracil-DNA glycosylase from rat liver. Identification of two distinct subcellular forms. Biochemistry 24:7320-7328.

257. Domena JD, Timmer RT, Dicharry SA, Mosbaugh DW. 1988. Purification and properties of mitochondrial uracil-DNA glycosylase from rat liver. Biochemistry 27-6742-6751

258. Donahue SL, Corner BE, Bordone L, Campbell C. 2001. Mitochondrial DNA ligase function in Saccharomyces cerevisiae. Nucleic Acids Res 29:1582-1589.

259. Donze D, Kamakaka RT. 2001. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 20:520-531.

260. Downs JA, Lowndes NF, Jackson SP. 2000. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001 -1004.

261. Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Krön SJ, Jackson SP, Cote J. 2004. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16-979-990

262. Doyle T, Botstein D. 1996. Movement of yeast cortical actin cytoskeleton vizualized in vivo. Proc Natl Acad Sei USA 93:3886-3891.

263. Drebot MA, Johnston GC, Singer RA. 1987. A yeast mutant conditionally defective only for reentry in the mitotic cell cycle from stationary phase. Proc Natl Acad Sei USA 84:79487952.

264. Driggers WJ, Holmquist GP, LeDoux SP, Wilson GL 1997 Defective repair of mapping frequencies of endogencous oxidative damage and the kinetic response to oxidative stress in a region of rat mtDNA. Nucl Acids Res 25:4362-4369.

265. Driggers WJ, LeDoux SP, Wilson GL. 1993. Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J Biol Chem 268:22042-22045.

266. Drubin DG, Jones HD, Werman KF. 1993. Actin structure and function- roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site Mol Biol Cell 4.1277-1294

267. Druzhyna N, Smulson ME, Le Doux SP, Wilson GL 2000. Poly(ADP-nbose) polymerase facilitates the repair of N-methylpurines in mitochondrial DNA Diabetes 49:1849-1855

268. Dujon B, Slonimski PP, Weill L. 1974. Mitochondrial genetics. IX. A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae. Genetics 78.415-437.

269. Dujon B 1981. Mitochondrial genetics and functions In The molecular biology of the yeast Saccharomyces. Life cycle and inheritance Strathern JN, Jones EW, Broach JR (cds) Cold Spring Harbor Laboratory. Cold Spring Harbor. NY*505-635.

270. Dunbar DR, Moonie PA, Jacobs HI, Holt 1J. 1995. Different cellular backgrounds confer a markered advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sei USA 92:6552-6566.

271. Dzierzbicki P, Koprowski P, Fikus MU, Male E, Ciesla Z. 2004. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSII1-dependent pathway. DNA Repair (Amst) 3:403-411.

272. Eapen CE, Madesh M, Balasubramanian KA, Palimood A, Mathan M, Ramakrishna BS. 1998. Mucosal mitochondrial function and antioxidant defences in patients with gasteric carcinoma. Scand J Gastroenterol 33.975-981.

273. Elledge S, Davis RW. 1987. Identification and isolation of the gene encoding the small subumt of ribonucleotide reductase from Saccharomyces cerevisiae. Mol Cell Biol 7:27832793.

274. Elledge SJ, Davis RW. 1990. Two genes differentially regulated in the cell-cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev 4:740-751.

275. Emili A. 1998. MEC1-dependent phosphorylation of Rad9p in response to DNA damage Mol Cell 2:183-189.

276. Engebrecht J, Hirsch J, Roeder GS. 1990. Meiotic gene conversion and crossing over their relationship to each other and to chromosome synapsis and segregation. Cell 62*927937.

277. Enomoto S, Berman J. 1998 Chromatin assembly factor I contributes to the maintenance, but not the re-establishmcnt, of silencing at the yeast silent mating loci. Genes Dev 12 219232

278. Entian KD, Schustcr I', Hegemann JH, et al. 1999 Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach Mol Gen Genet 262.683702.

279. Ephrussi B, Grandchamp S 1965. Etudes sur l'suppressive des mutants a dcficience respiratoire de la levure. I. Existence au niveau cellulaire de divers degres de suppressivite Heredity 20.1-7.

280. Ephrussi B, Hottinguer H, Chimenes A-M. 1949. Action de l'acriflavine sur les levures 1. La mutation "petite colonie". Ann Inst Pasteur 76:351-367.

281. Epstein CB, Waddle JA, Hale W, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA 2001. Genome-wide responces to mitochondrial dysfunction. Mol Biol Cell 12:297-308

282. Evans DH, Kolodner R 1987. Constraction of a synthetic Holliday junction analog and characterization of its interaction with a, Saccharomyces cerevisiae endonuclease that cleaves Holliday junctions J Biol Chem 262.9160-9165

283. Evans DII, Kolodner R. 1988 Effect of DNA straucture and nucleotide sequence on Holliday junction resolution by a Saccharomyces cerevisiae endonuclease. J Mol Biol 201.69-80.

284. Evans DR, Brewster NK, Xu Q, Rowley A, Altheim BA, Johnston GC, Singer RA 1998. The yeast protein complex containing cdc68 and pob3 mediates core-promoter repression through the cdc68 N-terminal domain Genetics 150.1393-1405.

285. Evans MJ, Scarpulla RC. 1989. Interactions of nuclear factors with multiple sites in the somatic cytochrome c promotor. J Biol Chem 264:14361-14368.

286. Ezekiel UR, Zassenhaus HP. 1993. Localization of a cruciform cutting endonuclease to yeast mitochondria. Mol Gen Genet 240:414-418.

287. Fahrenkrog B, Sauder U, Aebi U. 2004. The S cerevisiae HtrA-like protein Nmal 1 lp is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci 117:15-26

288. Fangman WL, Henly JW, Brewer BJ. 1990. RP041-independent maintenance of rho" mitochondrial DNA in Saccharomyces cerevisiae. Mol Cell Biol 10.10-15.

289. Fangman WL, Henly JW, Churchill G, Brewer BJ. 1989. Stable maintenace of a 35-base-pair yeast mitochondrial genome. Mol Cell Biol 9 1917-1921.

290. Fath KR, Burgess DR. 1993. Goldgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein J Cell Biol 120.117-127.

291. Fearon K, Mason TL. 1992. Structure and function of MRP20 and MRP49, the nuclear genes for 2 proteins of the 54S-subunit of the yeast mitochondrial ribosome. J Biol Chem 267:5162-5170.

292. Fekete V, Masiarova E, Sulo P. 2001. Mitochondrial signalization under the extreme condition I. Is the double ADP/AIP translocator mutant in combination with rho' lethal? How to rescue "death cells". Yeast 18:123.

293. Feldman RM, DeModena J, Moazed D, Charbonneau H, Nomura M, Deshais RJ. 2001. Netl stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol Cell 8:45-55.

294. Ferdous A, Gonzalez F, Sun L, Kodadek T, Johnston SA. 2001. The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol Cell 7.981-991.

295. Ferdous A, Kodadek 1', Johnston SA 2002. A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry 41:12798-12805.

296. Fernandez-Capetillo O, et al. 2002. DNA-damage induced G2/M checkpoint activation by histone H2aX and 53BP1. Nature Cell Biol 4.993-997

297. Fernandez-Capetillo 0, Nussenzweig A. 2004. Linking histone deacetylation with the repair of DNA breaks. Proc natl Acad Sei USA 101:1427-1428.

298. Fields SD, Conrad MN, Clarke M. 1998. The S cerevisiae CLN1 and D discoideum cluA genes are functional homologues that influence mitochondrial morphology and distribution J Cell Sei 111.1717-1727

299. Filipak M, Drebot MA, Ireland LS, Singer RA, Johnston GC. 1992. Mitochondrial DNA loss by yeast reentry-mutant cells conditionally unable to proliferate from stationary phase Curr Genet 22.471-477.

300. Fisher RP, Lisowsky Y, Parisi MA, Clayton DA 1992. DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein J Biol Chem 267:3358-3367.

301. Fisk HA, Yaffe MP. 1997. Mutational analysis of Mdml function in nuclear and mitochondrial inheritance J Cell Biol 138:485-494.

302. Fisk HA, Yaffe MP. 1999. A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J Cell Biol 145:1199-1208.

303. Foiani M, Pelliciioli A, Lopes M, Lucca C, Ferrari M, Liberi G, Falconi MM, Plevani P.2000. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutation Res 451:187-196.

304. Foury F, Goffeau A 1979 Genetic control of enhanced mutability of mitochondrial DNA and gamma-ray sensitivity in Saccharomyces cerevisiae. Proc Natl Acad Sei USA 76 65296533

305. Foury F, Kolodynski J. 1983. pif mutation blocks recombination between mitochondrial rhof and rho" genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. Proc Natl Acad Sei USA 80.5345-5349.

306. Foury F, Lahaye A 1987. Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. EMBO J 6 1441-1449.

307. Foury F, Lccrenier N. 2000. New features of mitochondrial DNA replication system in yeast and man Gene 246'37-48.

308. Foury F, Roganti T, Lecrenier N, Purnelle B. 1998. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325-331.

309. Foury F, Tzagoloff A. 1976. Localization on mitochondrial DNA of mutations leading to loss of rutamycin-sensitive adenosine triphosphatse. Eur J Biochem 68:113-119

310. Foury F, Van Dyck E. 1985. A PIF-dependent recombinogenic signal in the mitochondrial DNA EMBO J 4:3525-3530.

311. Foury F. 1982. Repair of mitochondrial DNA in Saccharomyces cerevisiae. J Biol Chem 257:781-787.

312. Foury F. 1989. Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase J Biol Chem 264:20552-20560.

313. Foury F. 1990. Theses d'agrégation. I he metabolism of mitochondrial DNA in Saccharomyces cerevisiae. Université Catholique de Louvain. Belgium

314. Foury F. 1997. Human genetic diseases: a cross-talk between man and yeast. Gene 195:110.

315. Fox CA, Ehrenhofer-Murray AE, Loo S, Rine J. 1997. lhe origin recognition complex, SIR1, and the S phase requirement for silencing Science 276:1547-1551.

316. Fox TD. 1996. Genetics of mitochondrial translation. In: Translational control. Hershey JWB, Mathews MB, Sonenberg N (eds). Cold Spring Harbor Laboratiry Press. Cold Spring Harbor. NY:733-758.

317. Frank S, Gaume B, Bergmann-Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ.2001. The role of dynamin-related protein 1, a mediator of mitochondrial fission in apoptosis DevCell 1'515-525.

318. Frankenberg-Schwager M, Frankenberg D, Blocher D, Adamc/yk C. 1980. Repair of DNA double-strand breaks in irradiated yeast cells under nongrowth condition Radiation Res 82:498-510.

319. Frank-Vaillant M, Marcand S. 2001. Nonhomologous end joining regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Reversion 15-3005-3012

320. Fraser A, James C 1998 Fermenting debate-do yeast undergo apoptosis9 I rends Cell Biol 8 219-221.

321. Frejfelder D 1960. Bud formation in Saccharomyces cerevisiae. J Bacteriol 80 567-568

322. Friddle RW, Klare JE, Martin SS, Corzett M, Balhorn R, Baldwin EP, Baskin RJ, Noy A. 2004. Mechanism of DNA compaction by yeast mitochondrial protein Abf2p. J Biophysical 86:1632-1639.

323. Friedberg EC, Walker GC, Siede W. 1995. DNA repair and mutagenesis. 2nd edition. Washington, DC:ASM Press

324. Frohlich KU, Madeo F 2000 Apoptosis in yeast a monocellular organism exhibits altruistic behavior. FEBS Lett 473:6-9.

325. Frohlich KU, Madeo F. 2001. Apoptosis in yeast: a new model for aging research. Exp Gerontol 37 27-31.

326. Fukuhara H, Kujawa C. 1970. Selective inhibition of the in vivo transcription of mitochondrial DNA by ethidium bromide and by acriflavin. Biochem Biophys Res Commun 41:1002-1008.

327. Gallego C, Gari E, Colomina N, Herrero E, Aldea M. 1997. The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast EMBOJ 16 7196-7206

328. Game JC, Birrcll GW, Brown JA, Shibata T, Baccari C et al. 2003 Use of a genome-wide approach to identify new genes that control resistance of Saccharomyces cerevisiae to ionizing radiation Radiat Res 160:14-24.

329. Game JC, Williamson MS, Baccari C. 2005. X-ray survival characteristics and genetic analysis for nine Saccharomyces deletion mutants that show alterd radiation sensitivity. Genetics 169.51-63.

330. Gammie AE, Kurihara IJ, Vallee RB, Rose MD. 1995. DNM1, a dynamin-related gene, participates in cndosomal trafficking in yeast. J Cell Biol 130:553-566.

331. Gangloff Y-G, Werten S, Romier C, Carre L, Poch O, Moras D, Davidson I. 2000. The human TFIID components TAFnl35 and TAFn20 and the yeast SAGA components ADA1 and TAF1168 heterodimerize to form histone-like pairs. Mol Cell Biol 20.340-351.

332. Garcia SN, Pillus L. 2002. A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae Genetics 162:721-736.

333. Garcia SN, Pillus SM 1999. Net results of nucleolar dynamics Cell 97:825-828.

334. Gardner R, Putnam CW, Weinert T. 1999 RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast EMBO J 18 3173-3185.

335. Garrido N, Griparic L, Jokitalo E, Wartiiovaara J, van der Bliek AM, Spelbrink JN. 2003. Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14:1583-1596.

