Бесплатный автореферат и диссертация по биологии на тему
Нуклеозиддифосфаткиназа
ВАК РФ 03.00.04, Биохимия

Автореферат диссертации по теме "Нуклеозиддифосфаткиназа"

На правах рукописи

ВОИНОВА ВЕРА ВЛАДИМИРОВНА

НУКЛЕОЗИДЦИФОСФАТКИНАЗА: ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ С НАРУЖНОЙ МЕМБРАНОЙ МИТОХОНДРИЙ И СИСТЕМОЙ ОКИСЛИТЕЛЬНОГО ФОСФОРИЛИРОВАНИЯ

03.00.04 - биохимия

Автореферат диссертации на соискание ученой степени кандидата биологических наук

3 0 ^ п ° ^

Москва - 2009

003468221

Работа выполнена на кафедре биохимии биологического факультета Московского государственного университета имени М. В. Ломоносова

Научный руководитель:

доктор биологических наук Липская Татьяна Юрьевна

Официальные оппоненты:

доктор биологических наук, профессор Звягильская Рената Александровна

кандидат биологических наук Высоких Михаил Юрьевич

Ведущая организация:

Российский университет дружбы народов минобрнауки РФ

Защита состоится 25 мая 2009 г. в 15 часов 30 минут на заседании диссертационного совета Д.501.001.71 при Московском государственном университете имени М.В. Ломоносова по адресу 119991, Москва, ГСП-1, Ленинские горы, Московский государственный университет имени М.В. Ломоносова, д.1, стр. 12, Биологический факультет, большая биологическая аудитория (ББА).

С диссертацией можно ознакомиться в библиотеке биологического факультета Московского государственного университета имени М.В. Ломоносова.

Автореферат разослан ¿¿Я- апреля 2009 г.

Ученый секретарь диссертационного совета,

кандидат биологических наук

Медведева М.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. В физиологических условиях нуклеозиддифосфаткиназа (НДФК, ЕС 2.7.4.6) катализирует реакции синтеза различных нуклеозидтрифосфатов (NTP) из АТР и соответствующих нуклеозиддифосфатов (NDP). Эти NTP служат непосредственным источником энергии для основных анаболических процессов и необходимы для построения молекул ДНК и РНК. Как следствие, НДФК принадлежит одна из центральных ролей в обеспечении нормальной жизнедеятельности живых организмов. В тканях обнаружены восемь изоформ НДФК, которые различаются тканевой специфичностью и внутриклеточной локализацией. В настоящее время известно, что НДФК участвует в регуляции таких важных процессов как клеточный цикл, подвижность и дифференциация клеток, метастазирование опухолей и апоптоз. НДФК была одним из первых ферментов, для которых было показано, что каталитическая и регуляторная функции могут осуществляться независимо одна от другой.

В митохондриях гепатоцитов фермент был найден в наружном компартменте и в матриксе. В то время как физиологическая роль НДФК матрикса достаточно ясна, специфические функции НДФК наружного компартмента митохондрий до сих пор не известны, хотя активность этой НДФК достаточна для того, чтобы обеспечить близкую к максимальной скорость окислительного фосфорилирования.

Известно, что важнейшей функцией митохондрий в нормально функционирующих клетках является обеспечение клеток энергией. Однако наружная мембрана митохондрий представляет собой диффузионный барьер для заряженных молекул. Поскольку концентрация свободного ADP в цитоплазме клеток очень низка, потенциально наружная мембрана митохондрий могла бы лимитировать скорость внутриклеточного транспорта энергии.

Имеющиеся литературные данные свидетельствуют о том, что низкая проницаемость наружной мембраны для ADP в значительной степени преодолевается благодаря возникновению так называемого функционального

сопряжения между активностью киназ наружного компартмента митохондрий и системой окислительного фосфорилирования. Для тканей с высоким уровнем энергетического метаболизма показано, что в функциональном сопряжении участвуют ферменты межмембранного пространства митохондрий -креатинкиназа и аденилаткиназа, а также ферменты, связанные на внешней поверхности наружной мембраны митохондрий - глицеринкиназа и гексокиназа (ГК). Благодаря возникновению функционального сопряжения, часть А1)Р, образованного в указанных киназных реакциях, прямо переносится в матрикс митохондрий, минуя стадию смешивания с АБР среды. Однако митохондрии печени не содержат креатинкиназу, а активности ГК и глицеринкиназы в них ничтожно малы по сравнению с активностью НДФК наружного компартмента.

Исследования, проведённые в нашей лаборатории ранее, указывают на локализацию НДФК на внешней поверхности наружной мембраны митохондрий (нмНДФК). Некоторые из процессов (например, злокачественный рост, апоптоз), в регуляции которых участвуют изоформы НДФК, протекают с участием ферментов, связанных с наружной митохондриальной мембраной. нмНДФК может быть одним из регуляторов этих и других процессов в наружном компартменте митохондрий.

Локализация на наружной митохондриальной мембране предполагает возможность обратимой солюбилизации нмНДФК. Очевидно, что солюбилизация фермента должна изменять его регуляторные свойства. Предыдущие исследования нашей лаборатории указывают на гетерогенность свойств нмНДФК.

В связи со сказанным изучение особенностей взаимодействия нмНДФК с наружной мембраной митохондрий и системой окислительного фосфорилирования представляется актуальной задачей.

Цель исследования: изучить особенности взаимодействия НДФК наружного компартмента митохондрий с наружной мембраной митохондрий и системой окислительного фосфорилирования.

Задачи исследования:

1. Получить дополнительные доказательства того, что все молекулы НДФК наружного компартмента митохондрий печени локализованы на внешней поверхности наружной мембраны митохондрий.

2. Выяснить природу сил взаимодействия НДФК наружного компартмента митохондрий с мембранами.

3. Выяснить, участвует ли НДФК наружного компартмента митохондрий печени в функциональном сопряжении с системой окислительного фосфорилирования.

4. Определить, какую долю от общей активности НДФК наружного компартмента митохондрий составляет активность молекул фермента, участвующих в функциональном сопряжении с системой окислительного фосфорилирования.

5. Исследовать природу гетерогенности свойств НДФК наружного компартмента митохондрий.

Научная новизна полупенных результатов.

Доказана локализация НДФК наружного компартмента митохондрий на внешней поверхности наружной мембраны митохондрий.

Установлено, что нмНДФК связана с мембранами митохондрий преимущественно силами неионных взаимодействий.

Показано возникновение функционального сопряжения между активной нмНДФК и системой окислительного фосфорилирования.

Установлено, что в функциональное сопряжение вовлечено 22 — 24% активности всех молекул нмНДФК.

Установлено, что молекулы нмНДФК, не участвующие в функциональном сопряжении с окислительным фосфорилированием, могут обратимо солюбилизироваться с наружной мембраны митохондрий.

Установлено, что эта солюбилизируемая нмНДФК представлена двумя типами молекул, различающимися своими изоэлектрическими точками и молекулярной массой.

Практическая значимость работы. Настоящая работа является фундаментальным исследованием НДФК наружного компартмента митохондрий и открывает перспективы для выяснения роли нмНДФК во внутриклеточном транспорте энергии. Полученные нами результаты дают предпосылки к изучению механизмов, лежащих в основе участия НДФК наружного компартмента митохондрий в регуляции таких процессов, как диабет, программируемая клеточная смерть и канцерогенез.

Апробация работы. Результаты работы были доложены на заседании кафедры биохимии Биологического факультета МГУ, на XI международной конференции студентов, аспирантов и молодых учёных «Ломоносов 2004» (Москва, 2004 г), 31 конгрессе Союза Европейских Биохимических Обществ (РЕВБ, Стамбул, Турция, 2006 г), XIV Европейской Конференции по Биоэнергетике (ЕВЕС, Москва, 2006 г), XIII международной конференции студентов, аспирантов и молодых учёных «Ломоносов 2006» (Москва, 2006 г), XVI Международной конференции «Новые информационные технологии в медицине, биологии, фармакологии и экологии» (1Т+М&Ес, Гурзуф, Украина, 2008 г).

Публикации. Результаты исследования опубликованы в 3 статьях и 5 тезисах научных докладов.

Структура диссертации. Диссертация изложена на 219 страницах машинописного текста, содержит 37 рисунков и 15 таблиц, состоит из введения, обзора литературы, описания материалов и методов исследования, изложения полученных результатов, их обсуждения, выводов и списка цитируемой литературы. Список литературы включает 570 источников.

МЕТОДЫ ИССЛЕДОВАНИЯ

Выделение митохондрий. Митохондрии выделяли из печени белых крыс методом дифференциального центрифугирования (2000 - 10300 об./мин) так, как описано в работе (Липская Т.Ю., Воинова В.В., 2005).

Скорость дыхания митохондрий определяли полярографическим методом (Chance В., Williams G.R., 1955; Estabrook R.W., 1967) с помощью полярографа LP 7е («Laboratorni Pristroje Praha», Чехословакия) и закрытого платинового электрода Кларка. Основная среда инкубации полярографического опыта содержала 85 мМ КС1, 110 мМ маннит, 0,1 мМ ЭГТА, 20 мМ Tris-HCl, рН 7,4, 5 мМ фосфат калия, 3 мМ MgCl2, 5 мМ сукцинат калия.

Определение скорости окислительного фосфорилироваиия, а также активностей НДФК и гексокиназы полярографическим методом. Среда инкубации полярографического опыта дополнительно содержала: при определении активности НДФК 1 мМ АТР (субстрат CDP) или 300 мкМ АТР (субстрат UDP); при определении активности ГК - 1 мМ АТР и 5 мМ глюкозу. Киназную реакцию начинали добавлением 600 мкМ CDP, 300 мкМ UDP или -0,3 единиц/мл ГК соответственно. Скорость фосфорилирующего дыхания в нг-ат. О/мин на 1мг белка находили как разность скоростей дыхания сразу после добавления 170 мкМ ADP (или во время киназной активности) и после того, как весь ADP был фосфорилироваи (или до начала киназной реакции). Скорость окислительного фосфорилироваиия, а также активности НДФК и ГК находили, умножая соответствующую скорость фосфорилирующего дыхания на величину отношения ADP/O. В наших экспериментах средняя скорость окислительного фосфорилироваиия ADP была равна 359 ± 37 (п = 49) нмоль ADP/мин на 1 мг белка.

В большинстве экспериментов активность НДФК (и других киназ) характеризовали процентным отношением скорости фосфорилирующего дыхания во время активности фермента ( FNDP для НДФК) к скорости фосфорилирующего дыхания после добавления 170 мкМ ADP (Рлпр).

Удаление цитохрома с из митохондрий проводили по методу Jacobs и Sanadi (Jacobs Е.Е., Sanadi D.R., 1960).

Определение связанной с мембранами активности нмНДФК. Из хранившейся во льду исходной суспензии осадков митохондрий периодически

отбирали пробы и центрифугировали. В суспензиях полученных осадков полярографическим методом определяли оставшуюся активность нмНДФК.

Полярографические эксперименты в присутствии креатинкиназы. Среда инкубации полярографического опыта дополнительно содержала 1 мМ АТР, 6,2 мМ креатинфосфат, а также: 20 мкМ АР5А (в опытах с активной НДФК); 20 мкМ АР5А и 5 мМ глюкозу (в опытах с активной ГК).

В полярографическую ячейку вносили 0 - 37,5 единиц/мл мышечной креатинкиназы (КК) и митохондрии, регистрировали скорость дыхания. Через 1,5 мин в пробы делали добавку, инициирующую соответствующую киназную реакцию, и регистрировали дыхание митохондрий ещё 1 мин.

Обработка проб после полярографического эксперимента. Из полярографической ячейки отбирали пробу, и останавливали реакцию добавлением НСЮ4. Через 60 мин хранения во льду пробу центрифугировали, супернатант нейтрализовали К2СОз и определяли в нём содержание участников креатинкиназной реакции, глюкозо-6-фосфата и СТР.

Влияние рН на прочность взаимодействия нмНДФК с мембранами митохондрий. Получали несколько одинаковых осадков митохондрий. Каждый суспендировали в одной из сред, не различавшихся ионной силой и осмотической концентрацией, но имевших разную величину рН. Суспензии инкубировали 2 или 4,8 ч, затем центрифугировали. В суспензиях полученных осадков полярографическим методом определяли оставшуюся активность нмНДФК.

Обращение солюбилизации нмНДФК. Исходную суспензию осадка митохондрий делили на равные части. Через определённое время к одной из них добавляли 3,33 мМ MgCl2 или заранее подобранное количество Tris, которое повышало рН буфера с 6 до 8. Периодически в каждой суспензии определяли общую и связанную с мембранами активность нмНДФК.

Электрофорез белков. Исходный осадок митохондрий суспендировали в среде, содержащей 280 мМ маннит, 2,1 мМ HEPES, рН 7,4, инкубировали 1 - 10 ч, затем центрифугировали. Электрофорез белков, солюбилизированных с поверхности митохондрий, проводили в неденатурирующих условиях в аппарате

Protean III (Bio-Rad). Изоэлектрофокуеирование проводили в геле, содержащем 5% Т, 3,3% С и 2% амфолины (Servalitc, pH 2-11). Нативный электрофорез проводили по методу Ornstein и Davis для кислых белков (Ornstein L., 1964; Davis В.J., 1964). Градиентный электрофорез проводили в геле с градиентом плотности акриламида и метилен бисакриламида от 7% Т, 0,9% С до 30% Т, 0,7% С. Отдельные дорожки гелей после окончания электрофореза окрашивали по активности НДФК. Реакционная среда объёмом 5 мл содержала 150 мМ HEPES, pH 7,4, 10 мМ MgCl2> 0,6 мМ ЭДТА, 6 мМ глюкозу, 0,5 мМ ADP, 0,6 мМ NADP+, 1 мМ СТР, -1,3 единиц активности глюкозо-6-фосфатдегидрогеназы, -16 единиц активности ГК, 0,004% (w/v) феназинметасульфат и 0,04% (w/v) нитросиний тетразолий. Окрашивание проводили в течение 40 мин при 37° в темноте.

Результаты статистической обработки представлены как среднее арифметическое ± стандартная ошибка для указанного в подписях к рисункам и таблицам числа измерений (и).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Локализация НДФК в наружном компартменте митохондрий. Известно, что цитохром с (цит. с) связан с наружной поверхностью внутренней мембраны митохондрий электростатическими силами и легко солюбилизируется из митохондрий с повреждённой наружной мембраной в солевой среде. В митохондриях печени крысы цит. с участвует во всех реакциях электронного транспорта. Его солюбилизация приводит к снижению скорости дыхания, которая может быть восстановлена добавлением к среде цит. с в низкой концентрации. В настоящее время анализ эффектов добавленного цит. с на дыхание митохондрий является наиболее чувствительным и надёжным тестом на целостность наружной митохондриальной мембраны.

В эксперименте суспензию митохондрий в 0,28 М манните, 2,1 мМ HEPES, pH 7,4 инкубировали во льду в течение 10 ч. Затем суспензию центрифугировали для удаления активности НДФК, солюбилизировавшейся во время хранения. Осадок промывали в 0,15 М KCl для удаления цит. с из митохондрий с

9

повреждёнными наружными мембранами и подвергали полярографическому исследованию. Было найдено, что за 10 ч хранения из митохондрий солюбилизировапось более чем 90% активности НДФК (не показано). На рис. 1, а, б видно, что в присутствии БССР цит. с не увеличивал скорость дыхания таких митохондрий, но он стимулировал дыхание митохондрий, наружная мембрана которых была повреждена в результате гипотонической обработки (рис. 1, в). Из этих опытов мы сделали вывод, что вся солюбилизированная активность НДФК была связана с внешней поверхностью наружной мембраны митохондрий.

Природа сил взаимодействия нмНДФК с мембранами. При изучении функционального сопряжения активности нмНДФК с окислительным фосфорилированием важно было иметь уверенность, что во время опыта нмНДФК прочно связана с наружной мембраной митохондрий. Для того чтобы найти условия выделения и хранения митохондрий, удовлетворяющие этому требованию, мы изучили природу сил взаимодействия нмНДФК с мембранами. С этой целыо исследовали зависимость солюбилизации нмНДФК от концентрации КС1 в среде промывания (рис. 2).

На рис. 2 видно, что повышение ионной силы среды промывания и хранения митохондрий увеличивало прочность связи нмНДФК с мембранами. Мы сделали вывод, что ионные взаимодействия не играют существенной роли в связывании

м

м

м

Рис. 1. Солюбилизация цит. с во время хранения митохондрий, а) - Исходная суспензия митохондрий после 10 ч хранения во льду; б) -суспензия митохондрий после 10 ч хранения и промывания в 0,15 М KCl; в) - суспензия митохондрий после

предварительной гипотонической обработки в 0,015 М KCl и промывания в 0,15 М KCl. Где указано, были добавлены 0,5 мкМ FCCP и 10 мкг цит. с. Представлены результаты одного из двух аналогичных экспериментов.

после

фермента с мембранами митохондрий. Мы установили, что замена К+ на не влияла на прочность взаимодействия нмНДФК с мембранами (не показано). Следовательно, влияние К+ и Ыа+ было обусловлено неспецифическим действием

Рис. 2. Влияние концентрации KCI в среде промывания митохондрий иа прочность связи нмНДФК с мембранами. Осадки митохондрий суспендировали в средах промывания, содержащих указанные количества КС1, 2,1 мМ HEPES, рН 7,4 и маннит до суммарной осмотической концентрации 280 мосМ. Через 1 ч суспензию центрифугировали и определяли в осадках оставшуюся активность нмНДФК. За 100% принимали отношение f/CDP/FADP, найденное для митохондрий,

инкубированных в среде промывания, содержащей 140 мМ КС1 (в этих опытах это отношение было равно 69,0 + 0,9%). За 0% принимали отношение j/CDP/yADPi найденное для митохондрий, инкубированных в среде с низкой ионной силой (это отношение было равно 34,5 ± 0,2%). п=2.