336. Gartenberg MR. 2000. The Sir proteins of Saccharomyces cerevisiae mediators of transcriptional silencing and much more. Curr Opin Microbiol 3:132-137.

337. Garvik B, Carson M, Hartwell L 1995. Single-stranded DNA arising at telomeres in cdcl3 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15:6128-6138.

338. Georgakopoulos T, IhireosG. 1992. 1 wo distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J 11:4145-4152.

339. Ghidelli S, Donze D, Dhillon N, Kamakaka RT. 2001. Sir2p exits in two nucleosome-binding complexes with distinct deacetylase activityes. EMBO J 20.4522-4535.

340. Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M. 2005. The DNA damage checkpoint response requires histone II2B ubiquitination by Rad6-Brel and H3 methylation by Dotl. J Biol Chem (epub ahead of print).

341. Gilbert CS, Green CM, Lowndes NF. 2001 Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol Cell 8:129-136.

342. Gingold EB. 1981. Genetic analysis of the products of a cross involving a suppressive petite mutant of S cerevisiae. Curr Genet 3.213-220.

343. Gingold EB. 1988 The replication and segregation of yeast mitochondrial DNA. In Division and segregation of organelles Eds. Boffey SA, Lloyd D. Cambridge. Cambridge Universit P. 149-170

344. Giraud Mr, Velours J 1997. The absence of the mitochondrial ATP synthase 8-subunit promotes a slow growth phenotype of rho" yeast cells by a lack of assembly of the catalytic sector Fi Eur J Biochem 245 813-818.

345. Glasunov AV, Frankenberg-Schwager M, Frankenberg D. 1995 Different repair kinetics for short and long double-strand gaps in Saccharomyces cerevisiae. Int J Radiat Biol 68:421428

346. Glasunov AV, Glazer VM, Kapultcevich Yu G. 1989. Two pathways of DNA doublestrand break repair in G1 cells of Saccharomyces cerevisiae. Yeast 5:131-139

347. Gogvad/e V, Robertson JD, Zhivotovsky B, Orrenius S 2001. Cytochrome c release occurs via Ca2f-dependent and Ca2+-independent mechanisms that are regulated by Bax J Biol Chem 276:19066-19701.

348. Goldmacher VS, Cuzick RA, 1 hilly WG. 1986. Isolation and partial characterization of human cell mutants differing in sensitivity to killing and mutation by methylnitrosourea and N-nethyl-N'-nitro-N-nitrosoguanidine. J Biol Chem 261:12462-12471.

349. Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J. 1970. llie petite mutation in yeast. Loss of mitochondrial DNA during induction of petites with ethidium bromide. J Mol Biol 52:323-335

350. Goldring ES, Grossman LI, Marmur J. 1971. Petite mutation in yeast. IL Isolation of mutants containing mitochondrial desoxyribonucleic acid of reduced size. J Bacteriol 107:377-381.

351. Gong B, Chen Q, Almasan A 1998. Ionizing radiation stimulates mitochondrial gene expression and activity. Radiat Res 150.505-512.

352. Goodson HV, Anderson BL, Warrick HM, Pon LA, Spudich JA. 1996. Synthetic lethality screen identifies a novel yeast myosin I gene (MY05): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133:1277-1291.

353. Gopalakrishnan L, Scarpulla RC. 1995. Structure, expression, chromosomal assignment of the human gene encoding nuclear respiratory factor 1. J Biol Chem 270:18019-18025.

354. Gorman J A, Gorman J. 1971. Genetic analysis of a gene required for the expression of allele-specific missense supression in Saccharomyces cerevisiae. Genetics 67:337-352.

355. Gossett J, Lee K, Cunningham RP, Doetsch PW. 1988. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coll endonuclease 111. Biochemistry 27:26292634.

356. Gotta M, Strahl-Bolsingcr S, Renauld II, Laroche T, Kennedy BK, Grunstein M, Gasser SM. 1997. Localization of Sir2p. the nucleolus as a compartment for silent information regulators. EMBOJ 16:3243-3255.

357. Gottlieb S, Esposito RE. 1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in nbosomal DNA. Cell 56:771-776.

358. Gottschling DE. 2000. Gene silencing, two faces of SIR2. Curr Biol 10:R708-R711.

359. Gouhier M, Mounolou JC. 1973. Yeast mutants resistant to ethidium bromide. Mol Gen Genet 122:149-164.

360. Gould KL, Nurse EA. 1989. 'tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis Nature 342'39-45.

361. Goursot R, Mangin M, Bernardi G 1982 Surrogate origins of replication in the mitochondrial genomes of ori0 petite mutants of yeast EMBO J 1.705-711.

362. Govindan B, Bowser R, Novick P. 1991. Role of the unconventional myosin gene MY02 in the yeast secretory pathway. J Cell Biol 115:185a.

363. Govindan B, Bowser R, Novick P. 1995. lhe role of Myo2, a yeast class V myosin, in vesicular transport J Cell Biol 128:1055-1068.

364. Grandm N, Charbonneau M 2003 Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells Mol Cell Biol 23 9162-9177.

365. Grandin N, Reed SI. 1993. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol Cell Biol 13:2113-2125.

366. Grant PA, Schieltz D, Pray-Grant MG, Steger DJ, Reese JC, Yates III JR, Workman JL 1998. A subset of TAF(lI)s arc integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation Cell 94.45-53

367. Graves T, Dante M, Eisenhour L, Christianson TW. 1998. Precise mapping and characterization of the RNA primers of DNA replication for a yeast hypersuppressive petite by in vitro capping with guanylyltransferase Nucleic Acids Res 26:1309-1316.

368. Gray MW, Burger G, Lang BF. 2001. The origin and early evolution of mitochondria Genome Biol 2:10-18.

369. Green DR. 1998 Apoptotic pathways: the roads to ruin. Cell 94 695-698.

370. Green CM, Erdjument-Bromage H, l'empst P, Lowndes NF. 2000. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr Biol 10:39-42

371. Green G, McQuillan AM. 1980. Photorepair of ultraviolet induced petite mutational damage in Saccharomyces cerevisiae requires the product of the PHR1 gene. J Bacteriol 144:826-829.

372. Green DR, Reed JC. 1998. Mitochondria and apoptosis. Science 281:1309-1312.

373. Greenleaf AL, Kelly JL, Lehman IR 1986. Yeast RP041 gene is required for transcription and maintenance of the mitochondrial genome Proc Natl Acad Sci USA 83-3391-3394.

374. Gregory PD, Schmid A, Zavari M, Munsterkotter M, Horz W. 1999. Chromatin remodeling at the PH08 promoter requires SWI-SNF and SAGA at a step subsequent to activator binding EMBO J 18:6407-6414.

375. Grishko VI, Druzhyna N, Le Doux SP, Wilson GL. 1999. Nitric oxide-induced damage to mtDNA and its subsequent repair. Nucleic Acids Res 27:4510-4516.

376. Gross A, McDonnell JM, Korsmeyer SJ. 1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899-1911.

377. Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ, Forte M. 2000. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-xL. Mol Cell Biol 20.3125-3136.

378. Grossman LI, Shoubridge EA 1996. Mitochondrial genetics and human disease BioEssays 18:983-991.

379. Gu W, Roeder R. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90.595-606.

380. Guan K, Farth L, Marshall TK, Deschenes RJ. 1993. Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr Genet 24:141-148.

381. Guan MX. 1997. Cytoplasmic tyrosil-tRNA synthetase rescues the defect in mitochondrial genome maintenance caused by the nuclear mutation mgm 104-1 in the yeast Saccharomyces cerevisiae. Mol Gen Genet 255:525-532

382. Guarente L 2000. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14-1021-1026

383. Guelin E, Chevallier J, Rigoulet M, Guerin B, Velours J. 1993. ATP synthase of yeast mitochondria Isolation and disruption of the AI Pr, gene. J Biol Chem 268:161-167.

384. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann Sil, Gores GJ. 2000. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Inv 106:1127-1136.

385. Gunge N, Yamane C. 1984. Incompatibility of linear DNA killer plasmids pGKLl and pGKL2 from Kluyveromyces lactis with mitochondrial DNA from Saccharomyces cerevisiae. J Bacteriol 159:533-539.

386. Gupta PK, Sirover MA. 1981. Stimulation of the nuclear uracil DNA glycosylase in proliferating human fibroblasts Cancer Res 41:3133-3136.

387. Ilabano W, Nakamura S, Sugai I' 1998. Oncogene 17:1931.

388. Iladwiger JA, Reed SI. 1988. Invariant phosphorylation of the Saccharomyces cerevisiae Cdc28 protein kianse. Mol Cell Biol 8:2976-2979.

389. Hadwiger JA, Wittenberg C, Mendenhall MD, Rccd SI. 1989. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosacccharomyces pombe sucl+ gene, encodes a subunit of the Cdc28 protein kinase complex Mol Cell Biol 9:2034-2041.

390. Ilaffter P, Fox TD. 1992. Nuclear mutations in the petite-negative yeast Schozosaccharomyces pombe allow growth of cells lacking mitochondrial DNA. Genetics 131:255-260.

391. Hagan IM, Ilyams JS. 1988. The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosacharomyces pombe. J Cell Sei 89:343-357.

392. Hagelberg E, Goldman N, Lio P, Whelan S, Schiefenhovel W, Clegg JB, Bowden DK. 1999. Evidence for mitochondrial DNA recombination in human population of island Melanesia Proc Roy Soc Lond B Biol Sei 266.485-492.

393. Hall RM, Nagley P, Linnane AW. 1976 Biogenesis of mitochondria XLII. Genetic analysis of the control of cellular mitochondrial DNA levels in Saccharomyces cerevisiae. Mol Gen Genet 145:169-175.

394. Hall RM, Trembath MK, Linnane AW, Wheelis L, Criddle RS. 1976. Factors affecting petite induction and the recovery of respiratory competence in yeast cells exposed to ethidium bromide. Mol Gen Genet 144-253-262.

395. Handwerker A, Schweyen RJ, Wolf K, Kaudewitz F. 1973. Evidence for an extracaryotic mutation affecting the manitenance of the rho factor in yeast. J Bacteriol 113:1307-1310.

396. Hartwell LH, Weinert I'. 1989. Checkpoints: control that ensure the order of cell cycle events. Science 246:629-634.

397. Hatzfield J 1973. Correlation between degradation, replication and repair of yeast DNA irradiated by UV or X-rays Biochem Biophys Acta 299.43-53.

398. Hayles J, Nurse P. 1986 Cell cycle regulation in yeast. J Cell Sei Suppl 4:155-170.

399. Hecht A, laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. 1995. Histone 113 and 114 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80 99-104

400. Heggeness Mil, Simon M, Singer SJ. 1978 Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sei USA 75'3863-3866.

401. Hereford L, Fahrner K, Woolford J, Rosbash M. 1979 Isolation of yeast histone genes H2A and H2B Cell 18:1261-1271.

402. Hermann GJ, King EJ, Shaw JM. 1997. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J Cell Biol 137:141153.

403. Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MI", Nunnari J, Shaw JM 1998 Mitochondrial fusion in yeast requires the thransmembrane GTPase fzolp J Cell Biol 143.359-373.

404. Heude M, Chanet R, Moustacchi E 1975. Protein synthesis and recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. I. Nuclear-directed protein synthesis Mutation Res 28:37-46.

405. Heude M, Chanet R. 1975. Protein synthesis and recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. II. Mitochondrial protein synthesis. Mutation Res 28:47-55.

406. Heude M, Fabre F 1993 a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae* genetic and physiological aspects. Genetics 133 489-498.

407. Heude M, Fukuhara H, Moustacchi E 1979. Spontaneous and induced rho" mutants of Saccharomyces cerevisiae: patterns of loss of mitochondrial genetic markers. J Bacteriol 139.460-467.

408. Heude M, Moustacchi E. 1973. Influence de la croissance sur la reparation des radiolesions responsables de la mutation cytoplasmique "petite colonie" chez la levure. CR Acad Sei Paris 277:1561-1564

409. Heude M. 1988. The induction of rho' mutants by UV or gamma-rays is independent of the nuclear recombinational repair pathway in Saccharomyces cerevisiae. Mutation Res 194:151-163.

410. Hill JE, Myers AM, Koerner TJ, Tzagoloff A. 1986. YeastIE coli shuttle vectors with multiple unique restriction sites. Yeast 2:163-167.

411. Hixon S, Franks HL, Moustacchi E. 1980. Yeast mitochondrial DNA characterization after ultraviolet irradiation. Mutation Res 73'267-277.

412. Hixon S, Moustacchi E 1978. Ihe fate of mitochondrial DNA after ultraviolet irradiation. 1. Degradation during post-UV dark liqiud holding in non-nutrient medium. Biochem Biophys Res Commun 81 288-296

413. Hixon SC, Gaudin D, Yielding KL 1975. Evidence for the dark repair of ultraviolet damage in Saccharomyces cerevisiae mitochondrial DNA. Proc Natl Acad Sei USA 150:503-509.

414. Hobbs AE, Srinivasan M, McCaffery JM, Jensen RE. 2001. Mmmlp, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J Cell Biol 152 401-410.

415. Hochman A 1997. Programmed cell death in prokaryotes Crit Rev Microbiol 23*207214.

416. Hoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH. 2001. A role for Vpslp, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155.979-990.

417. Hoffmann B, Stockl A, Schlame M, Beyer K, Klingenberg M. 1994. The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J Biol Chem 269.1940-1944

418. Hoffmann HP, Avers CJ. 1973. Mitochondrion of yeast, ultrastructural evidence of one giant. Branched organelle per cell. Science 181:749-751.

419. Hollenberg CP, Borst P, Bruggen EFJ. 1970. Mitochondrial DNA. V. A 25 micron closed circular duplex DNA molecule in wild-type yeast mitochondria. Structure and genetic complexity. Biochem Biophys Acta 209.1-15.

420. Holliday R, Resnick MA. 1970. Allelic recombination and DNA degradation in Ustilago Heredity 25:494-498.

421. Ilollstein MC, Brooks P, Linn S, Ames BN. 1984. Hydroxymethyluracil DNA glycosylase in mammalian cells Proc Natl Acad Sci USA 81-4003-4007.

422. Holstege FCP, Jennings EG, Wynck JJ, Lee TI, Hengartner CJ, Green MR, Golub 1R, Lander ES, Young RA 1998. Dissssecting the regulatory circuitry of a eukaryotic genome. Cell 95:717-728.

423. Horiuchi J, Silverman N, Pina B, Marcus GA, Guarente L. 1997. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3 Mol Cell Biol 17:3220-3228.

424. Horton 1M, Petros JA, Heddi A, Shoffner J, Kaufman AE, Graham SD Jr, Gramlich T, Wallace DC. 1996. Novel mitochondrial DNA deletion found in a renal cell carcinoma Genes Chromosomes Cancer 15:95-101.

425. Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L 2001. Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 15:3144-3154

426. Howell JD 1999. lhe paradox of osteopathy. N Engl J Med 341:1465-1468.

427. HuS.etal 1994. Nature 369:581-584.

428. I lu JP, Vanderstraeten S, Poury P. 1995 Isolation and characterization of ten mutator alleles of the mitochondrial DNA polymerase-encoding MIP1 gene from Saccharomyces cerevisiae. Gene 160:105-110.

429. Huang J, Moazed D. 2003. Association of the RENT complex with nontransenbed and coding regions of rDNA and a regional requirement for the replication fork block protein Fobl in rDNA silencing Genes Dev 17:2162-2176.

430. Huang M, Elledge SJ 1997. Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol 17:61056113.

431. Hudson EK, Hogue BA, Souza-Pinto NC, Croteau DL, Anson RM, Bohr VA, Hansford RG. 1998. Age-associated change in mitochondrial DNA damage. Free Radic Res 29.573579.

432. Huffaker TC, Thomas JH, Botstein D. 1988. Diverse effects of beta-tubulin mutations on microtubule formation and function. J Cell Biol 106:1997-2010.

433. Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Ilasegawa PM. 2002. Salt causes ione disequilibrium-induced programmed cell death in yeast and plants. Plant J 29.649-659.

434. Ichas F, Mazat J-P. 1998. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state Biochem Biophys Acta 1366:33-50.

435. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y. 2000. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463-473.

436. Imoberdorf RM, Topalidou I, Strubin M 2006. A role for Gcn5-mediated global histone aeetylation in transcriptional regulation. Mol Cell Biol 26.1610-1616.

437. Inagaki T, Kobayashi S, Ozeki N, Suzuki M, Fukuzawa Y, Shimizu K, Kato K. 1992 Ultrastructural identification of light microscopic giant mitochondria in alcoholic liver disease. Hepatology 15.46.

438. Ink B, Zorning M, Baum B, Hajinagheri N, James C, Chittenden T, Evan G. 1997. Human Bak induces cell death in Schizosaccharomyces pombe with morphological changes similar to those with apoptosis in mammalian cells. Mol Cell Biol 17.2468-2474.

439. Ira G, Pellicioli A, Bahjja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Toiani M. 2004 DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431*10111017.

440. Irie K, Araki H, Oshima Y. 1991. Mutations in a Saccharomyces cerevisiae host showing increased holding stability of the heterologous plasmid pSRl. Mol Gen Genet 225:257-265.

441. Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK. 2002. Chromatin boundaries in budding yeast'the nuclear pore connection Cell 109:551-562.

442. Ishikawa K, Catlett NL, Novak JL, Tang F, Nau JJ, Weisman LS. 2003. Identification of an organelle-specific myosin V receptor. J Cell Biol 160.887-897.

443. Ito H, Fukuda Y, Murata K, Kimura A. 1983. Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163-168.

444. Itoh T, Toh-E A, Matsui Y. 2002. Complex formation with Yptllp, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol Cell Biol 22:7744-7757.

445. Itoh T, Toh-E A, Matsui Y 2004. Mmrlp is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast EMBO J 23:2520-2530

446. Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K. 2002. Ecol is a novel acetyltransfcrase that can acetylate proteins involved in cohesion Curr Biol 12:323-328.

447. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. 2003. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12:1525-1536.

448. Ivessa AS, Zakian VA. 2002. To fire or not to fire: origin activation in Saccharomyces cerevisiae ribosomal DNA. Genes Dev 16.2459-2464.

449. Jacobs CW, Adams AEM, Szaniszlo PJ, Pringle JR. 1988. Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J Cell Biol 107:1409-1426.

450. Jacquemin-Sablon H, Jacquemin-Sablon A, Paoletti C. 1979. Yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide. I. Purification and properties Biochemistry 18:119-127.

451. Jacquemin-Sablon H, Le Bret M, Jacquemin-Sablon A, Paoletti C. 1979. Yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide. II. Mechanism of en/yme activation. Biochemistry 18-128-134

452. Janitor M, Subik J. 1993. Molecular cloning of the PEL1 gene of Saccharomyces cerevisiae that is essential for the viability of petite mutants. Curr Genet 24:307-312.

453. Jansen RP, Dowzer C, Michaelis C, Galova M, Nasmyth K. 1996 Mother cell-specific IIO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84.687-697.

454. Jaspersen SL, Charles JF, Morgan DO. 1999. Inhibitory phosphorylation of the APC regulator Hctl is controlled by the kinase Cdc28 and the posphatase Cdcl4. Curr Biol 9.227236.

455. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP. 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313-320

456. Jelinsky SA, Estep P, Church GM, Samson LD. 2000. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes Mol Cell Biol 20:8157-8167.

457. Jensch F, Kosak HG, Seeman NC, Kemper B. 1989. Cruciform cutting endonucleases from Saccharomyces cerevisiae and phage T4 show conserved reactions with branched DNAs. EMBO J 8:4325-4334

458. Jenuth JP, Peterson AC, Fu K, Shoubridge EA. 1996. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14:146-151.

459. Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan N, Taylor SS. 2001 Dynamics ofcAMP-dependent protein kinase Chem Rev 101:2243-2270.

460. Johnston GC, Prendergast J A, Singer RA 1991. The Saccharomyces cerevisae MY02 gene encodes an essential myosin for vectorial transport of vesicles J Cell Biol 113 539-551

461. Johnston LH, Nasmyth KA. 1978. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Natute (London) 274 981-893

462. Jones BA, Fangman WL. 1992. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding of dynamin. Genes Dev 6*380-389

463. Jones PC, Fillingame RH. 1998. Genetic fusions of subunit c in the FOsector of H+ -transporting ATP synthase. Functional dimers and trimers and determination of stoichiometry by cross-linking analysis. J Biol Chem 273:29701-29705.

464. Jorgensen WL, Chandrasekhar J, Madura JD. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79.926-935.

465. Jorgensen JJ, Kow YV, Wallace S, Henner WD. 1987. Mechanism of action of Micrococus luteus gamma-endonuclease. Biochemistry 26:6436-6443.

466. Julou C, Bolotin-Fukuhara M 1982 Genetics of mitochondrial ribosomes of yeast mitochondrial lethality of a double mutant carrying two mutations of the 21S nbosomal RNA gene. Mol Gen Genet 188:256-260.

467. Kachar B, Reese TS 1988. The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments J Cell Biol 106:1545-1552.

468. Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570-2580.

469. Kaisho Y, Yoshimura K, Nakahama K. 1989. Increase in gene expression by respiratory-deficient mutation. Yeast 5:91-98.

470. Kajander OA, Karhunen PJ, Holt IJ, Hacobs HT. 2001. Prominent mitochondrial DNA recombination intermediates in human hert muscle. EMBO J Rep 2:1007-1012.

471. Kamal MA, French SW. 2004. Drug-induced increased mitochondrial biogenesis in a liver biopsy. Exp Mol Pathol 77:201-204.

472. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ. 2004. Spatial and temporal association of Bax with mitochondrial fission sites, Drpl, and Mfn2 during apoptosis J Cell Biol 164:493-499.

473. Katzmann DJ, Sarkar S, Chu T, Audhya A, Emr SD. 2004. Multivesicular body sorting-ubiquitin ligase Rsp5 is required for the modification and sorting of carboxypeptidase S. Mol Biol Cell 15:468-480.

474. Kaufman BA, Kolesar JE, Perlamn PS, Butow RA. 2003. A function for the mitochondrial chaperomn Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomytes cerevisiae J Cell Biol 163.457-61

475. Kaufman BA, Newman SM, Hallberg RL, Slaughter CA, Perlman PS, Butow RA. 2000 In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc Natl Acad Sci USA 97:7772-7777.

476. Kelly JL, Greenleaf AL, Lehman IR. 1986. Isolation of the nuclear gene coding a subunit of the yeast mitochondrial RNA polymerase. J Biol Chem 261:10348-10351.

477. Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H. 1992. Purification and characterization of cytosolic acomtase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci USA 89 11730-11734.

478. Keogh M-C et al. 2006. A phosphatase complex that dephosphorylates yH2AX regulates DNA damage checkpoint recovery. Nature 439.497-501.

479. Kholmurodov KhT et al 2003. Methods of Molecular Dynamics for Simulations of the Physical and Biological Processes PEPAN (Physics of Elementary Particles and Atomic Nuclei) 34:474-501.

480. Kholmurodov Kh, Hirano Y, Ebisuzaki E. 2003. MD Simulations on the Influence of Disease-Related Amino Acid Exchanges in the Human Prion Proteins. Chem-Bio Informatics J 3:86-95.

481. Kholmurodov Kh, Ebisuzaki T. 2004. MD Simulation on the Structural Changes and Conformational Dynamics of the Retinal Proteins (Rhodopsins) in and Explicit Solvent ICMS-CSW2004. C4:9-l 1.

482. Kholmurodov Kh 2005. Molecular-Dynamics Simulations of Rhodopsin and Prion Proteins: The Effect of Disease-Related Amino Acid Mutations on Their Structural Conformations, PEPAN (Physics of Particles and Nuclei) 36:1-16.

483. Khrapko K, Coller H, Andre P, Li X-C, Hanekamp JS, 'I hilly WG. 1997. Mitochondrial mutational spectra in human cells and tissues. Proc Natl Acad Sci USA 94:13798-13803.

484. Kilmartin JV, Adams AEM. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol 98.922-933.

485. Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599-608.

486. King MP, Attardi G. 1989. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246:500-503.

487. Kingston RE, Narlikar GJ. 1999. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13 2339-2352.

488. Kispal G, Csere P, Guiard B, Lill R 1997. The ABC transporter Atmlp is required for mitochondrial iron homeostasis. FEBS Let 418:346-350.

489. Kispal G, Sipos K, Lange H, Fekete Z, Bedekovics T, Janaky T, Bassler J, Aguilar Netz DJ, Balk J, Rotte C, Lill R. 2005. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rlilp and mitochondria. EMBO J 24:589-598.

490. Kissil JL, Cohen O, Raven T, Kimchi A. 1999. Structure-function analysis of an evolutionary conserved protein, DAP3, which mediates TNF-alpha- and Fas-induced cell death. EMBO J 18:353-362.

491. Klausner RD, Rouault TA. 1993. A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol Biol Cell 4" 1-5

492. Kleff S, Kemper B, Sternglanz R 1992. Identification and characterization of yeast mutants and the gene for a cruciform cutting endonuclease. EMBO J 11:699-704.

493. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132-1136

494. Kluck RM, Ellerby LM, Ellerby HM, Naiem S, Yaffe MP, Margoliash E, Bredesen D, Mauk AG, Sherman F, Newmeyer DD. 2000. Determinants of cytochrome c pro-apoptotic activity. The role of lysine 72 trimethylation. J Biol Chem 275.16127-16133.

495. Knight E. 1969. Mitochondria associated RNA of the Hela cell. Effect of ethidium bromide on the synthesis of nbosomal and 4 S RNA Biochemistry 8:5089-5093.

496. Knighton DR, Zheng J, Ten Eyck LF, Ashford VA, Xuong N-H, Taylor SS, Sowadski JM 1991. Crystal structure of the catalytic subumt of cyclic adenosine monophosphate-dependnet protein kinase. Science 253 407-414

497. Koehler CM, Lindberg GL, Brown DR, Bcitz DC, Freeman AE, Mayfield JE, Myers AM. 1991. Replacement of bovin mitochondrial DNA by a sequence variant within one generation. Genetics 129.247-255.

498. Kolarov J, Kolarova N, Nelson N. 1990. A third ADP/ATP translocator gene in yeast. J Biol Chem 265.12711-12716.

499. Koltovaya NA, Arman IP, Devin AB. 1998 Mutation of the CDC28 gene and the radiation sensitivity of Saccharomyces cerevisiae Yeast 14:133-146.

500. Koltovaya NA, Devin AB 1995 New nuclear gene mutations that cause coordinate changes in mitotic stability of various genetic structures in Saccharomyces cerevisiae Yeast 11:S72.

501. Koltovaya NA, Devin AB 1996. Yeast genes involved in both cell cycle regulation at checkpoints and maintenance of various genetic structures. Biochem Soc Transactions 24:516.