Присутствие Mg2+ в среде хранения митохондрий способствовало прочному связыванию нмНДФК с мембранами. Можно было предположить, что Mg2+ непосредственно участвует в связывании фермента. Однако промывание митохондрий при рН 8,0 в присутствии 1 мМ ЭДТА не вызывало дополнительную солюбилизацию нмНДФК (не показано). Мы сделали вывод, что Mg2+ не участвует напрямую в связывании нмНДФК с мембранами.

Солюбилизацня нмНДФК из митохондрий, хранившихся в разных средах. Исследовали функциональные характеристики и скорость солюбилизации нмНДФК из митохондрий, хранившихся в средах, содержавших 2,1 мМ HEPES, рН 7,4, а также: 280 мМ маннит (среда с низкой ионной силой); 140 мМ КС1 (среда с высокой ионной силой); 3,33 мМ MgCb и 270 мМ маннит (среда с Mg2+).

Основные функциональные характеристики митохондрий сразу после их получения и через 5 - 8 ч хранения практически не различались (не показано).

ионной силы на связывание фермента.

2 4

Время, ч

Рис. 3. Солюбилизация нмНДФК при хранении митохондрий в разных средах.

Митохондрии промывали и хранили: (а) - в среде с низкой ионной силой; (б) - в среде с высокой ионной силой; (в) - в среде с М§2+. Относительная активность нмНДФК: (1) -общая; (2) - связанная с мембранами, (а, б) -Результаты отдельных экспериментов; (в) -средние результаты трёх независимых экспериментов.

Следовательно, условия выделения и хранения митохондрий не оказывали какого-либо воздействия на их дыхательный аппарат. Однако прочность связи нмНДФК с мембранами в анализируемых препаратах существенно различалась (рис. 3, кривые 2). Из митохондрий, хранившихся в среде с низкой ионной силой, нмНДФК легко

солюбилизировалась, в среде с высокой ионной силой

солюбилизация фермента

происходила медленнее, а в среде с Мд2+ 90% активности нмНДФК оставались связанными с мембранами в течение 6 ч. Суммарная активность солюбилизированной и связанной с мембранами нмНДФК практически не изменялась во времени (кривые 1), хотя исходно она была разной величины, поскольку часть нмНДФК солюбилизировалась в процессе выделения митохондрий. Доля утраченной при выделении активности нмНДФК определялась солюбилизирующим эффектом среды промывания.

Поскольку в среде с М§2+ связанная с мембранами активность пмНДФК оставалась на постоянном высоком уровне в течение 6 ч (рис. 3, в, кривая 2), мы использовали этот препарат в опытах по изучению функционального сопряжения активности нмНДФК с окислительным фосфорилированием.

Функциональное сопряжение активности нмНДФК с окислительным фосфорилированием. На рис. 4. представлены схемы трёх ферментных систем, использованных в опытах. В первой системе (рис. 4, а) донором АБР для окислительного фосфорилирования служила нмНДФК, связанная на внешней поверхности наружной мембраны митохондрий, а в двух других системах - не способные связываться с мембранами дрожжевая гексокиназа (дГК) (рис. 4, б) и дрожжевая НДФК (дНДФК) (рис. 4, в). Роль внешней АЭР-потребляющей системы, конкурирующей за АБР с системой окислительного фосфорилирования, играла мышечная КК.

а б в

Рис. 4. Три экспериментальные модели, использованные в работе. ВМ и НМ -

внутренняя и наружная мембраны митохондрий соответственно, ММП - межмембранное пространство. Кр - креатин, КрФ - креатинфосфат, Гл - глюкоза, Гл-6-Ф - глюкозо-6-фосфат, дГК - дрожжевая ГК, дНДФК - дрожжевая НДФК.

На рис. 5 представлены результаты измерения скорости дыхания митохондрий в присутствии возрастающих количеств КК в двух ферментных системах: с нмНДФК (рис. 4, а) и с дГК (рис. 4, б). В отсутствие КК добавление 600 мкМ СОР вызывало такую же стимуляцию дыхания, как и добавление предварительно подобранного количества дГК, то есть активности нмНДФК и дГК в экспериментальных системах были равны (рис. 5). Однако при увеличении количества добавленной КК скорость дыхания в системе с

активной нмНДФК снижалась медленнее, чем в системе с активной дГК (рис. 5, кривые / и 2 соответственно). В присутствии 20,5 ед./мл КК скорости дыхания митохондрий в обеих системах достигли минимума и далее практически не менялись. В этих условиях активность КК в 60-100 раз превышала максимальную скорость окислительного фосфорилирования.

О 10 20 30 40 Креатинкиназа, ед./мл

Рис. 5. Зависимость скорости дыхания митохондрий печени от активности КК.

Среда инкубации полярографического опыта дополнительно содержала 1 мМ АТР, 6,2 мМ КФ, 20 мкМ АР5А (кружки), а также 5 мМ глюкозу (треугольники). (/) - скорость дыхания после добавления CDP; (2) -скорость дыхания после добавления дГК; (3 и 4) — скорости дыхания митохондрий до добавления CDP или дГК соответственно. и=3.

Трудность работы с нмНДФК заключалась в том, что в состав сопряженной ферментной системы, используемой для определения концентрации ADP спектрофотометрическим методом, входит пируваткиназа, которая не обладает строгой субстратной специфичностью по отношению к нуклеотидам и может, наряду с ADP, потреблять другие присутствующие в среде субстраты нмНДФК. По этой причине мы не могли напрямую определить концентрацию ADP в пробах, содержащих CDP, спектрофотометрическим методом. Однако применение КК в полярографическом опыте позволило нам решить эту проблему.

Поскольку креатинкиназная реакция легко обратима, в пробах полярографического опыта при условии избытка активности КК по сравнению с активностью другой кипазы и скоростью окислительного фосфорилирования устанавливалось квазиравновесие креатинкиназной реакции. В системе с дГК мы определяли концентрация всех участников креатинкиназной реакции и

находили величину отношения их действующих масс (Г = [ADP] ■ [КФ] / [АТР] ' [Кр]) (табл. 1) которая при активности КК > 20,5 ед./мл была равна кажущейся константе равновесия этой реакции. Найденная величина кажущейся константы равновесия креатинкиназной реакции хорошо соотносится с данными литературы (например, Lawson J.W., et al., 1979; Lipskaya T.Yu., et al., 1989). В наших опытах активности дГК и нмНДФК были равны, следовательно, в условиях квазиравновесия креатинкиназной реакции отношение действующих масс её участников в этих системах также должно было быть одинаковым. В системе с нмНДФК определяли концентрации креатина, креатинфосфата и АТР, и, зная величину кажущейся константы равновесия, рассчитывали концентрацию ADP.

В наших опытах субстрат дыхания (сукцинат) и Pi присутствовали в избытке. В этих условиях скорость дыхания митохондрий зависела от концентраций ADP и АТР в среде (Kunz W., et al., 1981). В присутствии избытка активности КК во время работы нмНДФК остаточная скорость дыхания митохондрий была равна 21% исходной, а во время активности дГК -7% (табл. 1), хотя наружная концентрация ADP и отношение ATP/ADP в обеих системах достоверно не различались (табл. 1).

Таблица 1. Параметры, характеризующие состояние квазиравновесия креатинкиназной реакции во время активное! и дГК и нмНДФК.

Скорость фосфорилирующего дыхания

-КК + КК

Активный Г = [ADP]-[KO]/ ADP, нмоль Ог/мин нмоль 02/мин

фермент /[АТР]'[Кр] мкМ ATP/ADP на 1 мг белка % на 1 мг белка %

дГК 0,0259 ± 0,002 (10) 3,22 ±0,49 (И) 288 ±36 (11) 73,3 ±5,6(3) 100 5,3 ± 0,5 (12) 7

нмНДФК - 3,16 ±0,25 (10) 311 ±0,25 (10) 72,4 ±5,4(3) 100 15,0 ±0,8 (12) 21

Примечание. Расчёт по результатам трёх опытов. В присутствии КК результаты усреднены для проб, в которых концентрация КК была равна 20,5 - 34,1 ед./мл. В скобках - число измерений.

При сравнении активности нмНДФК и дНДФК в присутствии избытка активности КК установлено, что остаточная скорость фосфорилирующего дыхания во время активности нмНДФК составила 23% исходной, а во время

активности дНДФК - только 3% (в опытах с дНДФК нмНДФК была предварительно солюбилизирована с поверхности митохондрий).

Полученные результаты свидетельствуют о возникновении функционального сопряжения между нмНДФК и системой окислительного фосфорилирования во время их активности. Насколько нам известно, эти результаты для нмНДФК получены впервые.

Доля активности нмНДФК, сопряженной с окислительным фосфорилированием. Все ли молекулы нмНДФК принимают участие в функциональном сопряжении с окислительным фосфорилированием? На рис. 6 видно, что в ходе хранения митохондрий в среде с высокой ионной силой за 5 ч доля активности связанной с мембранами нмНДФК значительно уменьшилась (рис. 6, кривая 2). Однако доля фосфорилирующего дыхания, нечувствительного к присутствию избытка активности КК, была постоянной и составила -17% скорости окислительного фосфорилирования (рис. 6, кривая 3).

^ 100 й I

О X

g.x 80

0 л

к 2 60 го ш

5 з"

§ >. 40 Ё §" й ^

1 а 20 о

§ 0

НИ-*-

* * * к i ti-Ь. 4

2 4

Время, ч

Рис. 6. Доля нмНДФК, участвующая в функциональном сопряжении с

окислительным фосфорилированием. Среда инкубации полярографического опыта дополнительно содержала 1 мМ АТР, 20 мкМ АР5А (1 и 2), а также 6,2 мМ КФ, 22,5-36 ед./мл КК (3) и 5 мМ глюкозу {4). {1 - 3) -скорость дыхания после добавления CDP; (4) -скорость дыхания после добавление дГК. (/, 3, 4) - Исходная суспензия митохондрий; (2) -суспензия осадка митохондрий после переосаждения в среде хранения, (кривые 1-3) п = 6; (кривая 4) п = 3. За 100% принимали исходную скорость фосфорилирующего дыхания VAt>p=85,3 ± 10,0 нмоль СЬ/мин на 1 мг белка.

Такая же доля нечувствительного к присутствию избытка активности КК

фосфорилирующего дыхания была получена при хранении митохондрий в

среде с (не показано), хотя в течение 5 ч хранения практически вся

нмНДФК оставалась связанной с мембранами (рис. 3, е).

Мы сделали вывод, что в функциональном сопряжении участвует только

небольшая доля наиболее прочно связанных с мембранами митохондрий

16

молекул нмНДФК, активность которых составила 22 - 24% общей активности фермента. Мы предполагаем, что в функциональное сопряжение вовлечены те молекулы нмНДФК, которые локализованы в области контактных участков поверхностных мембран митохондрий, где они связаны с порином или находятся поблизости от него.

В наших опытах 10% декстран не влиял на функциональное сопряжение между активностью нмНДФК и окислительным фосфорилированием, хотя он увеличивал функциональное сопряжение между активностью мАК и окислительным фосфорилированием в митохондриях, хранившихся в среде без Mg2+ (не показано).

Обращение солюбилизации нмНДФК. Мы предположили, что солюбилизация молекул нмНДФК, не участвующих в сопряжении с окислительным фосфорилированием (см. рис. 6, кривая 2), функционально значима и может происходить in vivo. В таком случае солюбилизация нмНДФК должна быть обратимой. Добавление Mg2+ к митохондриям, хранившимся в течение 30 мин в среде с низкой ионной силой, вызывало обращение солюбилизации нмНДФК, при этом связанная с мембранами активность нмНДФК возрастала до 86% от максимальной. Однако обращение солюбилизации было неустойчивым, и доля мембраносвязанного фермента через короткое время снижалась (не показано). Мы предположили, что неполное обращение солюбилизации нмНДФК связано с активностью протеолитических ферментов - катепсинов. Для проверки этого предположения в среду промывания и хранения митохондрий добавили 50 мкМ лейпептин -ингибитор сериновых и цистеиновых протеиназ (рис. 7). Контрольные опыты показали, что лейпептин не влиял на скорость солюбилизации нмНДФК во время хранения митохондрий (не показано).

На рис. 7 видно, что нмНДФК быстро солюбилизировалась (кривая 2). Добавление 3,33 мМ MgCl2 к митохондриям, промытым и хранившимся в присутствии 50 мкМ лейпептина (кривая 3) приводило к устойчивому

обращению солюбилизации нмНДФК, при этом мембраносвязанная активность фермента увеличилась до 90% максимальной.

100 -,

80 -

20 -

О

0 1 2 3 4 5 6

2

1

Рис. 7. Влияние лейпептина на обращение солюбилизации

нмНДФК добавлением Mg2+.

Одинаковые осадки митохондрий промывали и хранили в среде с низкой ионной силой (кружки) - без лейпептина; (ромбы) - с добавлением 50 мкМ лейпептина. 3,33 мМ \lgCl2 был добавлен к суспензиям с лейпептином через 1 ч после получения препарата митохондрий. Относительная активность нмНДФК: (1) - общая; (2) - связанная с мембранами. Представлены

результаты одного из трёх аналогичных экспериментов.

Время, ч

Обратимость солюбилизации нмНДФК позволяет предположить, что аналогичный процесс может также протекать in vivo. В таком случае нмНДФК можно отнести к группе так называемых «непостоянных» периферических мембранных белков (Gofli F.M., 2002).

Прочность связи нмНДФК с мембранами зависела от рН среды хранения (рис. 8). При кислых значениях рН фермент был менее прочно связан с мембранами, чем при щелочных. При этом часть молекул нмНДФК, активность которых составила ~ 20 % максимальной активности нмНДФК наружного компартмента, оставалась нечувствительной к действию рН. Дополнительные эксперименты показали, что уменьшение доли ассоциированной с мембранами активности нмНДФК в средах с кислым значением рН не было следствием инактивации фермента при этих значениях рН (не показано) и действия катепсинов (рис. 8).

Мы предположили, что солюбилизацию нмНДФК под влиянием рН можно обратить смещением рН среды хранения митохондрий в щелочную сторону. В этих экспериментах для ингибирования катепсинов использовали Е-64 -необратимый ингибитор цистеиновых протеиназ, суммарный заряд которого

равен нулю. В качестве неспецифического субстрата для катепсинов к митохондриям добавляли БСА. На рис. 9, кривая /, показана активность нмНДФК, связанная с мембранами митохондрий, промытых и хранившихся в среде с высокой ионной силой в присутствии 1 мМ 1У^С12, при рН 8,0. В митохондриях, промытых и хранившихся в такой же среде при рН 6,0 в присутствии или без ингибиторов катепсинов, нмНДФК быстро солюбилизировалась (рис. 9, кривая 2).

100

CL S

Q а.

о X

CL Р

è I

80 -

60

40

20

5,0

6,0

7,0

8,0

pH

Рис. 8. Влияние pH среды промывания и хранения митохондрий на солюбилизацию НмНДФК. МИТОХОНДРИЯ ПрСшЫВиЛИ и хранили при указанных значениях pH в среде, содержащей 10 мМ MES (pH 6,0 - 7,0) или 10 мМ HEPES (pH 7,0 - 8,6), а также (1) - 140 мМ KCl, 1 мМ MgCl2, 75 мкМ лейпептин, (2 - 4) — маннит до суммарной осмотической концентрации 280 мосМ, KCl до суммарной ионной силы 0,009, (3) - 50 мкМ лейпептин. (I - 3) - Встряхивание в термомиксере -2 ч; (4) - 4,8 ч. Кривые 1 и2 - субстратUDP, кривые 3 и 4 - субстрат CDP. На кривых 1 и 3 разными значками обозначены результаты отдельных экспериментов. (2 и 4) - Результаты одного эксперимента.

Через 2 ч хранения митохондрий при рН 6,0 к суспензиям добавили заранее подобранное количество 1M Tris, которое повышало рН среды хранения митохондрий до рН 8,0 (рис. 9, кривые 3 - 5). В присутствии смеси Е-64 и БСА обращение солюбилизации нмНДФК (рис. 9, кривая J) происходило до уровня максимальной активности фермента при рН 8,0 (рис. 9, кривая 1). Таким образом, мы установили, что нмНДФК, солюбилизированная при кислых значениях рН, не теряет способности обратно связываться с мембранами митохондрий в присутствии ингибиторов протеиназ и БСА (рис. 9).

Q. " Û

100 80

О

" 60 40 20 0

Рис. 9. Обращение солюбилизации нмНДФК изменением рН среды хранения. Среда промывания и хранения митохондрий содержала 140 мМ КС1, 1 мМ MgCl2 и (]) - 10 мМ HEPES, рН 8,0; (2 - 5) - 10 мМ MES, рН 6,0; а также: (треугольники) - 10 мг/мл БСА, (ромбы) - 50 мкМ Е-64, (квадраты) - БСА и Е-64, (кружки) -без добавок. (3 - 5) - Через 2 ч после получения осадка митохондрий к суспензиям добавили Tris (черные символы). (1) - общая относительная активность нмНДФК, (2 - 5) - связанная с мембранами. Пояснения - в тексте.