502. Koltovaya NA, Guerasimova AS, Tchekhouta IA, Devin AB. 2003. NET1 and HF11 genes of yeast mediate both chromosome maintenance and mitochondrial rho" mutagenesis. Yeast 20.955-971.

503. Komeili A, Wedaman KP, O'Shea EK, Powers T. 2000. Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtgl and Rtg3 transcription factors J Cell Biol 13.863-878.

504. Kominsky DJ, Ihorsness PE. 2000. Expression of the Saccharomyces cerevisiae gene YME1 in the petite-negative yeast Schizosaccharomyces pombe converts it to petite-positive. Genetics 154:147-154.

505. Koradi R, Billeter M, Wuthrich K. 1996. MOLMOL: a program for display and analysis of macromolecular structure. J Mol Graphics 4:51-55.

506. Korr H, Thorsten-Rohde H, Benders J, et al. 2001. Neuron loss during early adulthood following prenatal low-dose X-irradiation in the mouse brain. Int J Radiat Biol 77:567-580.

507. Korshunov SS, Skulachev VP, Starkov VV. 1997. High protonic potential actuates a mechanism of production of reactivc oxygen species in mitochondria. FEBS Lett 416:15-18.

508. Koshiba T, Dctmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. 2004. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858-862.

509. Kovacova V, Irmlerova J, Kovac L. 1968. Oxidative phosphorylation in yeast. IV Combination of a nuclear mutation affecting oxidative phosphorylation with a cytoplasmic mutation to respiratory deficiency. Biochem Biophys Acta 162:157-162.

510. Krebs JE, Kuo MH, Allis CD, Peterson CL. 1999. Cell cycle regulated histone acetylation required for expression of the yeast HO gene. Genes Dev 13:1412-1421.

511. Krek W, Nigg HA. 1991. Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J 10:3331-3341.

512. Kroemer G, Zamzami N, Susin SA. 1997. Mitochondrial control of apoptosis. Immunol Today 18:44-51.

513. Kroemer G. 1997. lTie proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med 3.614-620

514. Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF. 2002 RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22:6979-6992.

515. Kubota N, Hayashi J, Inada T, Iwamura Y. 1997. Induction of a particular deletion in mitochondrial DNA by X rays depends on the inherent radiosensitivity of the cells Radiat Res 148:395-398.

516. Kumar S, Colussi FA. 1999. Prodomains-adaptors-oligomeri/ation: the pursuit of caspase activation in apoptosis. frends Biochem Sei 24:1-4.

517. Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD. 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12: 627-639.

518. Kurdistani SK, Robyr D, Tavazoie S, Grunstein M. 2002. Genome-wide binding map of the RPD3 histone deacetylase in yeast. Nat Genet 31:248-254.

519. Lahaye A, Stahl 11, Thines SD, Foury F. 1991. P1F1: a DNA helicase in yeast mitochondria EMBO J 10.997-1007.

520. Lai-Zhang J, Xiao Y, Mueller DM 1999. Epistatic interactions of deletion mutants in the genes encoding the Fl-ATPase in yeast Saccharomyces cerevisiae. EMBO J 18:58-64.

521. Lakshmipathy U, Campbell C. 1999. Double-strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res 27:1198-1204.

522. Lallev A, Anachkova B, Russev G. 1993. Effect of ionizing radiation and topoisomerase II inhibitors on DNA synthesis in mammalian cells. Eur J Biochem 216:177-181.

523. Lamb JR, Petit-Frere C, Broughton BC, Lehmann AR, Green MH. 1989. Inhibition of DNA replication by ionizing radiation is mediated by a trans-acting factor. Int J Radiat Biol 56:125-130.

524. Landsman D, Bustin M. 1993. A signature for the HMG-1 box DNA-binding proteins. BioEssays 15:1-8.

525. Lange H, Lisowsky T, Gerber J, Muhlcnhoff U, Kispal G, Lill R. 2001. An essential function of the mitochondrial sulfhydryl oxidase Ervlp/ALR in the maturation of cytosolic Fe/S proteins EMBO Rep 2:715-720.

526. Larsson NG, Clayton DA. 1995. Molecular genetic aspects of human mitochondrial disorders Annu Rev Genet 29:151-178.

527. Larsson NG, Holme E, Kristiansson B, Oldfors A, Tulinius M. 1990. Progressive increase of the mutated mitochondrial DNA fraction in Kearns-Sayre syndrome Pediatr Res 28:131-136.

528. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet 18:231-236.

529. Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M. 2001. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166-1173.

530. Lawson JE, Douglas MG. 1988. Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae: isolation and analysis of AAC2 J Biol Chem 263:14812-14818.

531. Lazzarino DA, Boldogh I, Smith MG, Rosand J, Pon LA. 1994. Yeast mitochondria contain ATP-sensitive, reversible actin-binding activity. Mol Biol Cell 5:807-818.

532. Lecrenier N, Foury F. 1995. Overexpression of the RNR1 gene rescues Saccharomyces cerevisiae mutants in the mitochondrial DNA polymerase-encoding M1P1 gene. Mol Gen Genet 249:1-7.

533. LeDoux SP, Patton NJ, Avery LJ, Wilson GL. 1993. Repair of N-methylpurines in the mitochondrial DNA of xeroderma pigmentozum complementation group D cells. Carcinogenesis 14:913-917.

534. LeDoux SP, Wilson GL, Beechman EJ, Stevnsner T, Wassermann K, Bohr VA. 1992. Repair of mitochondrial DNA after varios types of DNA damage in chinnese hamster ovary cells Carcinogenesis 13:1967-1973.

535. LeDoux SP, Wilson GL. 2001. Base excision repair of mitochondrial DNA damage in mammalian cells. Prog Nucleic Acids Res 68:273-284.

536. Lee HC, Yin PH, Lu CY, et al. 2000. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348.Pt2:425-432.

537. Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE. 1998. Ku70, Mrel 1/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage Cell 94:399-409.

538. Lee SE, Paques F, Sylvan J, Haber JE. 1999. Role of yeast SIR genes and mating type in channeling double-strand breaks to homologous and nonhomologous recombination pathways. Curr Biol 9:767-770.

539. Lee Tl, Causton HC, Holstege FCP, Shen W-C, Hannett N, Jennings EG, Winston F, Green MR, Young RA. 2000. Redundant roles for the TF1ID and SAGA complexes in global transcription. Nature 405:701-704.

540. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. 1997. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481-1486.

541. Leonhard K, Stiegler A, Neupert W, Langer T. 1999. Chaperone-like activity of the AAA domain of the yeast Ymel AAA protease. Nature 398:348-351.

542. Levine A, Belenghi B, Damari-Weisier H, Granot D. 2001. Vesicle-associated membrane protein of Arabidopsis supresses Bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem 276 46284-46289.

543. Levine K, Huang K, Cross FR. 1996. Saccharomyces cerevisiae Gl cyclins differ in their intrinsic functional specificities. Mol Cell Biol 16:6794-6803.

544. Lew DJ, Reed SI. 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins J Cell Biol 120:1305-1320.

545. Lew DJ, Reed SI. 1995. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J Cell Biol 129:739-749.

546. Lew DJ, Reed SI. 1995. Cell cycle control of morphogenesis in budding yeast Curr Opin Gen Dev 5:17-23.

547. Lewis LK, Karthikeyan G, Cassiano J, Resnick MA 2005. Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair. Nucleic Acids Res 33-4928-4939.

548. Li X, Cai M. 1997. Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces ceremwe. Mol Cell Biol 17:2723-2734.

549. Li Y, Gorbea C, Mahaffey D, Rechsteiner M, Benezra R. 1997. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc Natl Acad Sci USA 94:12431-12436.

550. Li Z, Ling F, Shibata T. 1998 Glucose repression on RIM1, a gene encoding a mitochondrial single-stranded DNA-binding protein, in Saccharomyces cerevisiae. a possible regulation at pre-mRNA splicing. Curr Genet 34:351-359.

551. Liao X, Butow RA 1993. RIG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72:61-71.

552. Liberi G, Chiolo 1, Pellicioli A, Lopes M, Plevani P, Muzi-Falconi M, Foiani M 2000. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mecl-dependent pathway and Cdkl activity. UMBO J 19:5027-5038.

553. Ligr M, Madco F, Frohlich E, Hilt W, Frohlich KU, Wolf DH 1998. Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 438:61-65.

554. Ligr M, Velten I, Frohlich E, Madeo F, Ledig M, Frohlich KU, Wolf DH, Hilt W. 2001. '1 he proteasomal substrate Stml participates in apoptosis-like cell death in yeast. Mol Biol Cell 12:2422-2432.

555. Lill R, Diekert K, Kaut A, Lange H, Pelzer W, Prohl C, Kispal G. 1999 The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biol Chem 380:11571166.

556. Lill R, Kispal G. 2000. Maturation of cellular Fe-S proteins- an essential function of mitochondria Trends Biochem Sci 25.352-356.

557. Lillie SH, Brown SS. 1994. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smylp, to the same regions of polarized growth in Saccharomyces cerevisiae. J Cell Biol 125:825-842.

558. Lim IIII, Goh PY, Surana U. 1996. Spindle pole body separation in Saccharomyces cerevisiae requires dephosphorylation of the tyrosine 19 residue of Cdc28. Mol Cell Biol 16.6385-6397.

559. Lim HH, Loy CJ, Zaman S, Surana U. 1996. Dephosphorylation of threonine 169 of Cdc28 is not required for exit from mitosis but may be necessary for start in Saccharomyces cerevisiae. Mol Cell Biol 16:4573-4583.

560. Lim HH, Surana U. 1996. Cdc20, a beta-transducin homologue, links RAD9-mediated G2/M checkpoint control to mitosis in Saccharomyces cerevisiae. Mol Gen Genet 253" 138148.

561. Lin J, Zakian V. 1996. 'I he Saccharomyces CDC 13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci USA 93:13760-13765.

562. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709715.

563. Ling F, Morioka H, Ohtsuka E, Shibata T. 2000. A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA. Nucleic Acids Res 28:4956-4963.

564. Linskens MHK, Huberman JA. 1988. Organization of replication of nbosomal DNA in Saccharomyces cerevisiae Mol Cell Biol 8:4927-4935

565. Lipton SA, Bossy-Wetzel E. 2002. Dueling activities of A1F in cell death versus survival-DNA binding and redox activity Cell 1 11:147-150.

566. Lisby M, Antunez de Mayolo A, Mortenscn UH, Rothstein R. 2003. Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle 2:479-483.

567. Lisby M, Barlow JH, Burgess RC, Rothstein R 2004 Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699713.

568. Lisowsky T, Michaelis G. 1988. A nuclear gene essential for mitochondrial replication suppresses a defect of mitochondrial transcription in Saccharomyces cerevisiae. Mol Gen Genet 214:218-223

569. Lithgow T, Cuezva JM, Silver PA. 1997. Highways for protein delivery to the mitochondria. Trends Biochem Sei 22:110-113.

570. Liu D, lshima R, Tong KI, Bagby S, Kokubo T, Muhandiram DR, Kay LE, Nakataki Y, lkira M. 1998. Solution of a TBP-TAITn230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94-573-583.

571. Liu H, Bretscher A. 1989. Disruption of the single tropomyosin gene in yeast results in the disappearence of actin cables from the cytoskeleton. Cell 57.233-242.

572. Liu II, Bretscher A. 1992. Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport. J Cell Biol 118:285-299.

573. Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Hala/onetis TD, Berger SL. 1999. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19:1202-1209.

574. Lo WS, Duggan L, Emre, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL. 2001. Snfl a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription Science 293:1142-1146.

575. Locker J, Rabinowitz M, Getz GS. 1974. Electron microscopie and renaturation analysis of mtDNA of cytoplasmic petite mutants of Sacharomyces cerevisiae. J Mol Biol 88-489507.

576. Locker J, Rabinowitz M, Getz GS. 1974. Tandem inverted repeates in mitochondrial DNA of petite mutants of Saccharomyces cerevisiae Proc Natl Acad Sei USA 71:13661370.

577. Locker J, Lewin A, Rabinowitz M. 1979. Ihe structure and organization of mitochondrial DNA from petite yeast. Plasmid 2:155-181.

578. Lockshon D, Zweifel SG, Freeman-Cook LL, Lorimer HE, Brewer BJ, Fangman WL. 1995. A role for recombination junctions in the segregation of mitochondrial DNA in yeast Cell 81:947-955.

579. Long RM, Gu W, Lorimer E, Singer RII, Chartrand P. 2000. She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EM BO J 19 65926601.

580. Long RM, Singer RH, Meng X, Gozalez I, Nasmyth K, Jansen RP. 1997. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277:383387.

581. Longhese MP, Foiani M, Muzi-Falconi M, Lucchini G, Plevani P. 1998. DNA damage checkpoint in budding yeast. EMBO J 17:5525-5528.

582. Lorimer HE, Brewer BJ, Fangman WL. 1995. A test of the transcription model for biased inheritance of yeast mitochondrial DNA. Mol Cell Biol 15:4803-4809.

583. Lonne/ AT, Reed SI 1986. Sequence analysis of temperature-sensitivie mutations in the Saccharomyces cerevisiae gene CDC28 Mol Cell Biol 6:4099-4103.

584. Lowary PT, Windom J 1989. Higher-order structure of Saccharomyces cerevisiae chromatin Proc Natl Acad Sei USA 86.8266-8270.