0 2 4 6

Время, ч

Принято считать, что рН цитоплазмы клеток печени равен 7,1-7,2 (Shapiro J.I., et al., 1990; Vidal G., et al., 1998). На рис. 8, кривая 1, видно, что при физиологических концентрациях ионов К+ и Mg2+ при указанных значениях рН связывание нмНДФК с мембранами митохондрий близко к максимально возможному. Следует, однако, учесть, что измерение рН цитоплазмы сталкивается с существенными трудностями. Некоторые авторы считают, что действительный рН цитоплазмы клеток ниже, чем это принято думать. Если это так, то во время протекания многих как физиологических, так и патологических процессов, например, интенсивной мышечной работе, голодании, гипоксии, ишемии, диабете, сопровождающихся ацидозом, изменения внутриклеточного рН могут эффективно изменять долю связанных с наружной мембраной митохондрий молекул нмНДФК.

Гетерогенность свойств солюбилизированной нмНДФК. Исследовали экстракт белков с поверхности митохондрий в среде с низкой ионной силой с помощью электрофореза в неденатурирующих условиях. После окончания электрофореза отдельные дорожки геля окрашивали по активности НДФК.

После изоэлектрофокусирования трёхчасового экстракта белков с поверхности митохондрий в геле сформировался линейный градиент рН в диапазоне от 3,5 до 9 (не показано). При окрашивании по активности НДФК проявились две полосы с изоэлеюрическими точками 5,1 (более интенсивная) и 5,5 (не показано).

Дальнейшие эксперименты показали, что число полос и соотношение интенсивности их окраски не зависели от присутствия лейпептина в среде промывания и хранения митохондрий, прединкубации белкового экстракта с субстратами НДФК (MgADP и MgATP) и времени экстрагирования белков с поверхности митохондрий (не показано). Полученные результаты позволили сделать вывод, что появление двух полос с активностью НДФК на электрофореграмме не было обусловлено действием катепсинов на молекулы нмНДФК и различной степенью фосфорилирования молекул фермента. Мы также сделали вывод, что две фракции нмНДФК, присутствующие в экстракте, солюбилизировались одновременно.

Тироглобулин, 669 кДа — Ферритин, 440 кДа —

Каталаза, 232 кДа —>■ Лактатдегидрогеназа, 140 кДа —>■ ■ ■

Альбумин, 67 кДа —> ■ Овальбумин, 43 кДа —>.

Нативный электрофорез

Рис. 10. Нативный электрофорез экстракта белков с поверхности митохондрий в градиенте плотности полиакрил-

амидного геля. (/) Маркёрные белки; (2) экстракт белков с поверхности митохондрий, содержащий 132 кДа 12бкДа ед' активности нмНДФК;

(3) - 0,19 ед. активности дНДФК. Окрашивание: (/) -Coomassie brilliant blue R-250; (2 и 3) - по активности НДФК.

204 кДа t'

t

линеином градиенте плотности полиакриламидного геля (рис. 10) показал, что кажущаяся молекулярная масса дНДФК (рис. 10, дорожка 3) была равна 126 кДа, что хорошо соотносится с литературными данными для гексамера НДФК (ЬасотЬе М.Ь., й а1. 2000). На электрофореграмме экстракта белков с поверхности митохондрий проявились две полосы (рис. 10, дорожка 2). Полоса с кажущейся молекулярной массой 204 кДа имела более интенсивную окраску, чем полоса 132 кДа (дорожка 2).

Мы предположили, что в экстракте белков с поверхности митохондрий нмНДФК может находиться в виде свободного гексамера или в комплексе с белком с кажущейся молекулярной массой ~ 70 кДа.

выводы

1. Получены доказательства того, что вся НДФК наружного компартмента

митохондрий локализована на внешней поверхности наружной митохондриальной мембраны.

2. Установлено, что прочность связи нмНДФК с мембранами митохондрий

повышается с увеличением ионной силы и рН среды хранения митохондрий, а также в присутствии ионов и не зависит от

присутствия ЭДТА.

3. При изучении функционального сопряжения активности нмНДФК с

системой окислительного фосфорилирования установлено, что в присутствии избытка активности мышечной КК нмНДФК более эффективно поставляет АГ)Р для системы окислительного фосфорилирования, чем дНДФК и дГК.

4. Установлено, что в функциональном сопряжении с системой окислительного

фосфорилирования участвует 22 - 24% активности нмНДФК.

5. Установлено, что солюбилизация из митохондрий нмНДФК, не участвующей

в функциональном сопряжении, обратима. В зависимости от условий хранения митохондрий, солюбилизация может быть обращена добавлением или повышением рН среды хранения.

6. В экстракте белков с поверхности митохондрий присутствуют две фракции,

обладающие нуклеозиддифосфаткиназной активностью и различающиеся кажущимися величинами молекулярных масс (132 и 204 кДа) и изоэлектрическими точками (5,1 и 5,5), соответственно.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Воинова В.В. (2004) Роль нуклеозиддифосфаткиназы наружного компартмента митохондрий печени в переносе ADP через наружную мембрану митохондрий. XI Международная конференция студентов, аспирантов и молодых учёных «Ломоносов 2004», Москва, 12-15 апреля, издательство МГУ, 22-23.

2. Липская Т.Ю., Воинова В В. (2005) Функциональное сопряжение между нуклеозиддифосфаткиназой наружного компартмента митохондрий и окислительным фосфоршированием, Биохимия, 70, 1646-1655.

3. Воинова В.В. (2006) Характер взаимодействия нуклеозиддифосфаткиназы наружного компартмента митохондрий с наружной митохондриальной мембраной и особенности её функционального сопряжения с системой окислительного фосфорилирования. ХШ Международная конференция студентов, аспирантов и молодых учёных «Ломоносов 2006», Москва, 12 -15 апреля, МАКС-пресс, 47-48.

4. Voinova V.V., Lipskaya T.Yu. (2006) The role of nucleoside diphosphate kinase in ADP transport across the outer mitochondrial membrane, 31st FEBS Congress Molecules in Health and Disease, Istanbul, Turkey, 24 - 29 June, FEBS journal, 273, supplement 1, 59.

5. Voinova V.V., Lipskaya T.Yu. (2006) Some characteristics of functional coupling between nucleoside diphosphate kinase of the outer mitochondrial compartment and oxidative phosphorylation, XIV European Bioenergetics Conference, Moscow, Russia, 22 - 27 July, BBA, EBEC 2006 short reports, 14, 353-354.

6. Липская Т.Ю., Воинова B.B. (2008) Нуклеозиддифосфаткиназа митохондрий: характер взаимодействия с наружной митохондриальной мембраной и доля активности, функционально сопряженной с окислительным фосфоршированием, Биохимия, 73, 395-407.

7. Воинова В.В, Липская Т.Ю. (2008) Особенности свойств и функций нуклеозиддифосфаткиназы наружного компартмента митохондрий, XVI Международная конференция "Новые информационные технологии в медицине, биологии, фармакологии и экологии" IT+M&Ec, Гурзуф, Украина, 31 мая - 9 июня, издательство МЭСИ, 226 - 228.

8. Липская Т.Ю., Воинова В.В. (2009) Обратимость солюбилизации нуклеозиддифосфаткиназы с поверхности наружной мембраны митохондрий, Биохимия, 74, 710-720.

Отпечатано в копицентрс « СТ ПРИНТ» Москва, Ленинские горы, МГУ, 1 Гуманитарный корпус. www.stprint.ru e-mail: globus9393338@yandex.ru тел.: 939-33-38 Тираж 100 экз. Подписано в печать 01.04.2009 г.

Содержание диссертации, кандидата биологических наук, Воинова, Вера Владимировна

1. Список сокращений.

2. Введение.

3. Обзор литературы.

3.1. Кинетические характеристики и механизм нуклеозиддифосфаткиназной реакции.

3.1.1. Кинетические характеристики нуклеозиддифосфаткиназной реакции.

3.1.2. Роль ионов двухвалентных металлов.Л.

3.1.3. Роль 3' гидроксильной группы рибозы.

3.1.4. Фосфорилированный интермедиат.

3.1.5. Природа переходного состояния нуклеозиддифосфаткиназной реакции.

3.1.6. Альтернативные субстраты и ингибиторы НДФК.

3.2. Физико-химические свойства изоформ НДФК.

3.2.1. Гены, кодирующие НДФК.

3.2.2. Структура НДФК.

3.2.3. Локализация, молекулярная масса и изоэлектрические точки изоформ НДФК.

3.2.4. Локализация НДФК в митохондриях.

3.3. Роль продуктов нуклеозиддифосфаткиназной реакции в метаболизме.

3.4. Вторичные активности НДФК.

3.5. Роль НДФК в регуляции внутриклеточных процессов.

3.5.1. Участие НДФК в регуляции клеточного цикла.

3.5.2. Участие НДФК1пт23 в регуляции процессов дифференциации.

3.5.3. Движение и форма клеток.

3.5.4. Роль НДФК/пт23 в регуляции метастазирования опухолей.

3.5.5. Ген - мутатор Escherichia coli.

3.5.6. Участие НДФК в регуляции программируемой клеточной смерти.

3.5.7. НДФК/и/7225, как фактор регуляции экспрессии генов на уровне транскрипции.

3.5.8. НДФК и сигнальные каскады.

3.6. Регуляция проницаемости наружной мембраны митохондрий.

3.7. Представление о функциональных компартмснтах и роли киназ наружного компартмента митохондрий во внутриклеточном транспорте энергии.

3.7.1. Компартментация метаболитов и функциональное сопряжение, определение понятий.

3.7.2. Компартментация адениловых нуклеотидов в межмембранном пространстве митохондрий во время активности митохондриальной аденилаткиназы.

3.7.3. Функциональное сопряжение между активностью митохондриальной креатинкиназы и системой окислительного фосфорилирования.

3.7.4. Функциональное сопряжение активности киназ, локализованных на внешней поверхности наружной мембраны митохондрий, с окислительным фосфорилированием.

4. Цели и задачи I шел едования.

5. Методы исследования.

5.1. Материалы.

5.2. Выделение митохондрий печени крысы методом дифференциального центрифугирования.

5.3. Полярографический метод регистрации дыхания митохондрий.

5.4. Определение скорости окислительного фосфорилирования, коэффициента дыхательного контроля и активностей НДФК. гсксокиназы и аденилаткиназы полярографическим методом.

5.5. Выделение митохондрий по методу Ноушб и соавт.

5.6. Удаление цитохрома с из митохондрий.

• 5.7. Исследование локализации нмНДФК в наружном компартменте митохондрий.

5.8. Влияние различных веществ на солюбилизацию нмНДФК.

5.9. Определение доли связанной с мембранами активности нмНДФК в ходе хранения препарата митохондрий.

5.10.Получение препарата митохондрий с низким содержанием нмНДФК.

5.11.Полярографические эксперименты в присутствии креатинкиназы.

5.12. Обработка проб после полярографического эксперимента.

5.13.Определение скорости взаимодействия креатинкиназы с CDP.

5.14. Определение времени инкубации проб с хлорной кислотой, необходимого для полной инактивации ферментов.

5.15.Определение степени гидролиза креатинфосфата и ЛТР при обработке проб хлорной кислотой.

5.16.Определение концентрации креатина.

5.17. Определение концентраций нуклеотидов, глюкозо-6-фосфата и креатинфосфата.

5.17.1. . Определение концентрации ADP и CDP.

5.17.2. Определение концентрации глюкозо-6-фосфата, ATP, СТР и креатинфосфата.

5.17.3. Определение концентрации ATP, ADP. AMP, СТР, CDP и UDP на основании коэффициентов их молярного поглощения.

5.17.4. Определение чистоты препаратов ATP, ADP и CDP.

5.18. Исследование взаимодействия дрожжевой НДФК с мембранами митохоидрий.

5.19. Исследование взаимодействия дрожжевой ГК с мембранами митохондрий.

5.20.Обращение солюбилизации нмНДФК добавлением Mg

5.21.Сравнение взаимодействия протеиназ с пмНДФК, перешедшей в раствор, и с компонентами мембран в местах её связывания.

5.22.Влияние рН на прочность взаимодействия нмНДФК с мембранами митохондрий.

5.23. Обращение солюбилизации нмНДФК изменением рН среды хранения.

5.24.Влияние пальмитиновой кислоты на прочность взаимодействия нмНДФК с мембранами митохондрий.

5.2 5. По лучение экстракта белков с поверхности митохондрий для электрофоретических исследований.

5.26.Спектрофотометрическое определение активности гексокиназы и НДФК в сопряженной ферментной системе.

5.27.Электрофорез белков, солюбшгазированных с поверхности митохондрий.

5.27.1. Деионизация растворов.

5.27.2. Изоэ л ектро ф оку сир ов ание.

5.27.3. Нативный электрофорез.

5.27.4. Градиентный электрофорез.

5.27.5. Окрашивание гелей.

5.28.Определение концентрации Mg2+ методом комплексонометрического титрования.

5.29.Определение белка митохондрий.

5.30. Статистическая обработка результатов.

6. Результаты исследования.

6.1. Полярографический метод регистрации скорости дыхания митохондрий.

6.2. Сравнение двух методов выделения митохондрий.

6.3. Исследование локализации нмНДФК в наружном компартменте митохондрий.

6.4. Природа сил взаимодействия нмНДФК с мембранами митохондрий.

6.5. Изучение функционального сопряжения между активностью нмНДФК наружного компартмента митохондрий и окислительным фосфорилированием.

6.5.1. Пригодность КК на роль внешней ADP-потребляющей системы.

6.5.2. Солюбилизация нмНДФК из митохондрий, хранившихся в разных средах.

6.5.3. Определение времени инактивации ферментов.

6.5.4. Определение степени гидролиза КФ и АТР в ходе инкубации проб полярографического опыта с НСЮ4.

6.5.5. Оптимизация метода определения креатина.

6.5.6. Исследование взаимодействия дрожжевой НДФК и дрожжевой ГК с мембранами митохондрий.:.

6.5.7. Полярографические эксперименты в присутствии креатинкиназы.

6.6. Доля активности нмНДФК, функционально сопряженной с окислительным фосфорилированием.

6.7. Влияние 10%-ного декстрана на функциональное сопряжение нмНДФК и митохондриальной аденилаткиназы с окислительным фосфорилированием.

6.8. Обращение солюбилизации нмНДФК в среде с низкой ионной силой добавлением MgCl2.

6.9. Сравнение взаимодействия протеиназ с нмНДФК, перешедшей в раствор, и с компонентами мембраны в местах её связывания.

6.10.Поиск физиологических регуляторов солюбилизации нмНДФК.

6.10.1. Влияние рН на прочность взаимодействия нмНДФК с мембранами митохондрий.

6.10.2. Обратное связывание нмНДФК, солюбилизировавшейся при кислом значении рН.

6.10.3. Влияние различных веществ на прочность связи нмНДФК с мембранами.

6.10.4. Влияние голодания и углеводной диеты на солюбилизацию нмНДФК.

6.11. Исследование однородности нмНДФК наружного компартмента митохондрий.

6.11.1. Оптимизация метода окрашивания геля по активности НДФК.

6.11.2. Нативньтй электрофорез экстракта белков с поверхности митохондрий.

7. Обсуждение результатов.

8. Выводы.

Заключение Диссертация по теме "Биохимия", Воинова, Вера Владимировна

8. Выводы

1. Получены доказательства того, что вся НДФК наружного компартмента митохондрий локализована на внешней поверхности наружной митохондриалыюй мембраны.

2. Установлено, что прочность связи нмНДФК с мембранами митохондрий повышается с увеличением ионной силы и рН среды хранения митохондрий, а также в присутствии ионов ]У^2+ и не зависит от присутствия ЭДТА.

3. При изучении функционального сопряжения активности нмНДФК с системой окислительного фосфорилирования установлено, что в присутствии избытка активности мышечной ЮС нмНДФК более эффективно поставляет А1ЭР для системы окислительного фосфорилирования, чем дНДФК и дГК.

4. Установлено, что в функциональном сопряжении с системой окислительного фосфорилирования участвует 22 - 24% активности нмНДФК.

5. Установлено, что солюбилизация из митохондрий нмНДФК, не участвующей в функциональном сопряжении, обратима. В зависимости от условий хранения митохондрий, солюбилизация может быть обращена добавлением ]У^2+ или повышением рН среды хранения.

6. В экстракте белков с поверхности митохондрий присутствуют две фракции, обладающие нуклеозиддифосфаткиназной активностью и различающиеся кажущимися величинами молекулярных масс (132 и 204 кДа) и изоэлектрическими точками (5,1 и 5,5), соответственно.

Библиография Диссертация по биологии, кандидата биологических наук, Воинова, Вера Владимировна, Москва

1. Abdulaev N.G., Karasch.uk G.N., Ladner J.E., Kakuev D.L., Yakhyaev A.V.,

2. Adams J.M., Cory S. (1998) The Bcl-2 protein family: arbiters of cell survival II

3. Science, 281(5381), 1322-1326.

4. Adams V., Bosch W„ Schlegel J., Wallimann Т., Brdiczka D. (1989) Furthercharacterization of contact sites from mitochondria of different tissues: topology of peripheral kinases II Biochim. Biophys. Acta, 981 (2), 213 225.

5. Adams V., Griffin L., Towbin J, Gelb В., Worley K., McCabe E.R. (1991) Porininteraction with hexokinase and glycerol kinase: metabolic microcompartmentation at the outer mitochondrial membrane II Biochem. Med. Metab. Biol., 45, 271-291.

6. Admiraal S.J., Herschlag D. (1995) Mapping the transition state for ATP hydrolysis:implications for enzymatic catalysis // Chem. Biol., 2(11), 729-739.

7. Agarwal R.P., Parks R.E.Jr. (1971) Erythrocytic nucleoside diphosphokinase. V.

8. Some properties and behavior of the pi 7.3 isozyme II J. Biol. Chem., 246(7), 2258-2264.

9. Agostinis P., Pinna L.A., Merlevede W. (1989) Metabolic regulation throughsecond-site phosphorylation II Verh. K. Acad. Geneeskd. Belg., 51(5), 407-427.

10. Agou F., Raveh S. Mesnildrey S., Veron M. (1999) Single strand DNA specificityanalysis of human nucleoside diphosphate kinase В II J Biol Chem., 274(28), 19630-19638.

11. Agou F., Raveh S., Veron M. (2000) The binding mode of human nucleosidediphosphate kinase В to single-strand DNA II J. Bioenerg. Biomembr., 32 (3), 285-292.

12. Ahting U., Thun C., Hegerl R., Турке D., Nargang F.E., Neupert W., Nussberger S.1999) The TOM core complex: the general protein import pore of the outer membrane of mitochondria II J. Cell. Biol., 147(5), 959-968.

13. Alberti K.G., Cuthbert C. (1982) The hydrogen ion in normal metabolism: a review II

14. Ciba Found Symp., 87, 1-19.

15. Almaula N., Lu Q., Delgado J., Belkin S., Inouye M. (1995) Nucleoside diphosphatekinase from Escherichia coli II J. Bacterid., 177(9), 2524-2529.

16. Altschuld R.A., Brierley G.P. (1977) Interaction between the creatine kinase of heartmitochondria and oxidative phosphorylation II J. Mol. Cell. Cardiol., 9(11), 875896.

17. Amendola R., Martinez R., Negroni A., Venturelli D. Tanno B., Calabretta B.,

18. Raschella G. (1997) DR-nm23 gene expression in neuroblastoma cells: relationship to integrin expression, adhesion characteristics, and differentiation II J. Natl. Cancer Inst., 89(17), 1300-1310.

19. Amendola R., Martinez R., Negroni A., Venturelli D., Tanno B., Calabretta B.,

20. Raschella G. (2001) DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics 11 Med. Pediatr. Oncol. 36(1), 93-96.

21. Anciaux K., Van Dommelen K., Willems R., Roymans D., Siegers H. (1997)1.hibition of nucleoside diphosphate kinase (NDPK/nm23) by cAMP analogues II FEBS Lett., 400(1), 75-79.

22. Anflous K., Blondel O., Bernard A., Khrestchatisky M., Ventura-Clapier R. (1998)

23. Characterization of rat porin isoforms: cloning of a cardiac type-3 variant encoding an additional methionine at its putative N-terminal region // Biochim. Biophys. Acta., 1399(1), 47-50.

24. Anflous-Pharayra K., Cai Z.J., Craigen W.J. (2007) VDAC1 serves as amitochondrial binding site for hexokinase in oxidative muscles II Biochim. Biophys. Acta., 1767(2), 136-142.

25. Ann K.S., Nelson D.L. (1996) A nucleoside diphosphate kinase from Parameciumtetraurelia with protein kinase activity II J. Eukaryot Microbiol., 43(5), 365-372.

26. Anumanthan G., Haider S.K., Friedman D.B. Datta P.K. (2006) Oncogenic serinethreonine kinase receptor-associated protein modulates the function of Ewing sarcoma protein through a novel mechanism II Cancer Res., 66(22), 1082410832.

27. Ardail D., Privat J.P., Egret-Charlier M., Levrat C., Lerme F., Louisot P. (1990)

28. Mitochondrial contact sites. Lipid composition and dynamics II J. Biol. Chem., 265(31), 18797-18802.

29. Arispe N., Dc Maio A. (2000) ATP and ADP modulate a cation channel formed by

30. Hsc70 in acidic phospholipid membranes II J. Biol. Chem., 275(40). 3083930843.

31. Arispe N., Doh M., De Maio A. (2002) Lipid interaction differentiates theconstitutive and stress-induced heat shock proteins Hsc70 and Hsp70 II Cell Stress Chaperones. 7(4), 330-338.

32. Arispe N., Doh M., Simakova O., Kurganov B., De Maio A. (2004) Hsc70 and

33. Hsp70 interact with phosphatidylserine on the surface of PC 12 cells residting in a decrease of viability IIFASEB J., 18(14), 1636-1645.

34. Ai'ora K.K., Pedersen P.L. (1988) Functional significance of mitochondrial boundhexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP II J. Biol. Chem., 263(33), 17422-17428.

35. Arrio-Dupont M., De Nay D. (1986) Compartmentation of high-energy phosphates inresting and beating heart cells II Biochim. Biophys. Acta., 851(2), 249-256.

36. Askew D.S., Ashmun R.A., Simmons B.C., Cleveland J.L. (1991) Constitutive c-mycexpression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis II Oncogene, 6(10), 1915-1922.

37. Attisano L., Wrana J.L., Lopez-Casillas F., Massague J. (1994) TGF-beta receptorsand actions 11 Biochim. Biophys. Acta., 1222(1), 71-80.

38. Aubert-Foucher E., Font B., Gautheron D.C. (1984) Rabbit heart mitochondrialhexokinase: solubilization and general properties II Arch. Biochem. Biophys., 232(1), 391-399.

39. Baillat G., Gaillard S., Castets F., Monneron A. (2002) Interactions of phocein withnucleoside-diphosphate kinase, Epsl5, and Dynamin 111 J. Biol. Chem., 277(21), 18961-18966.

40. Bakeeva L.E., Chentsov Y.S., Jasaitis A.A., Skulachev V.P. (1972) The effect ofoncotic pressure on heart muscle mitochondria // Biochim. Biophys. Acta., 275(3), 319-332.

41. Banerjee J. Ghosh S. (2004) Bax increases the pore size of rat brain mitochondrialvoltage-dependent anion channel in the presence of tBid // Biochem. Biophys. Res. Commun., 323(1), 310-314.

42. Barnes R., Masood S., Barker E., Rosengard A.M., Coggin D.L., Crowell T., King

43. C.R., Porter-Jordan K., Wargotz E.S., Liotta L.A., et al. (1991) low nm23 protein expression in infiltrating ductal breast carcinomas correlates with reduced patient survival II Am. J. Pathol., 139(2), 245-250.

44. Barthel T.K., Walker G.C. (1999) Inferences concerning the ATPase properties of

45. DnaK and other HSP70s are affected by the ADP kinase activity of copurifying nucleoside-diphosphate kinase II J. Biol. Chem., 274(51). 36670-36678.

46. Bccker J., Craig E.A. (1994) Heat-shock proteins as molecular chaperones II Eur. J.

47. Biochem., 219(1-2), 11-23.

48. Benz R. (1994) Permeation of hydrophilic solutes through mitochondrial outermembranes: review on mitochondrialporins II Biochim. Biophys. Acta., 1197(2), 167-196.

49. Benz R., Kottke M., Brdiczka D. (1990) The cationically selective state of themitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin I I Biochim. Biophys. Acta, 1022, 311 318.

50. Benz R., Wojtczak L., Bosch W., Brdiczka D. (1988) Inhibition of adeninenucleotide transport through the mitochondrial porin by a synthetic polyanion II FEBS Lett., 231(1), 75-80.

51. Bera A.K., Ghosh S. (2001) Dual mode of gating of voltage-dependent anion channelas revealed by phosphorylation II J. Struct. Biol., 135(1), 67-72.

52. Bera A.K., Ghosh S., Das S. (1995) Mitochondrial VDAC can be phosphorylated bycyclic AMP-dependent protein kinase // Biochem. Biophys. Res. Commun., 209(1), 213-217.

53. Berg P., Joklik W.K. (1953) Transphosphorylation between nucleosidepolyphosphates II Nature, 172(4387), 1008-1009.

54. Bernard M.A., Ray N.B., Olcott M.C., Hendricks S.P., Mathews C.K. (2000)

55. Metabolic functions of microbial nucleoside diphosphate kinases 11 J. Bioenerg. Biomembr., 32(3), 259-267.

56. Besant P.G., Attwood P.V. (2005) Mammalian histidine kinases H Biochim. Biophys.

57. Acta., 1754(1-2), 281-290.

58. Bessman S.P. (1960) Diabetes mellitus: observations, theoretical and practical II J.1. Pediatr., 56, 191-203.

59. Bessman S.P. (1966) A molecular basis for the mechanism of insulin action H Am. J.1. Med., 40(5), 740-749.

60. Bessman S.P., Borrebaek B., Geiger P.J., Ben-Or S. (1978) In Microenvironmentsand Metabolic Compartmentation (edited by Srere P.A., Estabrook R.W.) // Academic Press, N.Y., 111-128.

61. Bessman S.P. Carpenter C.L. (1985) The creatine-creatine phosphate energy shuttle

62. Annu. Rev. Biochem., 54, 831-862.

63. Beutner G., Wallimann T. (1994) The importance of the outer mitochondrialcompartment in regulation of energy metabolism // Moll. Cell. Biochem. 133/134, 69-83.

64. Biermans W., Bernaert I., De Bie M., Nijs B., Jacob W. (1989) Ultrastructurallocalisation of creatine kinase activity in the contact sites between inner and outer mitochondrial membranes of rat myocardium II Biochim. Biophys. Acta., 974(1), 74-80.

65. Biggs J., Hersperger E., Steeg P.S., Liotta L.A., Shearn A. (1990) A Drosophila genethat is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase // Cell., 63(5). 933-940.

66. Blachly-Dyson E., Baldini A., Litt M., McCabe E.R., Forte M. (1994) Human genesencoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: mapping and identification of two new isoforms II Genomics., 20(1), 62-67.

67. Blachly-Dyson E., Zambronicz E.B., Yu W.H., Adams V., McCabe E.R., Adelman

68. J., Colombini M., Forte M. (1993) Cloning and functional expression in yeast oftwo human isoforms of the outer mitochondrial membrane channel, the voltage-depaendent anion channel!I J. Biol. Chem., 268(3). 1835-1841.

69. Bolliger L., Deloehe O., Glick B.S., Georgopoulos C., Jenö P., Kronidou N., Horst

70. M., MorishimaN., Schatz G. (1994) A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability // EMBO J., 13(8), 1998-2006.

71. Bominaar A.A., Molijn A.C., Pestel M., Veron M„ Van Haastert P.J. (1993)

72. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium II EMBO J., 12(6), 2275-2279.

73. Bominaar A.A., Tepper A.D., Veron M. (1994) Autophosphorylation of nucleosidediphosphate kinase on non-histidine residues II FEBS Lett., 353(1), 5-8.

74. Bourdais J. Biondi R., Sarfati S., Guerreiro C., Lascu I., Janin J., Veron M. (1996)

75. Cellidar phosphorylation of anti-HIV nucleosides. Role of nucleoside diphosphate kinase //J. Biol. Chem., 271(14), 7887-7890.

76. Boyce M., Degterev A., Yuan J. (2004) Caspases: an ancient cellular sword of

77. Damocles II Cell Death Differ., 11(1), 29-37.

78. Brdiczka D. (\99\) Contact sites between mitochondrial envelope membranes.

79. Structure and function in energy- and protein-transfer // Biochim. Biophys. Acta, 1071,291-312.

80. Brdiczka D., Beutner G., Rück A., Doldcr M., Wallimann T. (1998) The molecularstructure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition II Biofactors., 8(3-4), 235-242.

81. Brdiczka D„ Kaldis P., Wallimann T. (1994) In vitro complex formation between theoctamer of mitochondrial creatine kinase and porin II J. Biol. Chem., 269(44), 27640-27644.

82. Brdiczka D. Knoll G., Reisinger I., Weiler U., Klug G., Benz R., Krause J. (1968) In

83. Advances in Exp. Med. Biol.: Microcompartmentation at the mitochondrial surface: its function in metabolic regulation (edited by Broutfar N.) // Plenum Press, New York, 194, 277 287.

84. Brdiczka D., Reith A. (1987) In The organization of cell metabolism: Functional andstructural heterogeneity of the inner mitochondrial membrane (edited by Welch G. R., Clegg J. S.) II Plenum Press, New York.

85. Brdiczka D.G., Zorov D.B., Sheu S.S. (2006) Mitochondrial contact sites: their rolein energy metabolism and apoptosis II Biochim. Biophys. Acta., 1762(2), 148163.

86. Broker L.E., Kruyt F.A., Giaccone G. (2005) Cell death independent of caspases: areview II Clin. Cancer Res., 11(9). 3155-3162.

87. Bukau B., Horwich A.L. (1998) The Hsp70 and Hsp60 chaperone machines II Cell.,92(3), 351-366.

88. Burnstock G. (2006) Purinergic signalling—an overview // Novartis Found Symp.,276, 26-48.

89. Caligo M.A., Cipollini G., Berti A., Viacava P., Collecchi P., Bevilacqua G. (1997)

90. NM23 gene expression in human breast carcinomas: loss of correlation with cell proliferation in the advanced phase of tumor progression II Int. J. Cancer., 74(1), 102-111.

91. Caligo M.A., Cipollini G., Fiore L., Calvo S., Basolo F., Collecchi P., Ciardiello F.,

92. Pepe S., Petrini M., Bevilacqua G. (1995) NM23 gene expression correlates with cell growth rate and S-phase 11 Int. J. Cancer., 60(6), 837-842.

93. Caspari T. (2000) How to activate p53, Curr. Biol., 10(8), R315-7.

94. Cervoni L., Lascu I., Xu Y., Gonin P., Morr M., Merouani M., Janin J., Giartosio A.2001) Binding of nucleotides to nucleoside diphosphate kinase: a calorimetric study II Biochemistry., 40(15), 4583-4589.

95. Cesar Mde C., Wilson J.E. (2004) All three isoforms of the voltage-dependent anionchannel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain II Arch. Biochem. Biophys., 422(2), 191-196.

96. Chalah A., Khosravi-Far R. (2008) The mitochondrial death pathway // Adv. Exp.1. Med. Biol. 615, 25-45.

97. Chance B., Hess B. (1956) On the control of metabolism in ascites tumor cellsuspensions // Ann. N. Y. Acad. Sci., 63(5), 1008-1016.

98. Chance B., Williams G.R. (1955) Respiratory enzymes in oxidative phosphorylation.

99. Kinetics of oxygen utilization II J. Biol. Chem., 217(1), 383-393.

100. Chang C.L. Zhu X.X., Thoraval D.H., Ungar D., Rawwas J., Hora N. Strahler J.R.,

101. Hanash S.M., Radany E. (1994) Nm23-Hl mutation in neuroblastoma I I Nature., 370(6488), 335-336.

102. Chappell J.B., Crofts A.R. (1965) The effect of atractylate and oligomycin on thebehaviour of mitochondria towards adenine nucleotides II Biochem. J., 95, 707716.

103. Chen Y., Morera S., Mocan J., Lascu I., Janin J. (2002) X-ray structure of

104. Mycobacterium tuberculosis nucleoside diphosphate kinase II Proteins., 47(4), 556-557.

105. Cheneval D., Carafoli E. (1988) Identification and primary structure of thecardiolipin-binding domain of mitochondrial creatine kinase II Eur. J. Biochem., 171(1-2), 1-9.

106. Cheng Y.-C., Robison B., Parks R. E. (1973) Demonstration of the heterogeneity ofnucleoside diphosphokinase in rat tissues II Biochem. J., 12, 5-10.

107. Cherfils J., Morera S. Lascu I., Veron M., Janin J. (1994) X-ray structure ofnucleoside diphosphate kinase complexed with thymidine diphosphate and Mg2+ at 2-A resolution II Biochemistry, 33(31), 9062-9069.

108. Chiadmi M., Morera S., Lascu I., Dumas C., Le Bras G., Veron M., Janin J. (1993)

109. Crystal structure of the Awd nucleotide diphosphate kinase from Drosophila II Structure., 1(4), 283-293.

110. Chiara F., Castellaro D., Marin O., Petronilli V., Brusilow W.S., Juhaszova M.,

111. Sollott S.J., Forte M., Bemardi P., Rasola A. (2008), Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels II PLoS ONE., 3(3), el 852.

112. Chowdhury D., Beresford P.J., Zhu P., Zhang D., Sung J.S., Demple B., Perrino

113. F.W., Lieberman J. (2006) The exonuclease TREX1 is in the SET complex andacts in concert with NM2S-H1 to degrade DNA during granzyme A-mediated cell death II Mol. Cell., 23(1), 133-142.

114. Cipollini G., Berti A., Fiore L., Rainaldi G., Basolo F., Merlo G., Bevilacqua G.,

115. Caligo M.A. (1997) Down-regulation of the nm23.hl gene inhibits cell proliferation II Int. J. Cancer. 73(2), 297-302.

116. Clegg J.S. (1984) Properties and metabolism of the aqueous cytoplasm and itsboundaries II Am. J. Physiol., 246(2 Pt 2). R133- R151.

117. Cleland W.W. (1963) The kinetics of enzyme-catalyzed reactions with two or moresubstrates or products. I. Nomenclature and rate equations U Biochim. Biophys. Acta., 67, 104-137.

118. Colomb M.G., Cheruy A., Vignais P.V. (1969) Nucleoside diphosphokinase frombeef heart mitochondria. Purification and properties II Biochem. J., 8, 1926 -1939.

119. Colomb M.G., Cheruy A., Vignais P.V. (1972) Nucleoside diphosphokinase frombeef heart cytosol. I. Physical and kinetic properties II Biochem. .T., 11, 3370 -3386.

120. Colomb M.G., Cheruy A., Vignais P.V. (1972) Nucleoside diphosphokinase frombeef heart cytosol. II. Characterization of the phosphorylated intermediate II Biochemistry., 11(18), 3378-3386.