585. Lowndes NF, Murguia JR. 2000. Sensing and responding to DNA damage. Curr Opin Genet Dev 10:17-25.

586. Luchnik AN, Glaser VM, Shestakov SV. 1977. Repair of DNA double-strand breaks requires two homologous DNA duplexes. Mol Biol Reports 3:437-440.

587. Ludovico P, Madeo F, Silva M 2005. Yeast programmed cell death: an intricat puzzle IUBMB Life 57:129-135.

588. Ludovico P, Rodrigues F, Almeida A, Silva MT, Leao C, Barrientos A, Corte-Real M. 2002 Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598-2606.

589. Ludovico P, Sansonetty F, Silva Mf, Corte-Real M. 2003. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailu. FEMS Yeast Res 3:91-96.

590. Ludovico P, Sousa MJ, Silva MF, Leao C, Corte-Real M. 2001. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acids. Micorbiology 147:2409-2415.

591. Lundin M, Baltscheffsky H, Ronne H. 1991. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem 266:12168-12172.

592. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W. 2001. Negative control of p53 by Sir2a promotes cell survival under stress. Cell 107:137-148.

593. Lutter R, Saraste M, van Walraven HS, Runswick MJ, Finel M, Deatherage JF, Walker JE. 1993. F1F0-ATP synthase from bovine heart mitochondria: development of the purification of a monodisperse oligomycin-sensitive ATPase. J Biochem 295:799-806.

594. Lydall D, Weinert T. 1995. Yeast checkpoint genes in DNA damage processing-implications for repair and arrest. Science 270:1488-1491.

595. MacAlpine DM, Perlman PS, Butow RA. 1998. The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo Proc Natl Acad Sei USA 95:6739-6743.

596. Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A, Wissing S, Fröhlich KU. 2002. Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41:208-216.

597. Madeo F, Flohlich E, Flohlich KU. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis J Cell Biol 139:729-734.

598. Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU. 1999. Oxigen stress- a regulator of apoptosis in yeast. J Cell Biol 145:757-767.

599. Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselbog S, Fröhlich KU. 2002. A caspase-related protease regulates apoptosis in yeast Mol Cell 9.911-917.

600. Magana-Schwencke N, Henriques JAP, Chanet R, Moustacchi E. 1982. The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA Comparison of wild type and repair deficient strains. Proc Natl Acad Sei USA 79:1722-1726

601. Magnaghi-Jaulin L, Ait-Si-Ali S, Harel-Bellan A. 2000. Histone acetylation and the control of the cell cycle. Prog Cell Cycle Res 4 41-47.

602. Mahler HR, Bastos RN. 1974 A novel reaction of mitochondrial DNA withethidium bromide. FEBS Lett 39.27-34.

603. Mahler HR, Bastos RN. 1974. Coupling between mitochondrial mutation and energy transduction. Proc Natl Acad Sei USA 71-2241-2245.

604. Mahler HR, Perlman PS. 1972. Mitochondrial membrane and mutagenesis by ethidium bromide. J Supramol Struct 1:105-124.

605. Mahler HR 1973. Structural requirements in mitochondrial mutagenesis. J Supramol Struct 1:449-460

606. Majka J, Burgers PM. 2003 Yeast radl7/Mec3/Ddcl: a sliding clamp for the DNA damage checkpoint Proc Natl Acad Sei USA 100.2249-2254.

607. Malkova A, Ivanov EL, Haber JE. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-indueed DNA replication. Proc Natl Acad Sei USA 93-7131-7136.

608. Maleszka R, Skelly PJ, Clark-Walker GD. 1991. Rolling circle replication of DNA in yeast mitochondria. EMBO J 10-3923-3929.

609. Mancini M, Nicholson DW, Roy S, Thornberry NF, Peterson EP, Casciola-Rosen LA, Rosen A. 1998. The caspase-3 precursor has a cytosolic and mitochondrial distribution-implications for apoptotic signaling. J Cell Biol 140 1485-1495

610. Manon S, Chaudhun B, Guerin M. 1997. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL FEBS Lett 415:29-32.

611. Manon S, Priault M, Camougrand N. 2001. Mitochondrial AAA-type protease Ymel is involved in Bax effects on cytochrome c oxidase. Biochem Biophys Res Commun 289:13141319.

612. Marcelino LA, 'I Hilly WG. 1999. Mitochondrial mutagenesis in human cells and tissues. Mutat Res 434:177-203.

613. Maringele L, Lydall D. 2002. EXOl-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70A mutants Genes Dev 16-1919-1933.

614. Martens JA, Genereaux J, Salch A, Brandl CJ. 1996 Transcription activation by PDRlp is inhibited by its association with NGGlp/ADA3p. J Biol Chem 271:15884-15890

615. Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM. 1999. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97:621-633.

616. Massari M E, Grant PA, Pray-Grant MG, Berger SL, Workman JL, Murre C. 1999. A conserved motif present in a class of helix-loop-helix protens activates transcription by direct recruitment of the SAGA-complex. Mol Cell 4:63-73.

617. Masumoto H, Muramatsu S, Kamimura Y, Araki H. 2002. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415:651-655.

618. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. 2000. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318-325.

619. May A, Bohr VA. 2000. Gene-specific repair of gamma-ray-induced DNA strand breaks in colon cancer cells no coupling to transcription and no removal from the mitochondrial genome. Biochem Biophys Res Commun 269.433-437.

620. Mayer VW, Legator MS. 1970. Induction by N-methyl-N'-nitro-N-nitrosoguanidine and UV-Iight of petite mutants in aerobically and anaerobically cultivated Saccharomyces cerevisae. Mutation Res 9:193-198.

621. Maz/oni C, Mancini P, Verdone L, Madeo F, Serafini A, Ilerker E, Falcone C. 2003 A truncated form of KlLsm4p and the absence of factors involved in mRNA decapping trigger apoptosis in yeast. Mol Biol Cell 14:721-729.

622. McCann J, Choi E, Yamasaki E, Ames BN. 1975. Detection of carcinogens as mutagens in the Salm0nella/m\cT0S0me test: assay of 300 chemicals. Proc Natl Acad Sci USA 72:51355139.

623. McConnell SJ, Stewart LC, Talin A, Yaffe MP. 1990 Temperature-sensitivie yeast mutants defective in mitochondrial inheritance. J Cell Biol 111:967-976.

624. McConnell SJ, Yaffe MP. 1992 Nuclear and mitochondrial inheritance in yeast depends on novel cytoplasmic structures defined by the Mdml protein. J Cell Biol 1 18:385-395.

625. McConnell SJ, Yaffe MP. 1993. Intermediate filament formation by a yeast protein essential for organelle inheritance. Science 260.687-689.

626. McKee RH, Lawrence CW. 1980. Genetic analysis of y-ray mutagenesis in yeast. III. Double-mutant strains. Mutation Res 70:37-48.

627. McMillan JN, Sia RAL, Bardes ESG, Lew DJ. 1999. Phosphorylation-independent inhibition of Cdc28p by the tyrosine kinase Swelp in the morphogenesis checkpoint. Mol Cell Biol 19:5981-5990.

628. Meeusen S, McCaffery JM, Nunnari J. 2004. Mitochondrial fusion intermediates revealed in vitro. Science 305:1747-1752

629. Meeusen S, Nunnari J. 2003. Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J Cell Biol 163:503-510.

630. Meeusen S, Tieu Q, Wong E, Weiss E, Schielt/ D, Yates JR, Nunnari J. 1999. MgmlOlp is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J Cell Biol 154:291-304

631. Megee PC, Morgan BA, Mittman BA, Smith MM. 1990. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247:841-845.

632. Megee PC, Morgan BA, Smith MM. 1995. Histone H4 and the maintenance of genome integrity. Genes Dev 9:1716-1727.

633. Megraw TL, Chae CB. 1993. Functional complementary between the HMGl-like yeast mitochondrial histone HM and the bacterial histone-like protein IIU. J Biol Chem 268:12758-12763.

634. Melo J A, Cohen J, Toczyski DP. 2001. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev 15:2809-2821.

635. Melo J, Toczyski D. 2002 A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14:237-245.

636. Mendenhall MD, Jones CA, Reed SI. 1987. Dual regulation of the yeast CDC28-p40 protein kinase complex: cell cycle, pheromone, and nutrient limitation effects Cell 50.927935.

637. Mendenhall MD, Hodge AE. 1998. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Micnobiol Mol Biol Rev 62:1191-1243.

638. Mercier G, Berthault N, Mary J, Peyre J, Antoniadis A, Comet J-P, Comuejols A, Froidevaus C, Dutreix M. 2004 Biological detection of low radiation doses by combining results of two microarray analysis methods. Nucleic Acids Res 32-E12.

639. Mercier G, Denis Y, Marc P, Picard L, Dutreix M. 2001. Transcriptional induction of repair genes during slowing of replication in irradiated Saccharomyces cerevisiae. Mutation Res 487 157-172.

640. Messerschmitt M, Jakobs S, Vogel F, Fritz S, Dimmer KS, Neupert W, Westermann B 2003. 'I he inner membrane protein Mdm33 controls mitochondrial morphology in yeast J Cell Biol 160 553-564.

641. Meyer RR, Simpson MV. 1969. DNA biosynthesis in mitochondria: differential inhibition of mitochondrial and nuclear DNA polymerases by the mutagenic dyers ethidium bromide and aciflavin Biochem Biophys Res Commun 34:238-244.

642. Meyers KA, Saffhill R, O'Connor PJ. 1988 Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei of rat. Carcinogenesis 9:285-292.

643. Meyn MA, Holloway SL. 2000. S-phase cyclins are required for a stable arrest at metaphase. CurrBiol 10.1599-1602.

644. Mitchel F. 1982 Etudes experimentales et theoriques des transitions thermiques de l'ADN mitochondrial de levure. These de Doctorat d'Etat es-Sciences Naturelles. Universite Pans VI.

645. Miyakawa 1, Aoi H, Sando N, Kuroiwa T. 1984. Fluorescence microscopic studies of mitochondrial nucleoids during meiosis and sporulation in yeast Saccharomyces cerevisiae. J Cell Sci 66:21-38.

646. Miyakawa I, Sando N. 1994. Morphology and organization of yeast mitochondrial nucleoids Tanpakushitsu Kakusan Koso 39:601-610.

647. Miyaki M, Yatagai K, Ono T. 1977. Strand breaks of mammalian mitochondrial DNA induced by carcinogenes. Chem-Biol Interactions 17:321-329.

648. Miyazaki T, Reed JC. 2001. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat Immunol 2:493-500.

649. Mizugucchi G, Shen X, Landry J, Wu W-H, Sen S, et al. 2004. ATP-driven exchange of histone H2aZ variant catalyzed by SWR1 chromatin remodeling complex Science 303-343348

650. Moraes CT, Shanske S, Tritschler HJ, Aprille JR, Andreetta F, Bonilla E, Schon EA, Di Mauro S. 1991. MtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am J Hum Genet 48:492-501.

651. Moreno S, Hayles J, Nurse P. 1989. Regulation of p34cdc2 protein kinase during mitosis. Cell 58:361-372.

652. Morgan BA, Mittman BA, Smith MM. 1991. The highly concerved N-terminal domains ofhistones H3 and H4 are required for normal cell cycle progression. Mol Cell Biol 11:41114120.

653. Morgan DO. 1999. Regulation of the APC and the exit from mitosis. Nat Cell Biol l:E47-53.

654. Morgan SE, Kastan MB. 1997. p53 and ATM: cell cycle, cell death, and cancer. Adv Cancer Res 71:1-25.

655. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Tashuhiko Y. 2002. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287-34294.

656. Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X. 2004. 1N080 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119.767-775.

657. Mose-Larsen P, Bravo R, Fey SJ, Small JV, Celis JE. 1982. Putative association of mitochondria with a subpopulation of intermediate-sized filaments in cultured human skin fibroblasts. Cell 31:681-692.

658. Mounolou JC, Jakob H, Slonimski PP. 1966. Mitochondrial DNA from yeast petite mutants. Specific changes of buoyant density corresponding to different cytoplasmic mutations Biochem Biophys Res Commun 24:218-224.

659. Moustacchi E, Enteric S. 1970. Differential "liquid holding recovery" for the lethal effect and cytoplasmic "petite" induction by UV light in Saccharomyces cerevisiae. Mol Gen Genet 109.69-83

660. Moustacchi E, Perlman PS, Mahler HR. 1976. A novel class of Saccharomyces cerevisiae mutants specifixally UV-sensitive to petite induction. Mol Gen Genet 148:251261.

661. Moustacchi E. 1965. Induction by physical and chemical agents of mutations for radioresistance in Saccharomyces cerevisiae. Mutat Res 2.403-412.

662. Moustacchi E. 1971. Evidence for nucleus independent steps in control of repair of mitochondrial damage I. UV-induction of the cttoplasmic petite mutation in UV-sensitive nuclear mutants of Saccharomyces cerevisiae. Mol Gen Genet 114'50-58.

663. Moustacchi E. 1972. Evidence for nucleus independent steps in control of repair of mitochondrial damage. I. UV induction of the cytoplasmic petite mutation in UV sensitive nuclear mutants of Saccharomyces cerevisiae. Mol Gen Genet 114:50-58.

664. Moustacchi E. 1973. Cytoplasmic "petite" induction in recombination-deficient mutants of Saccharomyces cerevisiae. J Bacteriol 115:805-809.

665. Muhlenhoff U, Lill R. 2000. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochem Biophys Acta 1459:370-382.

666. Mulholland J, Preuss D, Moon A, Wong A, Drubin D, Botstein D. 1994. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol 125:381-391.