121. Colomb M.G., Laturaze J.G. Vignais P.V. (1966) Isolation of a phosphorylatedintermediate involved in the ADP-ATP exchange reaction // Biochem. Biophys. Res. Commun., 24(6), 909-915.

122. Colombini M. (1979) A candidate for the permeability pathway of the outermitochondrial membrane //Nature., 279(5714), 643-645.

123. Colombini M. (1980) Pore size and properties of channels from mitochondriaisolated from Neurospora crassa II J. Membr. Biol., 53(2), 79-84.

124. Colombini M. (2004) VDAC: the channel at the interface between mitochondria andthe cytosol II Mol. Cell. Biochem., 256-257(1-2), 107-115.

125. Costantini P., Bruey J.M., Castedo M., Metivier D., Loeffler M., Susin S.A.,

126. Ravagnan L., Zamzami N., Garrido C., Kroemer G. (2002) Pre-processed caspase-9 contained in mitochondria participates in apoptosis // Cell Death Differ., 9(1), 82-88.

127. Crompton M. (1999) The mitochondrial permeability transition pore and its role incell death // Biochem. J., 341 ( Pt 2), 233-249.

128. Danial N.N., Korsmeyer S.J. (2004) Cell death: critical control points II Cell.,116(2). 205-219.

129. Datta P.K., Moses H.L. (2000) STRAP and Smad7 synergize in the inhibition oftransforming growth factor beta signaling II Mol. Cell. Biol., 20(9), 3157-3167.

130. Davis B.J. (1964) Disc electrophoresis. II. Method and application to human serumproteins II Ann. N. Y. Acad. Sci., 121, 404-427.

131. De Maio A. (1999) Heat shock proteins: facts, thoughts, and dreams II Shock., 11(1),1.12.

132. Dearolf C.R., Hersperger E. Shearn A. (1988) Developmental consequences ofawdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis II Dev. Biol., 129(1), 159-168.

133. Dearolf C.R., Tripoulas N., Biggs J., Shearn A. (1988) Molecular consequences ofawdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis I I Dev. Biol., 129(1), 169-178.

134. Degterev A., Boyce M., Yuan J. (2003) A decade of caspases // Oncogene., 22(53),8543-8567.

135. Degterev A., Yuan J. (2008) Expansion and evolution of cell death programmes II

136. Nat. Rev. Mol. Cell. Biol., 9(5), 378-390.

137. Derynck R., Feng X.H. (1997) TGF-beta receptor signaling II Biochim. Biophys.

138. Acta., 1333(2), F105-F150.

139. Deville-Bonne D., Sellam O., Merola F., Lascu I., Desmadril M., Veron M. (1996)

140. Phosphorylation of nucleoside diphosphate kinase at the active site studied by steady-state and time-resolved fluorescence II Biochemistry, 35(46), 1464314650.

141. DiMarco J.P., Hoppel C. (1975) Hepatic mitochondrial function in ketogenic states.

142. Diabetes, starvation, and after growth hormone administration II J. Clin. Invest., 55(6), 1237-1244.

143. Dolce V., Fiermonte G., Runswick M.J., Palmieri F., Walker J.E. (2001) The humanmitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals //Proc. Natl. Acad. Sci. U. S. A., 98(5), 2284-2288.

144. Dolder M., Walzel B., Speer O., Schlattner U., Wallimann T. (2003) Inhibition of themitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation 11 J. Biol. Chem., 278(20), 17760-17766.

145. Domanico S.Z., DeNagel D.C., Dahlseid J.N., Green J.M., Pierce S.K. (1993)

146. Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family II Mol. Cell. Biol., 13(6), 3598-3610.

147. Dorbani L., Jancsik V., Linden M., Leterrier J.F., Nelson B.D., Rendon A. (1987)

148. Su bfr actio nation of the outer membrane of rat brain mitochondria: evidence for the existence of a domain containing the porin-hexokinase complex // Arch. Biochcm. Biophys., 252(1), 188-196.

149. Dorion S., Dumas F., Rivoal J. (2006) Autophosphorylation of Solanum chacoensecytosolic nucleoside diphosphate kinase on Serll7 II J. Exp. Bot., 57(15), 40794088.

150. Du C., Fang M., Li Y., Li L., Wang X. (2000) Smac, a mitochondrial protein thatpromotes cytochrome c-dependent caspase activation by eliminating IAP inhibition II Cell., 102(1), 33-42.

151. Dumas C., Lascu I. Morera S., Glaser P., Fourme R., Wallet V., Lacombe M.L.,

152. Veron M., Janin J. (1992) X-ray structure of nucleoside diphosphate kinase II EMBO J., 11(9), 3203-3208.

153. Durand T., Gallis J.L., Masson S., Cozzone P.J., Canioni P. (1993) pH regulation inperfused rat liver: respective role of Na(+)-H+ exchanger and Na(+)-HC03-cotransport II Am. J. Physiol., 265(1 Pt 1), G43- G 50.

154. Edlund B., Rask L., Olsson P., Walinder O., Zetterqvist O., Engstrom L. (1969)

155. Eggleton P., Elsden S., Gough N. (1943) The estimation of creatine and of diacetyl II1. Biochem. J., 37, 526 529.

156. Engasser J.M. Horvath C. (1974) Buffer-facilitated proton transport. pH profile ofbound enzymes II Biochim. Biophys. Acta., 358(1), 178-192.

157. Engel M., Theisinger B., Seib T., Seitz G., Huwer H., Zang K.D., Welter C., Dooley

158. S. (1993) High levels of nm23-Hl and nm23-H2 messenger RNA in human squamous-cell lung carcinoma are associated with poor differentiation and advanced tumor stages II Int. J. Cancer., 55(3), 375-379.

159. Engel M., Veron M., Theisinger B., Lacombe M.L., Seib T., Dooley S., Welter C.1995) A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase II Eur. J. Biochem., 234(1), 200-207.

160. Entman M.L., Bornet E.P., Van Winkle W.B., Goldstein M.A., Schwartz A. (1977)

161. Association of glycogenolysis with cardiac sarcoplasmic reticulum: II. Effect of glycogen depletion, deoxycholate solubilization and cardiac ischemia: evidence for a phorphorylase kinase membrane complex II .T. Mol. Cell Cardiol., 9(7), 515528.

162. Erickson-Viitanen S., Geiger P.J., Viitanen P., Bessman S.P. (1982)

163. Compartmentation of mitochondrial creatine phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation // J. Biol. Chem., 257(23), 14405-14411.

164. Escribá P.V., González-Ros J.M., Goñi F.M., Kinnunen P.K., Vigh L. Sánchez

165. Magraner L., Fernández A.M., Busquéis X., Horváth I., Barceló-Coblijn G. (2008) Membranes: a meeting point for lipids, proteins and therapies U J. Cell Mol. Med. 12(3), 829-875.

166. Estabrook R.W. (1967) Mitochondrial respiratory control and the polarographicmeasurement of ADP : O ratios // Meth. Enzymol. 10. 41-47.

167. Evan G.I., Wyllie A.IL, Gilbert C.S., Littlewood T.D., Land H., Brooks M., Waters

168. C.M., Penn L.Z., Hancock D.C. (1992) Induction of apoptosis in fibroblasts by c-mycprotein II Cell., 69(1), 119-128.

169. Facchini L.M., Pcnn L.Z. (1998) The molecular role of Myc in growth andtransformation: recent discoveries lead to new insights II FASEB J., 12(9), 633651.

170. Fan Z., Beresford P.J., Oh D.Y., Zhang D., Lieberman J. (2003) Tumor suppressor

171. NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor 11 Cell., 112(5), 659-672.

172. Ferreira-da-Silva F., Pereira P.J. Gales L., Roessle M., Svergun D.T., Moradas

173. Ferreira P., Damas A.M. (2006) The crystal and solution structures of glyceraldehyde-3-phosphate dehydrogenase reveal different quaternary structures 11 J. Biol. Chem., 281(44), 33433-33440.

174. Fiek C., Benz R., Roos N. Brdiczka D. (1982) Evidence for identity between thehexokinase-bindingprotein and the mitochondrial porin in the outer membrane of rat liver mitochondria //Biochim. Biophys. Acta, 688 (2), 429-440.

175. Fischbach M.A., Settleman J. (2003) Specific biochemical inactivation of oncogenic

176. Ras proteins by nucleoside diphosphate kinase II Cancer Res. 63(14), 4089-4094:

177. Florenes V.A., Aamdal S., Myklebost O., Maelandsmo G.M. Bruland O.S., Fodstad

178. O. (1992) Levels of nm23 messenger RNA in metastatic malignant melanomas: inverse correlation to disease progression II Cancer Res., 52(21), 6088-6091.

179. Fossel E.T., Hoefeler H. (1987) A synthetic functional metabolic compartment. Therole of propinquity- in a linked pair of immobilized enzymes H Eur. J. Biochem., 170(1-2), 165-171.

180. Friedrich P. (1991) Metabolic compartmentation via "quenching enzymes" // J.

181. Theor. Biol., 152, 115-116.

182. From A.H., Zimmer S.D., Michurski S.P., Mohanakrishnan P., Ulstad V.K., Thoma

183. W.J., Ugurbil K. (1990) Regulation of the oxidative phosphorylation rate in the intact cellII Biochemistry., 29(15), 3731-3743.

184. Fulton A.B. (1982) How crowded is the cytoplasm? II Cell., 30(2), 345-347.

185. Gallois-Montbrun S., Chen Y., Dutartre H., Sophys M., Morera S., Guerreiro C.,

186. Schneider B. Mulard L., Janin J., Veron M., Deville-Bonne D., Canard B. (2003) Structural analysis of the activation of ribavirin analogs by NDP kinase: comparison with other ribavirin targets II Mol. Pharmacol, 63(3), 538-546.

187. Gallois-Montbrun S., Schneider B., Chen Y., Giacomoni-Fernandes V., Mulard L.,

188. Morera S., Janin J., Deville-Bonne D., Veron M. (2002) Improving nucleoside diphosphate kinase for antiviral nucleotide analogs activation // J. Biol. Chem., 277(42), 39953-39959.

189. Garces E., Cleland W.W. (1969) Kinetic studies of yeast nucleoside diphosphatekinase // Biochemistry, 8(2), 633-640.

190. Garrido C., Galluzzi L., Brunei M„ Puig P.E., Didelot C., Kroemer G. (2006)

191. Mechanisms of cytochrome c release from mitochondria // Cell Death Differ., 13(9). 1423-1433.

192. Gauthier T., Denis-Pouxviel C., Murat J.C. (1990) Mitochondrial hexokinase fromdifferentiated and undifferentiated HT29 colon cancer cells: effect of some metabolites on the bound/soluble equilibrium // Int. J. Biochem, 22 (4), 419-423.

193. Gellerich F., Saks V.A. (1982) Control of heart mitochondrial oxygen consumptionby creatine kinase: the importance of enzyme localization II Biochem. Biophys. Res. Commun., 105(4), 1473-1481.

194. Gellerich F.N. (1992) The role of adenylate kinase in dynamic compartmentation ofadenine nucleotides in the mitochondrial intermembrane space 11 FEBS Lett., 297(1-2), 55-58.

195. Gellerich F.N., Kapischke M., Kunz W., Neumann W., Kuznelsov A., Brdiczka D.,

196. Gellerich F.N., Laterveer F.D. Korzeniewski B., Zierz S., Nicolay K. (1998)

197. Dextran strongly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria II Eur. J. Biochem., 254(1). 172-180.

198. Gellerich F.N., Laterveer F.D., Zierz S., Nicolay K. (2002) The quantitation of ADPdiffusion gradients across the outer membrane of heart mitochondria in the presence of macromolecules II Biochim. Biophys. Acta., 1554(1-2), 48-56.

199. Gellerich F.N., Schlame M., Bohnensack R., Kunz W. (1987) Dynamiccompartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria 11 Biochim. Biophys. Acta, 890 (2), 117 126.

200. Gincel D., Zaid H., Shoshan-Barmatz V. (2001) Calcium binding and translocationby the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function H Biochem. J., 358(Pt 1), 147-155.

201. Ginther C.L. Ingraham J.L. (1974) Nucleoside diphosphokinase of Salmonellatyphimurium II J. Biol. Chem., 249(11), 3406-3411.

202. Giraud M.F., Georgescauld F., Lascu I., Dautant A. (2006) Crystal structures of

203. S120G mutant and wild type of human nucleoside diphosphate kinase A in complex with ADP II J. Bioenerg. Biomembr., 38(3-4), 261-264.

204. Glaze R.P., Wadkins C.L. (1967) Properties of a nucleoside diphosphokinase fromliver mitochondria and its relationship to the adenosine triphosphate-adenosine diphosphate exchange reaction 11 J. Biol. Chem., 242(9), 2139-2150.

205. Goffeau A., Pedersen P.L., Lehninger A.L. (1967) The kinetics and inhibition of theadenosine diphosphate — adenosine triphosphate exchange catalyzed by a purified mitochondrial nucleoside diphosphokinase II J. Biol. Chem., 242 (8), 1845-1853.

206. Goffeau A., Pedersen P.L. Lehningcr A.L. (1968) Reactivity of thiol groups in activeand inactive forms of a mitochondrial nucleoside diphosphokinase II J. Biol. Chem., 243 (8), 1685 1691.

207. Golcstani A., Ramshini H., Nemat-Gorgani M. (2007) A study on the two bindingsites ofhexokinase on brain mitochondria II BMC Biochem., 8, 20.

208. Golstein P., Wyllie A.H. (2001) T cell death and transforming growth factor betal II

209. J. Exp. Med., 194(4). F19- F 22.

210. Gómez J., Martínez-A C., González A., Rebollo A. (1998) Dual role of Ras and Rhoproteins: at the cutting edge of life and death II Immunol. Cell Biol. 76(2), 125134.

211. Goníalves R.P., Buzhynskyy N., Prima V., Sturgis J.N. Scheuring S. (2007)

212. Supramolecular assembly ofVDAC in native mitochondrial outer membranes II J. Mol. Biol., 369(2), 413-418.

213. Goñi F.M. (2002) Non-permanent proteins in membranes: when proteins come asvisitors (Review) II Mol. Membr. Biol., 19(4), 237-245.

214. Gonin Ph., Xu Y., Milon L., Dabernat S. Morr M., Kumar R., Lacombe M.-L., Janin

215. J. Lascu I. (1999) Catalytic mechanism of nucleoside diphosphate kinase investigated using nucleotide analogues, viscosity effects, and X-ray crystallography II Biochem. J. 38, 7265-7272.

216. Gorbenko G.P., Molotkovsky J.G., Kinnunen P.K. (2006) Cytochrome C interactionwith cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation // Biophys. J., 90(11), 4093-4103.

217. Gordon D.M., Lyver E.R., Lesuisse E., Dancis A., Pain D. (2006) GTP in themitochondrial matrix plays a crucial role in organellar iron homoeostasis II Biochem. J, 400(1), 163-168.

218. Gores G.J., Nieminen A.L., Wray B.E. Herman B., Lemasters J.J. (1989)1.tracellular pH during "chemical hypoxia" in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death // J. Clin. Invest., 83(2), 386-396.

219. Gornall A.G., Bardawill C.L., David M.M. (1949) Determination of serum proteinsby means of the biuret reaction II J. Biol. Chem., 177, 751-766.

220. Goswami S.C., Yoon J.H., Abramczyk B.M., Pfeifer G.P., Poslel E.H. (2006)

221. Molecular and functional interactions between Escherichia coli nucleoside-diphosphate kinase and the uracil-DNA glycosylase Ung // J. Biol. Chem., 281(43), 32131-32139.

222. Gots R.E., Bessman S.P. (1974) The functional compartmentation of mitochondrialhexokinas // Arch. Biochem. Biophys., 163. 7-14.

223. Gots R.E., Gorin F.A., Bessman S.P. (1972) Kinetic enhancement of boundhexokinase activity by mitochondrial respiration // Biochem. Biophys. Res. Commun, 49, 1249-1255.

224. Gottlob K., Majewski N., Kennedy S„ Kandel E., Robey R.B., Hay N. (2001)1.hibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase II Genes. Dev., 15(11), 1406-1418.

225. Green D.R., Reed J.C. (1998) Mitochondria and apoptosis I I Science., 281(5381),1309-1312.

226. Gruber W., Moellering H., Bergmeyer H.U. (1966) Analytical differentiation ofpurine and pyrimidine nucleotides. I. Determination of AMP, ADP and ATP, and ofGTP + ITPII Enzymol. Biol. Clin. (Basel). 7(1), 115-129.

227. Guo X.W., Mannella C.A. (1993) Conformational change in the mitochondrialchannel, VDAC, detected by electron cryo-microscopy II Biophys. J. 64(2), 545549.

228. Gupta R.K., Moore R.D. (1980) 31P NMR studies of intracellular free Mg2+ in intactfrog skeletal muscle II J. Biol. Chem., 255(9), 3987-3993.

229. Guru S.C., Goldsmith P.K., Burns A.L., Marx S.J., Spiegel A.M. Collins F.S.,

230. Chandrasekharappa S.C. (1998) Menin, the product of the MEN1 gene, is a nuclear protein II Proc. Natl. Acad. Sei. U. S. A., 95(4), 1630-1634.

231. Gutman M., Nachliel E., Gershon E. (1985) Effect of buffer on kinetics of protonequilibration with a protonable group II Biochemistry., 24(12), 2937-2941.

232. Hackenbrock C.R. (1968) Chemical and physical fixation of isolated mitochondria inlow-energy and high-energy states II Proc. Natl. Acad. Sei. U. S. A., 61 (2), 598605.

233. Hail at N., Keim D.R., Mclhem R.F., Zhu X.X., Eckerskorn C., Brodeur G.M.,

234. Reynolds C.P., Seeger R.C., Lottspeich F., Strahler J.R., et al. (1991) High levels of pl9/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification H J. Clin. Invest., 88(1). 341-345.

235. Haider S.K. Anumanthan G., Maddula R., Mann J., Chytil A., Gonzalez A.L.,

236. Washington M.K., Moses H.L., Beauchamp R.D., Datta P.K. (2006) Oncogenic function of a novel WD-domain protein, STRAP, in human carcinogenesis II Cancer Res., 66(12), 6156-6166.

237. Halestrap A.P. (1989) The regulation of the matrix volume of mammalianmitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism II Biochim. Biophys. Acta., 973(3), 355-382.

238. Halestrap A.P. (1994) Regulation of mitochondrial metabolism through changes inmatrix volume 11 Biochem. Soc. Trans., 22(2), 522-529.

239. Halestrap A.P., Doran E., Gillespie J.P. O'Toole A. (2000) Mitochondria and celldeath II Biochem. Soc. Trans., 28(2), 170-177.

240. Hamby C.V., Mendola C.E., Potla L., Stafford G., Backer J.M. (1995) Differentialexpression and mutation of NME genes in autologous cultured human melanoma cells with different metastatic potentials II Biochem. Biophys. Res. Commnn., 211(2), 579-585.

241. Hammargren J., Salinas T., Marechal-Drouard L., Knorpp C. (2007) The peamitochondrial nucleoside diphosphate kinase cleaves DNA and RNA II FEBS Lett., 581(18), 3507-3511.

242. Handbook of Biochemistry. Selected Data for Molecular Biology (1970) (edited by

243. Sober H.A.) // CRC Press, Cleveland, Ohio.

244. Harris E.J. Tate C. Manger J.R., Bangham J. A. (1971) The effects of colloids on theappearance and substrate permeability of rat liver mitochondria II J. Bioenerg., 2(3), 221-232.

245. Harris M.H., Thompson C.B. (2000) The role of the Bcl-2 family in the regulation ofouter mitochondrial membrane permeability II Cell Death Differ., 7(12), 11821191.

246. Hartl F.-U., Pfanner N., Nicholson D.W., Neupert W. (1989) Mitochondrial proteinimport//Biochim. Biophys. Acta. 988, 1-45.

247. Hartsough M.T., Morrison D.K., Salemo M., Palmieri D., Ouatas T., Mair M.,

248. Patrick J., Steeg P.S. (2002) Nm23-Hl metastasis suppressor phosphorylation of kinase suppressor ofRas via a histidine protein kinase pathway H J. Biol. Chem., 277(35), 32389-32399.

249. Hartsough M.T., Steeg P.S. (2000) Nm23/nucleoside diphosphate kinase in humancancers II J. Bioenerg. Biomembr., 32, 301-308.

250. Harvey G., Pearson C.K. (1988) Search for multienzyme complexes of DNAprecursor pathways in uninfected mammalian cells and in cells infected with herpes simplex virus type III J. Cell. Physiol., 134(1), 25-36.

251. Haworth R.A., Hunter D.R. (1980) Allosteric inhibition of the Ca2+-activatedhydrophilic channel of the mitochondrial inner membrane by nucleotides // J. Mcmbr. Biol., 54(3). 231-236.

252. Heidbuchel H., Callewaert G., Vereecke J., Carmeliet E. (1993) Acetylcholinemediated K+ channel activity in guinea-pig atrial cells is supported by nucleoside diphosphate kinase 11 Pflugers Arch., 422(4), 316-324.

253. Helbling B., Renner E.L. (1998) Hepatocellular defence against acidosis ispreserved after cold storage II Eur. J. Clin. Invest., 28(6), 456-465.

254. Hemmerich S., Pecht I. (1992) Oligomeric structure and autophosphorylation ofnucleoside diphosphate kinase from rat mucosal mast cells II Biochemistry., 31(19), 4580-4587.

255. Hemmerich S., Pecht I. (1992) Oligomeric structure and autophosphorylation ofnucleoside diphosphate kinase from rat mucosal mast cells II Biochemistry., 31(19), 4580-4587.

256. Hengartner M.O. (2000) The biochemistry of apoptosis II Nature., 407(6805), 770776.

257. Hennessy C., Henry J.A., May F.E., Westley B.R., Angus B., Lennard T.W. (1991)

258. Expression of the antimetastatic gene nm23 in human breast cancer: an association with good prognosis II J. Natl. Cancer Inst., 83(4), 281-285.

259. Herbert E., Potter V.R., Takagi Y. (1955) Nucleotide metabolism. IV. Thephosphorylation of 5'-uridine nucleotides by cell fractions from rat liver I I .T. Biol. Chem., 213(2), 923-940.

260. Hiromura M., Yano M., Mori H., Inoue M., Kido H. (1998) Intrinsic ADP-ATPexchange activity is a novel function of the molecular chaperone, Hsp70 // J. Biol. Chem., 273(10). 5435-5438.

261. Hirsch T., Marchetti P., Susin S.A., Dallaporta B., Zamzami N., Marzo 1. Geuskens

262. M. Kroemer G. (1997) The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death // Oncogene., 15(13), 1573-1581.

263. Hirsch T., Marzo I., Kroemer G. (1997) Role of the mitochondrial permeabilitytransition pore in apoptosis // Biosci. Rep., 17(1), 67-76.

264. Hirsch T., Susin S.A., Marzo I., Marchetti P., Zamzami N., Kroemer G. (1998)

265. Mitochondrial permeability transition in apoptosis and necrosis // Cell Biol. Toxicol., 14(2), 141-145.

266. Hodge T., Colombini M. (1997) Regulation of metabolite flux through voltage-gatingof VDAC channels // J. Membr. Biol., 157(3). 271-279.

267. Hofseth L.J., Hussain S.P., Harris C.C. (2004) p53: 25 years after its discovery II

268. Trends Pharmacol. Sci. 25(4), 177-181.

269. Holden M.J., Colombini M. (1988) The mitochondrial outer membrane channel,

270. VDAC, is modulated by a soluble protein IIFEBS Lett., 241(1-2), 105-109.

271. Holden M.J., Colombini M. (1993) The outer mitochondrial membrane channel,

272. VDAC, is modulated by a protein localized in the intermembrane space // Biochim. Biophys. Acta., 1144(3), 396-402.

273. Hooker C.W., Hurlin P J. (2006) OfMyc and Mnt // J. Cell Sci., 119(Pt 2). 208-216.

274. Hovius R., Lambrechts H. Nicolay K., De Kruijff B. (1990) Improved methods toisolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane II Biochim. Biophys. Acta, 1021, 217-226.

275. Huang H., Chopra R., Yerdine G.L., Harrison S.C. (1998) Structure of a covalentlytrapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance II Science., 282(5394), 1669-1675.

276. Hulbert A.J., Turner N., Hinde J., Else P., Guderley H. (2006) How might youcompare mitochondria from different tissues and different species? // J. Comp. Physiol. B, 176, 93-105.

277. Hurt E.C., van Loon A.P.G.M. (1986) How proteins find mitochondria andintramitochondrial compartments // TIBS, 11(5), 204-207.

278. Hutny J., Wilson J.E. (2000) Further studies on the role of phospholipids indetermining the characteristics of mitochondrial binding sites for type I hexokinase II Acta Biochim. Pol., 47(4), 1045-1060.

279. Igawa M., Rukstalis D.B., Tanabe T., Chodak G.W. (1994) High levels of nm23expression are related to cell proliferation in human prostate cancer // Cancer Res., 54(5). 1313-1318.

280. Ikai I., Okuda M., Doliba N., Chance B. (1990) Rate of ATP synthesis in theperfused rat liver by 31P cryo-NMR, J Biol Chem., 265(36), 22097-22100.

281. Inohara N., Gourley T.S., Carrio R., Muniz M., Merino J., Garcia I., Koseki T., Hu

282. Y., Chen S., Nunez G. (1998) Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death II J. Biol. Chem., 273(49), 32479-32486.

283. Inoue H., Takahashi M., Oomori A. Sekiguchi M., Yoshioka T. (1996) A novelfunction for nucleoside diphosphate kinase in Drosophila II Biochem. Biophys. Res. Commun., 218(3). 887-892.

284. Ireland R.J., De Luca V., Dennis D.T. (1980) Characterization and Kinetics of1.oenzymes of Pyruvate Kinase from Developing Castor Bean Endosperm II Plant Physiol., 65(6). 1188-1193.

285. Ishikawa N., Shimada N., Takagi Y., lshijima Y., Fukuda M., Kimura N. (2003)

286. Molecular evolution of nucleoside diphosphate kinase genes: conserved core structures and multiple-layered regulatory regions II J. Bioenerg. Biomembr., 35(1), 7-18.

287. Israelson A., Abu-Hamad S., Zaid H., Nahon E., Shoshan-Barmatz V. (2007)1.calization of the voltage-dependent anion channel-1 Ca2+-binding sites II Cell Calcium., 41(3), 235-244.

288. Iyengar M.R., Fluellen C.E., Iyengar C. (1982) Creatine kinase from the bovinemyometrium: purification and characterization II J. Muscle Res. Cell Motil., 3(2), 231-246.

289. Jacobs E.E., Sanadi D.R. (1960) The reversible removal of cytochrome c frommitochondria //J. Biol. Chem., 235, 531-534.

290. Jacobus W.E., Evans J.J. (1977) Nucleoside diphosphokinase of rat heartmitochondria. Dual localization in matrix and intermembrane space II J. Biol. Chem., 252(12), 4232-4241.

291. Jacobus W.E., Lehninger A.L. (1973) Creatine kinase of rat heart mitochondria.

292. Coupling of creatine phosphorylation to electron transport II J. Biol. Chem., 248(13), 4803-4810.

293. Jacotot E., Ferri K.F., El Hamel C., Brenner C., Druillennec S., Hoebeke J., Rustin

294. Janin J., Dumas C., Morera S., Xu Y., Meyer P., Chiadmi M., Cherfils J. (2000)

295. Three-dimensional structure of nucleoside diphosphate kinase II J. Bioenerg. Biomembr. 32(3), 215-225.

296. Janmey P.A. (1998) The cytoskeleton and cell signaling: component localization andmechanical coupling 11 Physiol. Rev., 78(3), 763-781.

297. Ji L., Arcinas M. Boxer L.M. (1995) The transcription factor, Nm23H2, binds toand activates the translocated c-myc allele in Burkitt's lymphoma // J. Biol. Chem., 270(22), 13392-13398.

298. Johnson D., Lardy H. (1967) Isolation of liver or kidney mitochondria 11 Meth.1. Enzymol., 10, 94-96.

299. Jones D.P., Kennedy F.G. (1982) Intracellular oxygen supply during hypoxia, Am J

300. Physiol., 243(5), C247-C253.

301. Jung H., Seong H.A., Ha H. (2007) NM23-H1 tumor suppressor and its interactingpartner STRAP activate p53 function //J. Biol. Chem., 282(48), 35293-35307.

302. Junge W., McLaughlin S. (1987) The role of fixed and mobile buffers in the kineticsof proton movement II Biochim. Biophys. Acta. 890(1), 1-5.

303. Kaasik A., Safiulina D., Zharkovsky A., Veksler V. (2007) Regulation ofmitochondrial matrix volume II Am. J. Physiol. Cell Physiol., 292(1), CI 57-C163.

304. Kabir F., Wilson J.E. (1993) Mitochondrial hexokinase in brain of various species:differences in sensitivity to solubilization by glucose 6-phosphate II Arch. Biochem. Biophys., 300(2), 641-650.

305. Kadrmas E.F., Ray P.D. Lambeth D.O. (1991) Apparent ATP-linked succinatethiokinase activity and its relation to nucleoside diphosphate kinase in mitochondrial matrix preparations from rabbit II Biochim. Biophys. Acta., 1074(3), 339-346.

306. Kaetzel D.M., Zhang Q., Yang M., McCorkle J.R., Ma D., Craven R.J. (2006)

307. Potential roles of 3'-5' exonuclease activity of NM23-H1 in DNA repair and malignant progression 11 J. Bioenerg. Biomembr., 38(3-4), 163-167.

308. Kammermeier H. (1987) Why do cells needphosphocreatine and a phosphocreatineshuttle //J. Mol. Cell. Cardiol., 19(1), 115-118.

309. Kaneko M., Kurokawa M., Ishibashi S. (1985) Binding andfunction of mitochondrialglycerol kinase in comparison with those of mitochondrial hexokinase II Arch. Biochem. Biophys., 237(1), 135-141.

310. Kang Y., Lee D.C., Han J., Yoon S., Won M., Yeom J.H., Seong M.J., Ko J.J., Lee

311. K.A., Lee K., Bae J. (2007) NM23-H2 involves in negative regulation of Diva and Bcl2L10 in apoptosis signaling 11 Biochem. Biophys. Res. Commun., 359(1), 7682.

312. Kantor J.D., McCormick B., Steeg P.S., Zetter B.R. (1993) Inhibition of cell motilityafter nm23 transfection of human and murine tumor cells II Cancer Res., 53(9), 1971-1973.

313. Karashchuk G.N., Kakuev D.L., Popov V.I., Galdarov I.O., Abdulaev N.G. (1999)

314. Biochemical characteristics of bovine retina nucleoside diphosphate kinase I I Bioorg. Khim., 25(7), 513-519.

315. Kauppinen R.A., Hiltunen J.K., Hassinen I.E. (1980) Subcellular distribution ofphosphagens in isolated perfused rat heart IIFEBS Lett. 112(2), 273-276.

316. Kay L., Nicolay K„ Wieringa B. Saks V., Wallimann T. (2000) Direct evidence forthe control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ 11 J. Biol. Chem., 275(10), 6937-6944.

317. Keim D., Hailat N., Melhem R., Zhu X.X., Lascu I., Veron M., Strahler J., Hanash

318. S.M. (1992) Proliferation-related expression of pl9/nm23 nucleoside diphosphate kinase // J. Clin. Invest., 89(3), 919-924.

319. Ken: J.F., Wyllie A.H., Currie A.R. (1972) Apoptosis: a basic biologicalphenomenon with wide-ranging implications in tissue kinetics II Br. J. Cancer., 26(4), 239-257.

320. Kikkawa S., Takahashi K., Takahashi K., Shimada N., Ui M., Kimura N., Katada T.1990) Conversion of GDP into GTP by nucleoside diphosphate kinase on the GTP-bindingproteins // J. Biol. Chem., 265(35), 21536-21540.

321. Kikkawa S., Takahashi K., Takahashi K., Shimada N., Ui M., Kimura N., Katada T.1992) Activation of nucleoside diphosphate kinase by mastoparan, a peptide isolatedfrom wasp venom II FEBS Lett., 305(3), 237-240.

322. Kikkawa S., Takahashi K., Takahashi K., Shimada N., Ui M., Kimura N., Katada T.1991) Conversion of GDP into GTP by nucleoside diphosphate kinase on the GTP-bindingproteins II Erratum in: J Biol Chem, 266(19), 12795.

323. Kim R., Emi M., Tanabe K. (2005) Caspase-dependent and -independent cell deathpathways after DNA damage (Review) II Oncol. Rep., 14(3), 595-599.

324. Kimura N., Shimada N. (1988) Membrane-associated nucleoside diphosphate kinase from rat liver H J. Biol. Chem., 263, 4647 4653.

325. Kimura N., Shimada N. Fukuda M., Ishijima Y., Miyazaki H., Tshii A., Takagi Y., Ishikawa N. (2000) Regulation of cellular functions by nucleoside diphosphate kinases in mammals II J. Bioenerg. Biomembr., 32(3), 309-315.

326. Kimura N. Shimada N., Nomura K., Watanabe K. (1990) Isolation and characterization of a cDNA clone encoding rat nucleoside diphosphate kinase II J. Biol. Chem., 265(26), 15744-15749.

327. Kinnunen P.K., Rytomaa M., Koiv A., Lehtonen J., Mustonen P., Aro A. (1993) Sphingosine-mediated membrane association of DNA and its reversal by phosphatide acid II Chem. Phys. Lipids., 66(1-2). 75-85.

328. Kitanaka C. Kuchino Y. (1999) Caspase-independent programmed cell death with necrotic morphology II Cell. Death. Differ., 6(6), 508-515.

329. Klingenberg M. (2008) The ADP and ATP transport in mitochondria and its carrier II Biochim. Biophys. Acta., Epub ahead of print.

330. Kluck R.M., Bossy-Wetzel E., Green D.R., Newmeyer D.D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis // Science., 275(5303), 1132-1136.

331. Knoll G., Brdiczka D. (1983) Changes in freeze-fractured mitochondrial membranes correlated to their energetic state. Dynamic interactions of the boundary membranes II Biochim. Biophys. Acta. 733(1), 102-110.

332. Knull H.R., Walsh J.L. (1992) Association of glycolytic enzymes with the cytoskeleton 11 Curr. Top. Cell Regul., 33, 15-30.

333. Kosow D.P., Rose I.A. (1968) Ascites tumor mitochondrial hexokinase II. Effect of binding on kinetic properties I I J. Biol. Chem., 243(13), 3623-3630.

334. Krauskopf A., Eriksson O., Craigen W.J., Forte M.A., Bernardi P. (2006) Propertiesof the permeability transition in VDAC1-/- mitochondria II Biochim. Biophys. Acta, 1757(5-6), 590-595.

335. Krebs H.A., Hems R. (1953) Some reactions of adenosine and inosine phosphates inanimal tissues 11 Biochim. Biophys. Acta, 12(1-2), 172-180.