667. Muller M, Lucchini R, Sogo JM. 2000. Replication of yeast rDNA initiates downstream of transcriptionally active genes Mol Cell 5:767-777.

668. Munchow S, Sauter C, Jansen RP. 1999. Association of the class V myosin Myo4p with a localised messenger RNA in budding yeast depends on She proteins. J Cell Sci 112:15111518

669. Murray AW, Szostak JW. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34:961-970.

670. Murthy V, Pasupathy K. 1994. Characterization of mitochondrial DNA primase from Saccharomyces cerevisiae. J Biosci 19:1-8.

671. Myers AM, Pape LK, I'zagoloff A. 1985. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J 4:20872092.

672. Nagley P, Linnane AW 1972. Studies on the nature of the mitochondrial genome in yeast, the degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J Mol Biol 66:181-193.

673. Naiki T, Wakayama T, Nakada D, Matsumoto K, Sugimoto K. 2004. Association of Rad9 with double-strand breaks through a Mecl-dependent mechanism. Mol Cell Biol 24.3277-3285.

674. Nakabeppu Y. 2001. Regulation of intercellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. Prog Nucl Acids Res Mol Biol 68:75-94.

675. Nakada D, Hirano Y, Sugimoto K. 2004. Requirement of the Mrell complex and exonuclease 1 for activation of the Mecl signaling pathway. Mol Cell Biol 24:10016-10025.

676. Nakai T, Yasuhara T, Fujiki Y, Ohashi A. 1995. Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol Cell Biol 15:4441-4452.

677. Nakamura TM, Du LL, Redon C, Russell P. 2004. Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol Cell Biol 24:6215-6230.

678. Nakano K, Vousden KH. 2001. PUMA, a novel proapoptotic gene, is induced by p53 Mol Cell 7:683-694.

679. Narumi T, Susukita R, Ebisuzaki T, McNiven G, Elmergreen B. 1999. Mol Simul 21:401-415.

680. Narumi T, Susukita R, Furusawa H, Yasuoka K., Kawai A, Koishi T, Ebisuzaki T. 2000. MDM version of AMBER. Nasmyth K. 1996. At the heart of the budding yeast cell cycle. Trends Genet 12:405-412.

681. Navas TA, Sanchez Y, Elledge SJ. 1996 RAD9 and DNA polymerase e form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev 10:2632-2643.

682. Nes IF. 1980. Purification and properties of a mouse-cell DNA-repair endonuclease, which recognizes lesions in DNA induced by ultraviolet light, depurination, gamma-rays, and 0s04 treatment EurJBiochem 112*161-168.

683. Netrawali MS, Pasupathy K, Pradhon DS, Screeninasan A. 1975. In: Molecular biology of nucleocytoplasmic relationships. Puiseux-Dao S (Ed.). Amsterdam.ASP:139.

684. Newlon CS, Fangman WL. 1975. Mitochondrial DNA synthesis in cell cycle mutants of Saccharomyces cerevisiae. Cell 5:423-428.

685. Newlon CS, Ludescher RD, Walter SK. 1979. Production of petites by cell cycle mutants of Saccharomyces cerevisiae defective in DNA synthesis. Mol Gen Genet 169:189-194.

686. Newman SM, Zelenaya-Troitskaya O, Perlman PS, Butow RA. 1996. Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG-box protein Abf2p. Nucl Acids Res 24:386-393.

687. Ng R, Abelson J. 1980. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 77:3912-3916.

688. Nicotera P, Leist M. 1997. Cell Death Differ 4:435-442.

689. Nishino I, Kobayashi O, Goto Y, Kurihara M, Kumagai K, Fujita T, Hashimoto K, Horai S, Nonaka I 1998. A new congenical muscular dystrophy with mitochondrial structural abnormalities. Muscle Nerve 21:40-47.

690. Nishino 1, Spinazzola A, Hirano M. 1999. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283:689-692.

691. Nisoli E, Clementi E, Paolucci C, et al. 2003. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299.896-899.

692. Norais N, Prome D, Velours J 1991. ATP synthase of yeast mitochondria Characterization of subunit d and sequence analysis of the structural gerne ATP7. J Biol Chem 266:16541-16549.

693. Norris D, Norris OMA. 1987. 'Ihe two gene pairs encoding H2A and H2B play different roles in the Saccharomyces cerevisiae life cycle Mol Cell Biol 7:3473-3481.

694. Novick P, Botstein D. 1985. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40:405-416.

695. Nugent CI, Hughes TR, Lue NF, Lundblad V. 1996. Cdcl3p: a single-strand telomenc DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249-252.

696. Ogur M, John ST, Nagai S. 1957. Tetrazolium overlay technique for population studies of respiration deficiency in yeast Science 125:928-929.

697. Okamoto K, Perlman PS, Butow RA 1998 The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferencial transmission of mitochondrial DNA to the medial bud. J Cell Biol 142:613-623.

698. Oki M, Valenzuela L, Chiba T, Ito T, Kamakaka RT. 2004. Barrier proteins remodel and modify chromatin to restrict silenced domains Mol Cell Biol 24:1956-1967.

699. Oliver FJ, Menissier-de Murcia J, de Murcia G. 1999. Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and desease. Am J Hum Genet 64:12821288.

700. Olivero OA, Chang PK, Lopez-Larraza DM, Semino-Mora MC, Poirier MC. 1997. Preferencial formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cells mitochondrial DNA as compared to nuclear DNA. Mutat Res 391:79-86

701. Ono BJ, Stewart JW, Sherman F. 1979. Yeast UAA suppressors effective in vj/+ strains Serine inserting suppressors. J Mol Biol 128:81-100.

702. O'Rourke TW, Doudican NA, Mackereth MD, Doetsch PW, Shadel GS. 2002. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol Cell Biol 22:4086-4093.

703. O'Rourke TW, Doudican NA, Zhang H, Eaton JS, Doetssch PW, Shadel GS. 2005. Differential involvement of the related DNA helicases Piflp and Rrm3p in mtDNA point mutagenesis and stability. Gene 354:86-92.

704. Ostroff RM, Sclafani RA. 1995. Cell cycle regulation of induced mutagenesis in yeast. Mutation Res 329:143-152.

705. Ozawa T, Sahashi K, Nakase Y. 1995. Extensive tissue oxygenation associated with mitochondrial DNA mutations. Biochem Biophys Res Commun 213:432-438.

706. Ozawa T. 1997. Genetic and functional changes in mitochondria associated with aging. Physiol Rev 77:425-464.

707. Paciotti V, Clerici M, Scotti M, Lucchini G, Longhese MP. 2001. Characterization of meel kinase-deficient mutants and of new hypomorphic meel alleles impairing subsets of the DNA damage response pathway. Mol Cell Biol 21:3913-3925.

708. Padmashree CG, Surana U. 2001. Cdc28-Clb mitotic kinase negatively regulates bud site assembly in the budding yeast. J Cell Sei 114:207-218.

709. Palade G. 1983. Membrane biogenesis: an overview. Methods Enzymol 96 29-40

710. Palmer RF, Sullivan DS, Huffaker T, Koshland D. 1992 Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae J Cell Biol 119:583-593.

711. Paoletti C, Couder H, Guerineau M. 1972. A yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide. Biochem Biophys Res Commun 48:950-958.

712. Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA. 1987. The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235:576-580.

713. Parisi MA, Xu B, Clayton DA. 1993. A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro Nucleic Acids Res 13:1951-1961.

714. Parker A, Gu Y, Lu AL. 2000. Purification and characterization of mammalian homology of E coli MutY mismatch repair protein from calf liver mitochondria. Nucl Acids Res 28:3206-3215

715. Parry JM, Zimmermann FK. 1976. The detection of monosomic colonies produced by mitotic chromosome nondisjunction in the yeast Saccharomyces cerevisiae. Mutation Res 36.49-66.

716. Pascussi B, Versteegh A, van Hoffen A, van Zeeland AA, Mullenders LH, Dogliotti K 1997. DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA J Mol Biol 273:417-427.

717. Pasupathy K, Pradham DS. 1992. Evidence for excision repair in promitochondrial DNA of anaerobic cells of Saccharomyces cerevisiae. Mutat Res 273:281-288.

718. Patrick MH, Haynes RH, Uretz RB. 1964. Dark recovery phenomena in yeast. 1. Comparative effects with varios inactivating agents. Radiation Res 21:144-163.

719. Patrushev M, Kasymov V, Patrusheva V, et al. 2004. Mitochondrial permeability transition triggers the release of mtDNA fragments Cell Mol Life Sei 61:3100-3103.

720. Paul M-F, Ackermann S, Yue J, Arselin G, Velours J, Tzagoloff A. 1994. Cloning of the yeast A'I P3 gene coding for the y-subunit of Fl and characterization of atp3 mutants. J Biol Chem 269:26158-26164.

721. Paul MF, Tzagoloff A. 1995. Mutations in RGA1 and AFG3 inhibit F,-ATPase assembly in Saccharomyces cerevisiae FEBS Lett 373:66-70.

722. Paul M-F, Velours J, de Chateaubodeau GA, Aigle M, Guerin B. 1989. 'I he role of subunit 4, a nuclear-encoded protein of the F0 sector of yeast mitochondrial ATP synthase, in the assembly of the whole complex. Eur J Biochem 185* 163-171.

723. Paulovich AG, Armpur CD, Hartwell LH. 1998. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage Genetics 150:75-93.

724. Paumard P, Arselin G, Vaillier J, Chaignepain S, Bathany K, Schmitter JM, Brethes D, Velours J. 2002. Two AIP synthases can be linked through subunits in the inner mitochondrial membrane of Saccharomyces cerevisiae. Biochemistry 41:10390-10396.

725. Pearce DA, Sherman F. 1995. Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochrome c and suppression of the degradation by mutation of ymel. J Biol Chem 270:20879-20882.

726. Pegg AE. 2000. Repair of 06-alkylguanine by alkyltransferases. Mutat Res 462:83-100

727. Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE. 2001. Regulation of Saccharomyces Rad53 checkpoint kinase during addaptation from DNA damage-induced G2/M arrest Mol Cell 7:293-300.

728. Pellicioli A et al 1999 Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase EMBO J 18 6551-6572.

729. Pena A, Ramirez G 1975 Interaction of ethidium bromide with the transport system for monovalent cations in yeast. J Membr Biol 22:369-384.

730. Pena A, Ramirez J. 1991 An energy-dependent efflux system for potassium ions in yeast. Biochim Biophys Acta 1068:237-244

731. Perlman PS, Mahler HR. 1971. Molecular consequence of eyhidium bromide mutagenesis. Nature (London) 231:12-16.

732. Peterson CL, Tamkun JW. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci 20:143-146.

733. Petes TD, Byer B, Fangman WL. 1973. Size and structure of yeast chromosomal DNA Proc Natl Acad Sci USA 70 3072-3076.

734. Pettepher CC, LeDoux SP, Bohr VA, Wilson GL. 1991. Repair of alkil-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J Biol Chem 266:3113-3117.

735. Phadnis N, Sia EA. 2004. Role of the putative structural protein Sedlp in mitochondrial genome maintenance J Mol Biol 342 1115-1129.

736. Phillips AJ, Sudbery I, Ramsdale M. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci USA 100:14327-14332.

737. Piggot JR, Rai B, Carter BLA. 1982. A bifunctional gene product involved in two phases of the yeast cell cycle Nature 298:391-393.

738. Pinz KG, Bogenhagen DF. 1998. Efficient repair of abasic sites DNA by mitochondrial enzymes. Mol Cell Biol 18:1257-1265.

739. Piskur J. 1988. Transmission of yeast mitochondrial loci to progeny is reduced when nearby intergenic regions containing ori/rep sequences are deleted. Mol Gen Genet 214*425432.

740. Piskur J. 1994. Inheritance of the yeast mitochondrial genome. Plasmid 31.229-241.

741. Pittman D, Ranganathan B, Wilson F. 1959. Photoreactivation studies on yeasts. II. Photoreactivation of the ultraviolet damage producing respiratory deficiency in haploid and tetraploid yeasts ExperCell Res 17:368-377.

742. Polevoda B, Cardillo TS, Doyle TC, Bedi GS, Sherman F. 2003. Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J Biol Chem 278:30686-30697

743. Pollard KJ, Peterson GL. 1997. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol 17:6212-6222.

744. Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B. 1998. Somatic mutations of the mitochondrial genome in human colorectal. Nat Genet 20.291-293.

745. Pozzan T, Rizzuto R. 2000. The renaissance of mitochondrial calcium transport. Eur J Biochem 267:5269-5273.

746. Prakash L. 1975. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light J Mol Biol 98:781-795.

747. Prasad KR, Rosoff PM. 1992. Characterization of the energy-dependent, mating factor-activated Ca2T influx in Saccharomyces cerevisiae. Cell Calcium 13:615-626

748. Pray-Grant MG, Schieltz D, McMahon SJ, Wood JM, Kennedy E, Cook RG, Workman JL, Yates 111 JR, Grant PA. 2002. The novel SL1K histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22:8774-8786.

749. Prescott M, Bush NC, Nagley P, Devenish RJ. 1994. Properties of yeast cells depleted of the OSCP subunit of mitochondrial AIP synthase by regulated expression of the ATP5 gene Biochem Mol Biol 34:789-799.

750. Prithivirajsingh S, Story MD, Bergh SA, et al. 2004. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett 571:227-232

751. Pruyne D, Bretscher A. 2000. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 113:365-375.

752. Pruyne D, Bretscher A. 2000. Polarization of cell growth in yeast. II. The role of the cortical actin cytoskeleton. J Cell Sci 113:571-585.