336. Krishnan K.S, Rikhy R, Rao S. Shivalkar M, Mosko M, Narayanan R, Etter P.,

337. Estes P.S., Ramaswami M. (2001) Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling II Neuron, 30(1), 197-210.

338. Kuan J, Saier M.H.Jr. (1993) The mitochondrial carrier family of transport proteins:structural, functional, and evolutionary relationships II Crit. Rev. Biochem. Mol. Biol, 28(3), 209-233.

339. Kuby S.A., Fleming G, Alber T„ Richardson D, Takenaka H, Hamada M. (1991)

340. Studies on yeast nucleoside triphosphate-nucleoside diphosphate transphosphorylase (nucleoside diphosphokinase). IV. Steady-state kinetic properties with thymidine nucleotides (including 3'-azido-3'-deoxythymidine analogues) //Enzyme, 45(1-2), 1-13.

341. Kunz W, Bohnensack R„ Böhme G„ Küster U., Letko G, Schönfeld P. (1981)

342. Relations between extramitochondrial and intramitochondrial adenine nucleotide systems II Arch. Biochem. Biophys, 209(1), 219-229.

343. Kurganov B.I. (1986) Principles of integration of cell metabolism II Mol. Biol.1. Mosk), 20(2), 369-377.

344. Kuznetsov A.V, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z, Rossi A,

345. Kadaja L, Peet N, Seppet E. Saks V.A. (1996) Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo II Eur. J. Biochem, 241(3), 909-915.

346. Lacombe M.L., Milon L., Munier A., Mehus J.G., Lambeth D.O. (2000) The human

347. Nm23/nueleoside diphosphate kinases II J. Bioenerg. Biomembr., 32(3), 247-258.

348. Lacombe M.L., Wallet V., Troll H., Veron M. (1990) Functional cloning of anucleoside diphosphate kinase from Dictyostelium discoideum II J. Biol. Chem., 265(17), 10012-10018.

349. Lakshmi M.S., Parker C., Sherbet G.V. (1993) Metastasis associated MTS1 and

350. NM23 genes affect tubulin polymerisation in B16 melanomas: a possible mechanism of their regulation of metastatic behaviour of tumours II Anticancer Res., 13(2), 299-303.

351. Lakso M., Steeg P.S., Westphal H. (1992) Embryonic expression of nm23 duringmouse organogenesis II Cell Growth Differ., 3(12), 873-879.

352. Lambeth D.O., Mehus J.G. Ivey M.A., Milavetz B.I. (1997) Characterization andcloning of a nucleoside-diphosphate kinase targeted to matrix of mitochondria in pigeon 11 J. Biol. Chem., 272(39), 24604-24611.

353. LaNoue K.F., Bryla J. Williamson J.R. (1972) Feedback interactions in the controlof citric acid cycle activity in rat heart mitochondria II J. Biol. Chem., 247(3), 667-679.

354. Lascu I., Giartosio A., Ransac St., Erent M. (2000) Quaternary structure ofnucleoside diphosphate kinases II J. Bioenerg. Biomembr., 32, 227 236.

355. Lascu I., Gonin Ph. (2000) The catalytic mechanism of nucleoside diphosphatekinases II J. Bioenerg. Biomembr., 32. 237 246.

356. Lascu I., Pop R.D., Porumb H., Presecan E. Proinov 1. (1983) Pig heartnucleosidediphosphate kinase. Phosphorylation and interaction with Cibacron blue 3GA II Eur. J. Biochem., 135(3), 497-503.

357. Lasker M., Bui C.D., Besant P.G., Sugawara K., Thai P., Medzihradszky G., Turck

358. C.W. (1999) Protein histidine phosphorylation: increased stability of thiophosphohistidine I I Protein Sci., 8(10), 2177-2185.

359. Laterveer F.D., Gellerich F.N., Nicolay K. (1995) Macromolecules increase thechanneling of ADP from externally associated hexokinase to the matrix of mitochondria II Eur. J. Biochem., 232(2), 569-577.

360. Laterveer F.D., Nicolay K., Gellerich F.N. (1996) A DP delivery from adenylatekinase in the mitochondrial intermembrane space to oxidative phosphorylation increases in the presence of macromolecules IIFEBS Lett., 386(2-3), 255-259.

361. Laterveer F.D., van der Heijden R., Toonen M., Nicolay K. (1994) The kineticconsequences of binding of hexokinase-I to the mitochondrial outer membrane II Biochim. Biophys. Acta, 1188. 251-259.

362. Lawson J.W., Veech R.L. (1979) Effects of pH and free Mg2+ on the Keq of thecreatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions II J. Biol. Chem., 254(14), 6528-6537.

363. Lazarowski E.R., Homolya L., Boucher R.C., Harden T.K. (1997) Identification ofan ecto-nucleoside diphosphokinase and its contribution to inter conversion of P2 receptor agonists II J. Biol. Chem., 272(33), 20402-20407.

364. Lecroisey A., Lascu I., Bominaar A., Veron M., Delepierre M. (1995)

365. Phosphorylation mechanism of nucleoside diphosphate kinase: 31P-nuclear magnetic resonance studies I/ Biochemistry., 34(38), 12445-12450.

366. Lee H.Y., Lee H. (1999) Inhibitory activity of nm23-Hl on invasion and colonizationof human prostate carcinoma cells is not mediated by its NDP kinase activity II Cancer Lett., 145(1-2), 93-99.

367. Lemasters J.J., Holmuhamedov E. (2006) Voltage-dependent anion channel (VDAC)as mitochondrial governator—thinking outside the box II Biochim. Biophys. Acta., 1762(2), 181-190.

368. Leone A., Flatow U., King C.R., Sandeen M.A., Margulies I.M., Liotta L.A., Steeg

369. P.S. (1991) Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells II Cell., 65(1), 25-35.

370. Leone A., Flatow U., VanHoutte K„ Steeg P.S. (1993) Transfection of human nm23

371. H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity II Oncogene., 8(9), 23252333.

372. Leone A., Seeger R.C., Hong C.M., Hu Y.Y., Arboleda M.J., Brodeur G.M., Stram

373. D., Slamon D.J., Steeg P.S. (1993) Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas II Oncogene., 8(4), 855-865.

374. Leung S.M., Hightower L.E. (1997) A 16-kDa protein functions as a new regidatoryprotein for Hsc70 molecular chaperone and is identified as a member of the Nm23/nucleoside diphosphate kinase family // J. Biol. Chem., 272(5), 2607-2614.

375. Liao G. Kreitzer G., Cook T.A., Gundersen G.G. (1999) A signal transductionpathway involved in microtubule-mediated cell polarization II FASEB J., 13 Suppl 2, S257- S260.

376. Liberek K., Skowyra D., Zylicz M., Johnson C., Gcorgopoulos C. (1991) The

377. Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein II J. Biol. Chem., 266(22), 14491-14496.

378. Lipskaya T.Yu., Geiger P.J., Bessman S.P. (1995) Compartmentation metabolicparameters of mitochondrial hexokinase and creatin kinase depend on the rate of oxidative posphorilation // Biochim. Mol. Med., 55, 81 89.

379. Lipskaya T.Yu., Trofimova M.E. Moisceva N.S. (1989) Kinetic properties of theoctameric and dimeric forms of mitochondrial creatine kinase and physiological role of the enzyme // Biochem. Int., 19(3), 603-613.

380. Liu M.Y., Colombini M. (1992) Regulation of mitochondrial respiration bycontrolling the permeability of the outer membrane through the mitochondrial channel, VDACII Biochim. Biophys. Acta., 1098(2), 255-260.

381. Liu X., Kim C.N., Yang J., Jemmerson R., Wang X. (1996) Induction of apoptoticprogram in cell-free extracts: requirement for dATP and cytochrome c II Cell., 86(1), 147-157.

382. Lo W.Y., Liu K.F., Liao I.C., Song Y.L. (2004) Cloning and molecularcharacterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon) It Cell Stress Chaperones., 9(4), 332-343.

383. Lombardi D., Lacombe M.L., Paggi M.G. (2000) nm23: unraveling its biologicalfunction in cell differentiation II J. Cell Physiol., 182(2), 144-149.

384. Lombardi D., Mileo A.M. (2003) Protein interactions provide new insight into

385. Nm23/nucleoside diphosphate kinase functions II J. Bioenerg. Biomembr., 35(1), 67-71.

386. Lombardi D. Palescandolo E., Giordano A., Paggi M.G. (2001) Interplay betweenthe antimetastatic nm23 and the retinoblastoma-related Rb2/pl30 genes in promoting neuronal differentiation of PC 12 cells II Cell Death Differ., 8(5), 470476.

387. Lombardi D., Sacchi A., D'Agostino G., Tibursi G. (1995) The association of the

388. Nm23-Ml protein and beta-tubidin correlates with cell differentiation II Exp. Cell Res., 217(2), 267-271.

389. Lu Q., Park H., Egger L.A., Inouye M. (1996) Nucleoside-diphosphate kinasemediated signal transduction via histidyl-aspartyl phosphorelay systems in Escherichia colil/J. Biol. Chem., 271(51), 32886-32893.

390. Lu Q., Zhang X., Almaula N., Mathews C.K., Inouye M. (1995) The gene fornucleoside diphosphate kinase functions as a mutator gene in Escherichia coli II J. Mol. Biol., 254(3), 337-341.

391. Lu Y., Hu Q., Yang C., Gao F. (2006) Histidine 89 is an essential residue for Hsp70in the phosphate transfer reaction II Cell Stress Chaperones., 11(2), 148-153.

392. Ma D., McCorkle J.R. Kaetzel D.M. (2004) The metastasis suppressor NM23-H1possesses 3-5' exonuclease activity II J. Biol. Chem., 279(17), 18073-18084.

393. Ma D., Xing Z., Liu B., Pedigo N.G., Zimmer S.G., Bai Z., Postel E.H., Kaetzel

394. D.M. (2002) NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth facior-A promoter Hi. Biol. Chem., 277(2), 1560-1567.

395. Maag D., Castro C., Hong Z., Cameron C.E. (2001) Hepatitis C virus RNAdependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin // J. Biol. Chem. 276(49), 46094-46098.

396. Macnab R., Moses V. Mowbray J. (1973) Evidence for metabolic compartmentationin Escherichia coli II Eur. J Biochem., 34(1), 15-19.

397. Majewski N., Nogueira V., Bhaskar P., Coy P.E., Skeen J.E., Gottlob K., Chandel

398. N.S., Thompson C.B., Robey R.B., Hay N. (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence ofBax andBak // Mol Cell., 16(5), 819-830.

399. Mandai M., Konishi I., Komatsu T., Mori T., Arao S., Nomura H., Kanda Y., Hiai

400. H. Fukumoto M. (1995) Mutation of the nm23 gene, loss of heterozygosity at the nm23 locus and K-ras mutation in ovarian carcinoma: correlation with tumour progression and nm23 gene expression II Br. J. Cancer., 72(3), 691-695.

401. Mannella C.A. (1998) Conformational changes in the mitochondrial channel protein,

402. VDAC, and their functional implications II J. Struct. Biol., 121(2), 207-218.

403. Mao Y., Deng A., Qu N., Wu X. (2006) ATPase domain of Hsp70 exhibits intrinsic

404. ATP-ADP exchange activity II Biochemistry (Mosc)., 71(11), 1222-1229.

405. Martinvalet D., Zhu P., Lieberman J. (2005) Granzyme A induces caspaseindependent mitochondrial damage, a reqidred first step for apoptosis II Immunity., 22(3), 355-370.

406. Mathupala S.P., Ko Y.H., Pedersen P.L. (2006) Hexokinase II: cancer's doubleedged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria, Oncogene, 25(34), 4777-4786.

407. Matsushita Y., Suzuki T., Kubota R., Mori M„ Shimosato H., Watanabe M., Kayano

408. T., Nishio T., Nyunoya H. (2002) Isolation of a cDNA for a nucleoside diphosphate kinase capable of phosphorylating the kinase domain of the self-incompatibility factor SRK of Brassica campestris H J. Exp. Bot., 53(369), 765767.

409. McCabe E.R. (1994) Microcompartmentation of energy metabolism at the outermitochondrial membrane: role in diabetes mellitus and other diseases // J. Bioenerg. Biomembr., 26(3). 317-325.

410. McKee E.E., Bentley A.T., Smith R.M.Jr., Ciaccio C.E. (1999) Origin of guaninenucleotides in isolated heart mitochondria H Biochem. Biophys. Res. Cominun., 257(2), 466-472.

411. Mehus J.G., Deloukas P. Lambeth D.O. (1999) NME6: a new member of thenm23/nucleoside diphosphate kinase gene family located on human chromosome 3p21.31! Hum. Genet., 104(6), 454-459.

412. Melki R., Lascu I., Carlier M.F. Veron M. (1992) Nucleoside diphosphate kinasedoes not directly interact with tubulin nor microtubules // Biochem. Biophys. Res. Commun., 187(1), 65-72.

413. Mesnildrey S., Agou F., Karlsson A., Bonne D.D., Veron M. (1998) Couplingbetween catalysis and oligomeric structure in nucleoside diphosphate kinase // J. Biol. Chem., 273(8), 4436-4442.

414. Miller J.H., Funchain P., Clendenin W., Huang T., Nguyen A., Wolff E., Yeung A.,

415. Chiang J.H., Garibyan L., Slupska M.M., Yang H. (2002) Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains II Genetics., 162(1), 5-13.

416. Milligan C.L., Wood C.M. (1986) Tissue intracellular acid-base status and the fateof lactate after exhaustive exercise in the rainbow trout I I J. Exp. Biol., 123, 123144.

417. Milon L., Meyer P., Chiadmi M., Munier A., Johansson M., Karlsson A., Lascu I.,

418. Capeau J., Janin J., Lacombe M.L. (2000) The human nm23-H4 gene product is a mitochondrial nucleoside diphosphate kinase II J. Biol. Chem., 275(19), 1426414272.

419. Milon L. Rousseau-Merck M.F., Munier A., Erent M., Lascu I., Capeau J., Lacombe

420. M.L. (1997) nm23-H4, a new member of the family of human nm23/nucleoside diphosphate kinase genes localised on chromosome 16pl3 I! Hum. Genet., 99(4). 550-557.

421. Min K., Song H.K., Chang C. Kim S.Y. Lee K.J., Suh S.W. (2002) Crystalstructure of human nucleoside diphosphate kinase A, a metastasis suppressor // Proteins., 46(3), 340-342.

422. Mirzabekov T.A., Ermishkin L.N. (1989) The gate of mitochondrial porin channel iscontrolled by a number of negative and positive charges // FEBS Lett., 249(2), 375-378.

423. Mitchell P., Moyle J. (1969) Estimation of membrane potential and pH differenceacross the cristae membrane of rat liver mitochondria // Eur. J. Biochem., 7(4), 471-484.

424. Miyazaki H., Fukuda M., Ishijima Y., Takagi Y., Iimura T., Negishi A., Hirayama

425. Monson J.P., Henderson R.M., Smith J.A., lies R.A., Faus-Dader M., Carter N.D.,

426. Heath R., Metcalfe H., Cohen R.D. (1984) The mechanism of inhibition of ureogenesis by acidosis II Biosci. Rep., 4(10), 819-825.

427. Mora A., Komander D., van Aalten D.M., Alessi D.R. (2004) PDK1, the masterregulator of AGC kinase signal transduction // Semin. Cell Dev. Biol., 15(2), 161-170.

428. Moreadith R.W., Jacobus W.E. (1982) Creatine kinase of heart mitochondria.

429. Functional coupling of ADP transfer to the adenine nucleotide translocase II J. Biol. Chem., 257(2), 899-905.

430. Moréra S, Lacombe M.L, Xu Y, LeBras G, Janin J. (1995) X-ray structure ofhuman nucleoside diphosphate kinase B complexed with GDP at 2 A resolution II Structure, 3(12), 1307-1314.

431. Moréra S, Lascu I, Dumas C, LeBras G, Briozzo P, Veron M, Janin J. (1994)

432. Adenosine 5'-diphosphate binding and the active site of nucleoside diphosphate kinase II Biochemistry, 33(2), 459-467.

433. Moréra S, LeBras G, Lascu 1, Lacombe M.L, Véron M, Janin J. (1994) Refined Xray structure of Dictyostelium discoideum nucleoside diphosphate kinase at 1.8 A resolution II J. Mol. Biol, 243(5), 873-890.

434. Mourad N. Parks R.E.Jr. (1965) NDP kinase: demonstration of phosphorylatedenzyme as the reactive intermediate // Biochem. Biophys. Res. Commun, 19, 312-316.

435. Mourad N. Parks R.E.Jr. (1966) Erythrocytic nucleoside diphosphokinase. II.1.olation and kinetics II J. Biol. Chern, 241(2). 271-278.

436. Mukasa H. Tsumori H, Uezono Y. (1994) Glucose, fructose, mannose and/orglucose-1-phosphate-releasing activity stains for glycosidases and glycosyltransferases in gels after isoelectric focusing // Electrophoresis, 15(2), 255-259.

437. Munier A, Feral C, Milon L, Pinon V.P, Gyapay G., Capeau J, Guellaen G.,1.combe M.L. (1998) A new human nm23 homologue (nm23-H5) specifically expressed in testis germinal cells IIFEBS Lett, 434(3), 289-294.

438. Muñoz-Dorado J, Almaula N, Inouye S, Inouye M. (1993) Autophosphorylation ofnucleoside diphosphate kinase from Myxococcus xanthus II J. Bacteriol, 175(4), 1176-1181.