753. Pruyne DW, Schott DH, Bretscher A 1998. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143:1931-1945.

754. Puglisi PP, Algeri A. 1971. Role of the mitochondrion in the regulation of protein synthesis in the eukaryote Saccharomyces cerevisiae. Mol Gen Genet 110:110-117.

755. RaffM. 1998. Cell suicide for beginners. Nature 396:119-122.

756. Rahman MU, Hudson AP. 1995. Nature and transcriptional role of catalytic subunits of yeast mitochondrial cAMP-dependent protein kinase. Biochem Biophys Res Commun 206:756-763.

757. Rahman MU, Hudson AP. 1995. Substrates for yeast mitochondrial cAMP-dependent protein kinase activity. Biochem Biophys Res Commun 214:188-194.

758. Rapaport D, Brunner M, Neupert W, Westermann B. 1998. Fzolp is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J Biol Chem 273:20150-20155.

759. Rayko E, Goursot R 1996. Amphimeric mitochondrial genomes of petite mutants of yeast I. Flip-flop amphimers make up the mitochondrial genomes of "palindromic" petite mutants of yeast Curr Genet 30 126-134.

760. Read EB, Okamura HH, Drubin DG. 1992. Actin- and tubulin-dependent functions during Saccharomyces cerevisiae mating projection formation. Mol Biol Cell 3:429-444.

761. Reed JC, Green DR. 2002. Remodeling for demolition: changes in mitochondrial ultrastructure during apoptosis. Mol Cell 9:1-3.

762. Reed JC, Jurgensmeier JM, Matsuyama S. 1998. Bcl-2 family proteins and mitochondria. Biochem Biophys Acta 1366:127-137.

763. Reed SI, Hadwiger JA, Lorincz AT. 1985. Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proc Natl Acad Sci USA 82-4055-4059.

764. Reed SI, Wittenberger C. 1990 Mitotic role for the Cdc28 protein kinase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87:5697-5701.

765. Reenan RA, Kolodner RD. 1992. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132:975-985.

766. Reenan RA, Kolodner RD. 1992 Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132:963-973.

767. Reeves R, Langan FA, Nissen MS. 1991. Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity. Proc Natl Acad Sci USA 88:1671-1675.

768. Resnick MA, Cox BS. 2000. Yeast as an honorary mammal. Mutation Res 451 -1-11.

769. Resnick MA, Martin P. 1977. Nuclear DNA synthesis in yeast and the effect of irradiation. Int J Radiat Biol 31:365-375.

770. Ricchetti M, Fairhead C, Dujon B. 1999. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402.96-100.

771. Richter C, Suter M, Walter PB. 1998 Mitochondrial free radical damage and DNA repair. Biofactors 7:207-208.

772. Rickwood D, Chambers JAA, Barat M. 1981. Isolation and preliminary characterization of DNA-protein complexes from the mitochondria of Saccharomyces cerevisiae. Exp Cell Res 133:1-13.

773. Riezman H. 1993. Yeast endocytosis. Trends Cell Biol 3:273-277.

774. Rine J, Herskowitz I 1987. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9-22.

775. Riou G, Delain E. 1969. Abnormal circular DNA molecules induced by ethidium bromide in the kinetoplast of Trypanosoma cruzi. Proc Natl Acad Sci USA 64:618-625.

776. Roberts SM, Winston F. 1997. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes Genetics 147:451-465.

777. Robertson JD, Orrenius S, Zhivotovsky B. 2000. Review: nuclear events in apoptosis. J Struct Biol 129:346-358.

778. Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N, Grundtein M. 2002. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109:437-446.

779. Rodel G, Korte A, Kaudewit/ F. 1985. Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript. Curr Genet 9.641-648.

780. Roeder AD, Hermann GJ, Keegan BR, Thatcher SA, Shaw JM. 1998. Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine thereonine phosphates PIC. Mol Biol Cell 9.917-930.

781. Rose MD, Novick P, Thomas JH, Botstein D, Fink GR. 1987. A Saccharomyces cerevisiae genomic plasmid band based on a centromere-containing shuttle vector. Gene 60:237-243.

782. Rossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O'Connor J, Glick BS 2001. A role for actin, Cdclp, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 153:47-62.

783. Roucou X, Prescott M, Devenish RJ, Nagley P. 2000. A cytochrome cGFP fusion is not released from mitochondria into the cytoplasm upon expression of Bax in yeast cells FHBS Lett 471:235-239

784. Rouse J, Jackson SP. 2002. Interfaces between the detection, signaling, and repair of DNA damage Science 297:547-551.

785. Rusche LN, Kirchmaier AL, Rine J. 2003. I he establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae Annu Rev Biochem 72-481-516

786. Russell P, Moreno S, Reed SI. 1989. Conservation of mitotic controls in Fission and budding yeasts Cell 57:295-303.

787. Ryckaert JP, Ciccotti G, Berendsen HJC. 1997. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints Molecular-Dynamics of N-Alkanes. J Comput Phys 23:327-341.

788. Ryoji M, Katayama H, Fusamae H, Matsuda A, Sakai F, Utano H. 1996. Repair of DNA in a mitochondrial lysate of Xenopus laevis oocytes. Nucleic Acids Res 24.4057-4062.

789. Ryter A, Hirota Y, Jacob F. 1968. DNA-membrane complex and nuclear segregation in bacteria. Cold Spring Harbor Symp Quant Biol 33:669-676.

790. Saeki T, Machida I, Nakai S. 1980. Genetic control of diploid recovery after y-irradiation in the yeast Saccharomyces cerevisiae Mutation Res 73:251-265.

791. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E. 1998. DNA damage activates p53 through a phosphotylation-acetylation cascade. Genes Dev 12:2831-2841.

792. Saleh A, Lang V, Cook R, Brandl CJ. 1997. Identification of native complexes containing the yeast coactivator/repressor proteins NGG1/ADA3 and ADA2. J Biol Chem 272 5571-5578.

793. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual Cold Spring Harbor. New York: Cold Spring Harbor Lab.

794. Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ. 1999. Control of the DNA damage checkpoint by chkl and rad53 protein kinases through distinct mechanisms. Science 286:1166-1171.

795. Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ. 1996. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357-360.

796. Sandell L, Zakian V. 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss Cell 75:729-739.

797. San-Segundo PA, Roeder GS. 1999. Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97:313-324.

798. Saraste M. 1999. Oxidative phosphorylation of the fin de siecle. Science 283:1488-1493.

799. Sato H, lachifuji A, I'amura M, Miyakawa I 2002. Identification of the YMN-1 antigen protein and biological analyses of protein components in the mitochondrial nucleoid fraction of the yeast Saccharomyces cerevisiae. Protoplasma 219:51-58.

800. Sato T, Hanada M, Bodrug S, Irie S, Iwama N, Boise LH, Thompson CB, Golemis E, Fong L, Wang H-G, Reed JC. 1994. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci USA 91:9238-9242.

801. Sawyer DE, Van Houten B. 1999. Repair of DNA damage in mitochondria Mutat Res 434:161-176.

802. Sayle RA, Milner-White EJ 1995 RasMol: Biomolecular graphics for all. Trends in Biochem Sei 20:374-376.

803. Scherer S, Davis RW. 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sei USA 76:4951-4955.

804. Schinkel AH, Groot Koekamp MJA, Touw EPW, Tabak HF. 1987. Specificity factor of yeast mitochondrial RNA polymerase. J Biol Chem 262:12785-12791.

805. Schmitt ME, Clayton DA. 1992. Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian Rnase MRP RNA and essential for cell viability. Genes Dev 6:1975-1985.

806. Schott DH, Collins RN, Bretscher A. 2002. Secretory vesicle transport velocity in living cells dependends on the myosin-V lever arm length. J Cell Biol 156:35-39.

807. Schulz VP, Zakian VA. 1994 The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation Cell 76 145-155.

808. Schwartz MF, Duong JF, Sun Z, Morrow JS, Pradhan D, Stern DF. 2002. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol Cell 9.1055-1065.

809. Scott KL, Plön SE. 2003 Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae. Mol Cell Biol 23-4522-4531.

810. Seitz-Mayr G, Wolf K. 1982. Extrachromosomal mutator inducing point mutations and deletions in mitochondrial genome of fission yeast. Proc Natl Acad Sei USA 79:2618-2622.

811. Sekito T, Thornton J, Butow CJ. 2000. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtglp and Rtg3p. Mol Biol Cell 11:103-115.

812. Sena E, Welch J, Fogel S. 1976. Nuclear and mitochondrial DNA replication during zygote formation and matyration in yeast. Science 194:433-435.

813. Sena EP, Welch JM, Halvorson HO, Fogel S. 1975. Nuclear and mitochondrial deoxyribonucleic acid replication during mitosis in Saccharromyces cerevisiae. J Bacteriol 123 497-504.

814. Sesaki II, Jensen RE. 2001 UGOl encodes an outer membrane protein required for mitochondrial fusion. J Cell Biol 152:1123-1134.

815. Sesaki H, Jensen RE. 2004. Ugolp links the Fzolp and Mgmlp GTPases for mitochondrial fusion. J Biol Chem 279:28298-28303.

816. Sesaki H, Southard SM, Yaffe MP, Jensen RE. 2003. Mgmlp, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol Biol Cell 14:23422356.

817. Severin FF, Hyman AA. 2002. Pheromone induces programmed cell death in S. cerevisiae. Curr Biol 12:R233-R235.

818. Sharma VM, Li B, Reese JC. 2003. SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery. Genes Dev 17:502-515.

819. Sheetz MP, Spudich JA. 1983. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303:31-35.

820. Shen X, Mizugucchi G, Hamich A, Wu C. 2000. A chromatin remodeling complex involved in transcription and DNA processing Nature 406:541-544.

821. Shen CC, Wertelecki W, Driggers WJ, LeDoux SP, Wilson GL. 1995. Repair of mitochondrial DNA damage induced by bleomycin in human cells. Mutat Res 337:19-23.

822. Shepard KA, Yaffe MP. 1997. Mol Biol Cell 8:444a

823. Shepard KA, Yaffe MP. 1999. The yeast dynamin-like protein, Mgmlp, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J Cell Biol 144:711719.

824. Sheu YJ, Barral Y, Snyder M. 2000 Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae. Mol Cell Biol 20.5235-5247.

825. Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE. 2005. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks Mol Cell Biol 25:39343944.

826. Shima A, Baugnet-Mahieu L, Gouptier R. 1973. On the increased precursor incorporation into the DNA of rat liver mitochondria irradiated in vivo. Biophysik 9 243-252.

827. Shimizu S, Ide T, Yanagida T, Tsujimoto Y. 2000 J Biol Chem 275:12321-12326.

828. Shimizu S, Shinohara Y, Tsujimoto Y. 2000. Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene 19:4309-4318.

829. Shore D. 1998. Cellular senescence: Lessons from yeast for human aging? Curr Biol 8:R192-R195.

830. Shortle D, Ilaber JE, Botstein D. 1982 Lethal disruption of the yeast actin gene by integrative DNA transformation Science 217:371-373.

831. Shou W, Azzam R, Chen SL, Huddleston MJ, Baskerville C, Charbonneau II, Annan RS, Carr SA, Deshaies RJ. 2002 Cdc5 influences phosphorylation of Net 1 and dissassembly of the RENT complex. BMC Mol Biol 3:3.

832. Shou W, Deshaies RJ. 2002. Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdcl5 in exit from mitosis in S cerevisiae. BMC Genetics 34:1-12.

833. Shou W, Seol JH, Shevchenko A, Baskerville C, Moazed D, Chen ZW, Jang J, Charbonneau H, Deshaies RJ. 1999. Exit from mitosis is triggered by Teml -dependent release of the protein phosphatase Cdcl4 from nucleolar RENT complex. Cell 97:233-244.

834. Shroff R et al. 2004. Distribution and dynamics of chromatin modification at a defined DNA double strand break. Curr Biol 14:1703-1711.

835. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C. 2003. 'I he proteomc of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207-13212.

836. Siedc W, Friedberg AS, Dianova I, Friedberg EC. 1994. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA damaging agents. Genetics 138-271-281.

837. Siede W, Friedberg AS, Friedberg EC. 1993. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90:7985-7989.

838. Siede W, Friedberg EC. 1990. Influence of DNA repair deficiencies on the UV sensitivity of yeast cells in different cell cycle stages Mutation Res 245:287-292.

839. Siede W. 1995. Cell cycle arrest in response to DNA damage: lessons from yeast. Mutation res 337:73-84

840. Silva RD, Sotoca R, Johansson B, Ludovico P et al. 2005. Hyperrosmmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol 58:824-834.

841. Simon VR, Karmon SL, Pon LA 1997. Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil Cytoskel 37:199-210.

842. Simon VR, Swayne TC, Pon LA. 1995. Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J Cell Biol 130-345-354

843. Simonetti S, Chen X, DiMauro S, Schon EA. 1992. Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochem Biophys Acta 1180:113-122.

844. Sinclair DA, Mills K, Guarente L. 1997. Accelerated aging and nucleolar fragmentation in yeast sgsl mutants. Science 277:1313-1316.

845. Singer JM, Shaw JM. 2003. Mdm20 protein functions with Nat3 protein to acetylate Tpml protein and regulate tropomyosin-actin interactions in budding yeast Proc Natl Acad Sci USA 100:7644-7649.

846. Singh G, Sharkey SM, Moorehead R. 1992. Mitochondrial DNA damage by anticancer agents Pharmacol Ther 54:217-230.

847. Singh KK, Sigala B, Sikder HA, Schwimmer C. 2001. Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res 29:1381-1388.

848. Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G. 2002. Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem 277:26944-26949.

849. Skibbens RV, Corson LB, Koshland D, Hieter P. 1999. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13:307-319.

850. Skulachev VP. 1996. Role of uncoupled and non-coupled oxidationas in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169-202.

851. Skulachev VP. 2000. Mitochondria in the programmed death phenomena; a principle of biology:"it is better to die than to be wrong". UBMB Life 49-365-373.

852. Skulachev VP. 2002. Programmed death in yeast as adaptation? FEBS Letters 528:23-26.

853. Sloat BF, Pringle JR. 1978. A mutant of yeast defective in cellular morphogenesis Science 200:1171-1173.

854. Slonimski PP, Perrodin G, Croft JII. 1968. Ethidium bromide-induced mutation of yeast mitochondria, complete transformation of cells into respiratory deficient non-chromosomal "petites". Biochem Biophys Res Commun 30:232-239.

855. Smerdon MJ, Conconi A. 1999. Modulation of DNA damage and DNA repair in chromatin. Prog Nucleic Acids Res Mol Biol 62:227-255.

856. Smith CA, Jordan JM, Vinograd J. 1971. In vivo effects of intercalating drugs on the superhelix density of mitochondrial DNA isolated from human and mouse cells in culture. J Mol Biol 59.255-272.

857. Smith CA. 1977. Absence of ethidium bromide induced nicking and degradation of mitochondrial DNA in mouse L-cells Nucleic Acids Res 4:1419-1427.

858. Smith JS, Brachmann CB, Pillus L, Boeke JD. 1998. Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149:1205-1219.

859. Smith MG, Simon VR, O'SulIivan H, Pon LA. 1995. Organelle-cytoskeletal interactions: actin mutations inhibit meiosis-dependent mitochondrial rearrangement in the budding yeast Saccharomyces cerevisiae Mol Biol Cell 6:1381-1396.

860. Sogo LF, Yaffe MP. 1994. Regulation of mitochondrial morphology and inheritance by MdmlOp, a protein of the mitochondrial outer membrane. J Cell Biol 126:1361-1373.

861. Soong NW, Hinton DR, Cortopassi G, Arnheim N. 1992. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genet 2:318-323

862. Sorger PK, Murray AW. 1992. S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature 355:365-368.

863. Soussi-Boudekou S, Andre B. 1999. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 31:753-762.

864. Spannagel C, Vaillier J, Arselin G, Graves P-V, Velours J. 1997. The subunit of mitochondrial ATP synthase. Characterization of the protein and disruption of the structural gene ATP 17. Eur J Biochem 247:1111-1117.

865. Spithill TW, Trembath MK, Lukins HB, Linnane AW. 1978. Mutations of the mitochondrial DNA of Saccharomyces cerevisiae which affect the interaction between mitochondrial nbosomes and the inner mitochondrial membrane Mol Gen Genet 164:155162.

866. Stevens B. 1981. Mitochondrial structures. In: The molecular biology of the yeast Saccharomyces: Life cycle and inheritance. Strathern JN, Jones EW, Broach JR (Eds ). Cold Spring Harbor. New York. Cold Spring Harbor Laboratory Press-471-504.

867. Stevens BJ. 1977. Variation in number and volume of the mitochondria in yeast according to growth conditions A study based on serial sectioning and computer graphics reconstruction. Biol Cell 28:37-56.

868. Stewart LC, Yaffe MP. 1991. A role for unsaturated fatty acids in mitochondrial movement and inheritance J Cell Biol 115:1249-1257.

869. Stierum RH, Croteau DL, Bohr VA. 1999. Purification and characterization of a mitochondrial thymine glycol endonuclease from rat liver. J Biol Chem 274:7128-7136.

870. Stohl LL, Clayton DA. 1992. Saccharomyces cerevisiae contains an Rnase MRP that cleaves at a conserved mitochondrial RNA sequence implicated in replication priming. Mol Cell Biol 12-2561-2569.

871. Stone EM, Pillus L. 1998. Silent chromatin in yeast: an orchestrated medley featuring Sir3p. BioEssays 20:30-40.

872. Straight AF, Shou W, Dowd GJ, Turck CW, Deshaies RJ, Johnson AD, Moazed D. 1999. Netl, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97:245-256.

873. Strausberg RL, Perlman PS. 1978. '1 he effect of zygotic bud position on the transmission of mitochondrial genes in Saccharomyces cerevisiae. Mol Gen Genet 163:131-144.

874. Strom L, Lindroos HB, Shirahige K, Sjogren C 2004. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003-1015.

875. Struhl K. 1995. Yeast transcriptional regulatory mechanisms. Annu Rev Genet 29.651674.

876. Stuart D, Wittenberg C. 1995. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev 9:2780-2794.

877. Stueland CS, Lew CS, Cismowski MJ, Reed SI. 1993. Full activation of p34CDC28 histone HI kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevisiae. Mol Cell Biol 13:3744-3755.

878. Subik J. 1974. A nuclear mutant of S cerevisiae non-tolerating the cytoplasmic petite mutation. FEBS Lett 42:309-312.

879. Sudarsanam P, Cao Y, Wu L, Laurent B, Winston F. 1999. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J 18:3101-3106.

880. Sun Z, Fay DS, Marini F, Foiani M, Stern DF. 1996. Spkl/Rad53 is regulated by Mecl-dependent protein phosphorylation in DNA replication and damage checkpoint pathways Genes Dev 10:395-406.

881. Surana U, Robitsch H, Price C, Schuster T, Fitcher AB, Nasmyth K. 1991. The role of CDC28 and cyclins during mitosis in the budding yeast S cerevisiae. Cell 65:145-161.

882. Susin SA, Daugas E, Ravagnan L, et al. 2000. Two distinct pathways leading to nuclear apoptosis J Exp Med 192:571-580.

883. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G. 1999. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189 381-394.

884. Sutani T, Yuasa T, Tomonaga T, Dohmae N, Takio K, Yanagida M 1999. Fission yeast condensin complex: esential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev 13:2271-2283.

885. Suzuki CK, Rep M, van Dijl JM, Suda K, Grivell LA, Schatz G. 1997. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem Sei 22:118-123.

886. Suzuki CK, Suda K, Wang N, Schatz G. 1994. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264:273-276.

887. Symington LS, Kolodner R. 1985. Partial purification of an enzyme from Saccharomyces cerevisiae that cleaves Holliday junctions. Proc Natl Acad Sei USA 82:7247-7251.

888. Syntichaki P, Topalidou I, Thireos G. 2000. The Gcn5 bromodomain co-ordinates nucleosome remodelling Nature 404 414-417.

889. Taffe BG, Larminat F, Laval J, Croteau DL, Anson RM, Bohr VA. 1996. Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mutation Res 364:183-192.

890. Takao M, Aburatani H, Kobayashi K, Yasui A. 1998. Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res 26:2917-2922.

891. Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD. 2000. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290:341-344.

892. Takizawa PA, Vale RD. 2000. The myosin motor, Myo4p, binds Ashl mRNA via the adapter protein, She3p. Proc Natl Acad Sei USA 97:5273-5278.

893. Tandler B, Hoppel CL 1986. Studies on giant mitochondria. Ann N Y Acad Sei 488:6581.

894. Tang Y, Reed SI. 1993. The Cdk-associated protein Cksl functions both in Gl and G2 in Saccharomyces cerevisiae. Genes Dev 7:822-832.

895. Taylor SD, Zhang H, Eaton JS, Rodeheffer MS, Lebedeva M, O'Rourke TW, Siede W, Shade GS. 2005. The conserved Mecl/Rad53 nuckear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol Biol Cell 16:30103018.

896. Ihiriet C, Hayes JJ. 2005. Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA reapir. Mol Cell 18:617-622.

897. Thomas DY, Wilkie D. 1968. Recombination of mitochondrial drug resistance factors in Saccahromyces cerevisiae. Biochem Biophys Res Commun 30:368-372.

898. Thomas DY, Willamson DH 1971. Products of mitochondrial protein synthesis in yeast. Nature (London) 233:196-199.

899. Thornbery NA, Lazebnik Y. 1998. Caspases: enemies within. Science 281:1312-1316.

900. Thorsness PE, Fox TD. 1993. Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics 134:21-28.

901. Thorsness PH, White KH, Fox ID 1993. lnaetivation of YMEl, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 13:5418-5426.

902. Todo T, Ryo H, Ymamoto H, Toh II, Inui T, Ayaki H, Nomura T, Ikenaga M. 1996. Similarity among the Drosophilia (6-4) photolyase, a human photolyase homolog and the DNA photolyase-blue light photoreceptor family. Science 272'109-112.

903. Toh GW, Lowndes NF. 2003. Role of the Saccharomyces cerevisiae Rad9 protein in sensing and responding to DNA damage. Biochem Soc Trans 31:242-246.

904. Tomkinson AE, Bonk RT, Kim J, Bartfeld N, Linn S. 1990. Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res 18 929935.

905. Tomkinson AE, Bonk RT, Linn S 1988. Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J Biol Chem 26:12532-12537.

906. Toth A, Ciosk R, Uhlmann F, Galova M, Schlciffer A, Nasmyth K. 1999. Yeast cohesin complex requires a conserved protein, Ecolp (Ctf7), to establish cohesion between sister chromatids during DNA replication Genes Dev 13*320-333.

907. Traven A, Wong JMS, Xu D, Sopta M, Ingles CJ. 2001. Interorganellar comminication. Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant. J Biol Chem 276:4020-4027

908. Traverso EE, Baskerville C, Liu Y, Shou W, James P, Deshaies RJ, Charbonneau H. 2001. Characterization of the Netl cell cycle-dependent regulator of the Cdcl4 phosphatase from budding yeast. J Biol Chem 276:21924-21931.

909. Triolo T, Sternglanz R. 1996 Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381:251-253.

910. Troitskaya O, Perlman PS, Butow RA. 1995. ILV5 encodes a bifunctional mitochondrial protein involved in branched chain amino acid biosynthesis and maintenance of mitochondrial DNA. EMBO J 14:3268-3276.

911. Tsujimoto Y. 1997. Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes Cell Death Differ 4.429-434.

912. Tsukamoto Y, Kato J-I, Ikeda H. 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388* 900-903.

913. Tsukuda T, Fleming AB, Nickoloff JA, Osley MA. 2005. Chromatin remodeling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438: 379-383.

914. Tyers M, I'okiwa G, Futcher B. 1993. Comparison of the Saccharomyces cerevisiae Gl cyclins: Cln3 may be an upstream activator of Clnl, Cln2 and other cyclins. EMBO J 12:1955-1968.

915. Tzagoloff A, Akai A, Needlemann RB. 1975. Assembly of the mitochondrial membrane system. Characterization of nuclear mutants of Saccharomyces cerevisiae with defects in mitochondrial ATPase and respiratory enzymes. J Biol Chem 250:8228-8235.

916. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO. 2003. Targets of the cyclin-dependent kinase Cdkl. Nature 425:859-864.

917. Uetz P, Giot L, Cagney G, Mansfield TA et al. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403*623-627.

918. Ulery TL, Jang SH, Jaehning JA. 1994. Glucose repression of yeast mitochondrial transcrition: kinetics of derepression and role of nuclear genes Mol Cell Biol 14:1160-1170.

919. Unal E et al. 2004 DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16.991-1002.

920. Uren AG, Beilharz T, O'Connell MJ, Bugg SJ, van Driel R, Vaux DL, Lithgow T. 1999. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sei USA 96:10170-10175.

921. Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL. 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394:498-502.

922. Vale RD. 1987. Intracellular transport using microtubule-based motors Ann Rev Cell Biol 3:347-378.

923. Valencia M, Bentele M, Vaze MB, Herrmann G, Kraus E, Lee SE, Schar P, Haber JE 2001. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Natute 414.666-669.

924. Van Attikum H, Gasser SM. 2005. AlP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4:1011-1014.

925. Van Attikum H, Fritsch O, Hohn B, Gasser SM. 2004. Recruitment of the IN080 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair Cell 119.777-788.

926. Van den Bosch M, Lowndes NF. 2004. Remodeling the Rad9 checkpoint complex: preparing Rad53 for action. Cell Cycle 3:119-122.

927. Van Dyck E, Foury F, Stillman B, Brill SJ. 1992. A single-stranded DNA binding protein required for mitochondrial DNA replication in S cerevisiae is homologous to E coli SSB. EMBO J 11:3421-3430.

928. Van Dyck L, Pearce DA, Sherman F. 1994. PIM1 encodes a mitochondrial A'lP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem 269 238-242.

929. Van Houten B, Cheng S, Chen Y. 2000 Measuring gene-specific nucleotide excision repair in human cells using quantitative amplification of long targets from nanogram quantities of DNA. Mutat Res 460 81-94.

930. Vanderstraeten S, Van den Brule S, Hu J, Foury F. 1998. The role of 3'-5' exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error evoidance. J Biol Chem 273:23690-23697.

931. Vaux DL, Korsmeyer SJ. 1999. Cell death in development. Cell 96:245-254.

932. Vaziri H, Dessain SK, Ng Eaton E, lmai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. 2001. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149159.

933. Vialard JE, Gilbert CS, Green CM, Lowndes NF. 1998. The budding yeast Rad9 checkpoint protein is subjected to Mecl/Tell-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 17:5679-5688.