439. Muñoz-Dorado J, Inouye M, Inouye S. (1990) Nucleoside diphosphate kinase from

440. Myxococcus xanthus. I. Cloning and sequencing of the gene II J. Biol. Chem. 265(5), 2702-2706.

441. Muñoz-Dorado J, Inouye S, Inouye M. (1990) Nucleoside diphosphate kinase from

442. Myxococcus xanthus. II. Biochemical characterization II J. Biol. Chem, 265(5), 2707-27012.

443. Mustonen P., Virtanen J.A., Somerharju P.J., Kinnunen P.K. (1987) Binding ofcytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeledphospholipids If Biochemistry., 26(11), 2991-2997.

444. Muchonen W.W., Lambeth D.O. (1995) The compartmentation of nucleosidediphosphate kinase in mitochondria II Comp. Biochem. Physiol. HOB, 211-223.

445. Nakamura H., Sugino Y. (1966) Metabolism of deoxyribonucleotides. 3. Purificationand some properties of nucleoside diphosphokinase of calf thymus II J. Biol. Chem., 241(21), 4917-4922.

446. Nakayama T., Ohtsuru A. Nakao K., Shima M., Nakata K., Watanabe K., Ishii N,,

447. Kimura N., Nagataki S. (1992) Expression in human hepatocellular carcinoma of nucleoside diphosphate kinase, a homologue of the nm23 gene product II J. Natl. Cancer Inst., 84(17), 1349-1354.

448. Narayanan R., Ramaswami M. (2003) Regulation of dynamin by nucleosidediphosphate kinase II J. Bioenerg. Biomembr., 35(1), 49-55.

449. Negroni A., Venturelli D., Tanno B., Amendola R., Ransac S., Cesi V., Calabretta B.,

450. Raschella G. (2000) Neuroblastoma specific effects of DR-nm23 and its mutant forms on differentiation and apoptosis II Cell Death Differ., 7(9), 843-850.

451. Neupert W. (1997) Protein import into mitochondria 11 Annu. Rev. Biochem., 66.863.917.

452. Nickerson J.A., Wells W.W. (1984) The microtubule-associated nucleosidediphosphate kinase II J. Biol. Chem., 259(18), 11297-11304.

453. Nicolay K., Rojo M., Wallimann T., Demel R., Hovius R. (1990) The role of contactsites between inner and outer mitochondrial membrane in energy transfer II Biochim. Biophys. Acta., 1018(2-3). 229-233.

454. Nicolay K., van Dorsten F.A., Reese T., Kruiskamp M.J., Gellerich J.F., van Echteld

455. C.J. (1998) In situ measurements of creatine kinase flux by NMR. The lessons from bioengineered mice II Mol. Cell Biochem., 184(1-2), 195-208.

456. Nieminen A.I., Partanen J.I., Klefstrom J. (2007) c-Myc blazing a trail of death:coupling of the mitochondrial and death receptor apoptosis pathways by c-Myc II Cell Cycle., 6(20), 2464-2472.

457. Nihei T., Noda L„ Morales M.F. (1961) Kinetic properties and equilibrium constantof the adenosine triphosphate-creatine transphosphorylase-catalyzed reaction II J. Biol. Chem. 236, 3203-3209.

458. Nilsson J.A., Cleveland J.L. (2003) Myc pathways provoking cell suicide and cancer

459. Oncogene., 22(56), 9007-9021.

460. Noda L., Nihei T., Morales M.F. (1960) The enzymatic activity and inhibition ofadenosine 5'-triphosphate-creatine transphosphorylase II J. Biol. Chem., 235, 2830-2834.

461. Norman A.W., Wedding R.T., Black M.K. (1965) Detection of phosphohistidine innucleoside diphosphokinase isolated from Jerusalem artichoke mitochondria II Biochem. Biophys. Res. Commun., 20(6), 703-709.

462. Nosaka K., Kawahara M., Masuda M., Satomi Y., Nishino II. (1998) Association ofnucleoside diphosphate kinase nm23-H2 with human telomeres II Biochem. Biophys. Res. Commun., 243(2), 342-348.

463. Ochoa J.L. (1978) Hydrophobic (interaction) chromatography II Biochimie., 60(1),1.15.

464. Ohkura N., Kishi M., Tsukada T., Yamaguchi K. (2001) Menin, a gene productresponsible for multiple endocrine neoplasia type 1, interacts with the putative tumor metastasis suppressor nm23 II Biochem. Biophys. Res. Commun., 282(5), 1206-1210.

465. Ohlendieck K. Riesinger I., Adams V., Krause J., Brdiczka D. (1986) Enrichmentand biochemical characterization of boundary membrane contact sites from rat-liver mitochondria //Biochim. Biophys. Acta, 860, 672 689.

466. Ohtsuki K., Yokoyama M. (1987) Direct activation of guanine nucleotide bindingproteins through a high-energy phosphate-transfer by nucleoside diphosphate-kinase II Biochem. Biophys. Res. Commun., 148(1), 300-307.

467. Okazaki IL, Tani C., Ando M., Ishii K., Ishibashi S., Nishimura Y., Kato K. (1992) Possible involvement of cathepsin L in processing of rat liver hexokinase to eliminate mitochondria-binding ability II J. Biochem., 112(3), 409-413.

468. Ornstein L. (1964) Disc electrophoresis. I. Background and theory II Ann. N. Y. Acad. Sci., 121, 321-349.

469. Ostlund A.K., Gôhring U., Krause J., Brdiczka D. (1983) The binding of glycerol kinase to the outer membrane of rat liver mitochondria: its importance in metabolic regulation //Biochem. Med., 30(2), 231-245.

470. Otero A.S. (1997) Copurification of vimentin, energy metabolism enzymes, and a MER5 homolog with nucleoside diphosphate kinase. Identification of tissue-specific interactions II J. Biol. Chem., 272(23), 14690-14694.

471. Otero A.S. (2000) NM23/nucleoside diphosphate kinase and signal transduction II J. Bioenerg. Biomembr., 32(3), 269-275.

472. Otero A.S., Doyle M.B., Hartsough M.T., Steeg P.S. (1999) Wild-type NM23-H1, but not its SI 20 mutants, suppresses desensitization of muscarinic potassium current //Biochim. Biophys. Acta., 1449(2), 157-168.

473. Otsuki Y., Tanaka M., Yoshii S., Kawazoe N., Nakaya K., Sugimura H. (2001) Tumor metastasis suppressor nm23Hl regulates Racl GTPase by interaction with Tiaml II Proc. Natl. Acad. Sci. U. S. A, 98(8), 4385-4390.

474. Ottaway J.H., Mowbray J. (1977) The role of compartmentation in the control of glycolysis II Curr. Top. Cell Regul., 12, 107-208.

475. Ow Y.L., Green D.R., Hao Z., Mak T.W. (2008) Cytochrome c: functions beyond respiration //Nat. Rev. Mol. Cell. Biol., 9(7), 532-542.

476. Palmieri F. (1994) Mitochondrial carrier proteins IIFEBS Lett., 346(1), 48-54.

477. Parks R.E., Agarwal, R.P. (1973) In The Enzymes (edited by Boyer P.D.) // Academic Press, New York., 8, 307-334.

478. Payne R.M., Haas R.C., Strauss A.W. (1991) Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes II Biochim. Biophys. Acta., 1089(3), 352361.

479. Pedersen P.L. (1968) Molecular weight, sulfhydryl conten, and phosphorylation of a homogeneous mitochondrial nucleoside diphosphokinase // J. Biol. Chem., 243(16), 4305-4311.

480. Pedersen P.L. (1973) Coupling of adenosine triphosphate formation in mitochondria to the formation of nucleoside triphosphates. Involvement of nucleoside diphosphokinase//. Biol. Chem., 248 (11), 3956-3962.

481. Pelengaris S., Khan M., Evan G. (2002) c-MYC: more than just a matter of life and death //Nat. Rev. Cancer., 2(10), 764-776.

482. Penningroth S.M., Kirschner M.W. (1977) Nucleotide binding and phosphorylation in microtubule assembly in vitro II J. Mol. Biol. 115(4), 643-673.

483. Perry S.V. (1952) The bound nucleotide of the isolated myofibril II Biochem. J., 51(4), 495-499.

484. Petit P.X., Susin S.A. Zamzami N., Mignotte B., Kroemer G. (1996) Mitochondria and programmed cell death: back to the future IIFEBS Lett., 396(1), 7-13.

485. Pienta K.J., Coffey D.S. (1991) Cell motility as a chemotherapeutic target II Cancer Surv., 11,255-263.

486. Polosina Y.Yu., Jarrell K.F., Fedorov O.V., Kostyukova A.S. (1998) Nucleoside diphosphate kinase from haloalkaliphilic archaeon Natro no bacterium magadii: purification and characterization 11 Extremophilcs, 2(3), 333-338.

487. Postel E.H. (1999) Cleavage of DNA by human NM23-H2/nucleoside diphosphate kinase involves formation of a covalent protein-DNA complex II J. Biol. Chem., 274(32), 22821-22829.

488. Postcl E.H. (2003) Multiple biochemical activities of NM23/NDP kinase in generegulation II J. Bioenerg. Biomembr., 35(1), 31-40.

489. Postel E.H., Abramczyk B.A., Gursky S.K., Xu Y. (2002) Structure-basedmutational and functional analysis identify human NM23-H2 as a multifunctional enzyme II Biochemistry., 41(20), 6330-6337.

490. Postel E.H., Berberich S.J., Flint S.J., Ferrone C.A. (1993) Human c-myctranscription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis II Science., 261(5120), 478-480.

491. Postel E.H. Berberich S.J., Rooney J.W., Kaetzel D.M. (2000) Human

492. NM23/nucleoside diphosphate kinase regulates gene expression through DNA binding to nuclease-hypersensitive transcriptional elements II J. Bioenerg. Biomembr., 32(3), 277-284.

493. Postel E.H., Ferrone C.A. (1994) Nucleoside diphosphate kinase enzyme activity of

494. NM23-H2/PuF is not required for its DNA binding and in vitro transcriptional functions II J. Biol. Chem., 269(12), 8627-8630.

495. Prem veer Reddy G., Pardee A.B. (1980) Multienzyme complex for metabolicchanneling in mammalian DNA replication II Proc. Natl. Acad. Sci. U. S. A., 77(6), 3312-3316.

496. Prendergast G.C. (1999) Mechanisms of apoptosis by c-Myc II Oncogene., 18(19),2967-2987.

497. Presecan E., Vonica A., Lascu I. (1989) Nucleoside diphosphate kinase from humanerythrocytes: purification, molecular mass and subunit structure II FEBS Lett., 250(2), 629-632.

498. Randazzo P. A., Northup J.K., Kahn R.A. (1991) Activation of a small GTP-bindingprotein by nucleoside diphosphate kinase II Science., 254(5033), 850-853.

499. Randazzo P.A., Northup J.K., Kahn R.A. (1992) Regulatory GTP-binding proteins

500. ADP-ribosylation factor, Gt, and RAS) are not activated directly by nucleoside diphosphate kinase //J. Biol. Chem., 267(25), 18182-18189.

501. Ratliff R.L, Weaver R.H, Lardy H.A, Kuby S.A. (1964) Nucleoside triphosphatenucleoside diphosphate transphosphorylase (Nucleoside diphosphokinase). I. Isolation of the crystalline enzyme from brewers' yeast H J. Biol. Chem, 239, 301-309.

502. Robinson J.B.Jr, Brems D.N, Stellwagen E. (1981) A monoisozymic nucleosidediphosphate kinase capable of complete phosphorylation II J. Biol. Chem, 256(21), 10769-10773.

503. Rose I.A., Warms J.V. (1967) Mitochondrial hexokinase. Release, rebinding, andlocation II J. Biol. Chem, 242(7), 1635-1645.

504. Roscngard A.M., Krutzsch H.C, Shearn A, Biggs J.R, Barker E, Margulies I.M,

505. King C.R, Liotta L.A, Steeg P.S. (1989) Reduced Nm23/Awdprotein in tumour metastasis and aberrant Drosophila development II Nature, 342(6246), 177-180.

506. Rostovtseva T, Colombini M. (1996) ATP flux is controlled by a voltage-gatedchannel from the mitochondrial outer membrane II J. Biol. Chem, 271(45). 28006-28008.

507. Rostovtseva T, Colombini M. (1997) VDAC channels mediate and gate the flow of

508. ATP: implications for the regulation of mitochondrial function // Biophys. J, 72(5), 1954-1962.

509. Rostovtseva Т.К. Antonsson В. Suzuki M, Youle R.J, Colombini M, Bezrukov

510. S.M. (2004) Bid, but not Bax, regulates VDAC channels II J. Biol. Chem. 279(14), 13575-13583.

511. Rostovtseva Т.К., Bezrukov S.M. (2008) VDAC regulation: role of cytosolicproteinsand mitochondrial lipids II J. Bioenerg. Biomembr, Epub ahead of print.

512. Royds J.A, Stephenson T.J, Rees R.C, Shorthouse A.J, Silcocks P.B. (1993) Nm23protein expression in ductal in situ and invasive human breast carcinoma II J. Natl. Cancer. Inst, 85(9), 727-731.

513. Ruchalski К, Mao H, Li Z„ Wang Z, Gillers S„ Wang Y, Mosser D.D., Gabai V,

514. Schwartz J.H. Borkan S.C. (2006) Distinct hsp70 domains mediate apoptosisinducing factor release and nuclear accumulation II J. Biol. Chem, 281(12), 7873-7880.

515. Russell R.L., Pedersen A.N., Kantor J., Geisinger K., Long R., Zbieranski N.,

516. Townsend A., Shelton B., Briinner N., Kute T.E. (1998) Relationship of nm23 to proteolytic factors, proliferation and motility in breast cancer tissues and cell lines II Br. J. Cancer. 78(6), 710-717.

517. Ryan K.M., Phillips A.C., Vousden K.H. (2001) Regulation and function of the p53tumor suppressor protein II Curr. Opin. Cell Biol., 13(3). 332-337.

518. Saks V.A., Chernousova G.B., Gukovsky D.E., Smirnov V.N., Chazov E.I. (1975)

519. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions 11 Eur. J. Biochem., 57(1), 273-290.

520. Saks V.A., Khuchua Z.A., Kuznetsov A.V. (1987) Specific inhibition of ATP-ADPtranslocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase //Biochim. Biophys. Acta., 891(2), 138-144.

521. Saks V.A., Ventura-Clapier R., Aliev M.K. (1996) Metabolic control and metaboliccapacity: two aspects of creatine kinase functioning in the cells II Biochim. Biophys. Acta., 1274(3), 81-88.

522. Sanadi D.R., Gibson D.M., Ayengar P., Jacob M. (1956) Alpha-ketoglutaricdehydrogenase. V. Guanosine diphosphate in coupled phosphorylation II J. Biol. Chem, 218(1), 505-520.

523. Sanz M.C, Lluis C. (1988) Ambiquitous behavior of rabbit liver lactatedehydrogenase I I Experientia, 44(3), 203-208.

524. Schaertl S. (1996) Quaternary structure of human nucleoside diphosphate kinaseisoforms HA and HE in solution 11FEBS Lett, 394(3), 316-320.

525. Schaertl S, Konrad M, Geeves M.A. (1998) Substrate specificity of humannucleoside-diphosphate kinase revealed by transient kinetic analysis II J. Biol. Chem, 273(10), 5662-5669.

526. Schcin S.J, Colombini M, Finkelstein A. (1976) Reconstitution in planar lipidbilayers of a voltage-dependent anion-selective channel obtained from Paramecium mitochondria I I J. Membr. Biol, 30(2), 99-120.

527. Schlattner U„ Doldcr M. Wallimann T., Tokarska-Schlattner M. (2001)

528. Mitochondrial creatine kinase and mitochondrial outer membrane porin show a direct interaction that is modulated by calcium // J. Biol. Chem., 276(51), 4802748030.

529. Schlossmann J., Lill R., Neupert W., Court D.A. (1996) Tom71, a novel homologueof the mitochondrial preprotein receptor Tom70 // J. Biol. Chem., 271(30), 17890-17895.

530. Schmid-Alliana A., Menou L., Manié S., Schmid-Antomarchi H., Millet M.A.,

531. Giuriato S., Ferrua B., Rossi B. (1998) Microtubule integrity regulates src-like and extracellular signal-regulated kinase activities in human pro-monocytic cells. Importance for interleukin-1 production II J. Biol. Chem., 273(6), 3394-3400.

532. Schnaitman C., Erwin V.G., Greenawalt J.W. (1967) The submitochondriallocalization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria !! J. Cell Biol., 32(3), 719-735.

533. Schnaitman C., Greenawalt J.W. (1968) Enzymatic properties of the inner and outermembranes of rat liver mitochondria //J. Cell Biol. 38, 158—175.

534. Schneider B., Babolat M., Xu Y.W., Janin J., Véron M., Deville-Bonne D. (2001)

535. Mechanism of phosphoryl transfer by nucleoside diphosphate kinase pH dependence and role of the active site Lys 16 and Tyr56 residues II Eur. J. Biochem., 268(7), 1964-1971.

536. Schneider B., Biondi R., Sarfati R., Agou F., Guerreiro C., Deville-Bonne D., Veron

537. M. (2000) The mechanism of phosphorylation of anti-HIV D4T by nucleoside diphosphate kinase II Mol. Pharmacol, 57(5), 948-953.

538. Schneider B., Sarfati R., Deville-Bonne D., Véron M. (2000) Role of nucleosidediphosphate kinase in the activation of anti-HIV nucleoside analogs // J. Biocnerg. Biomembr., 32(3), 317-324.

539. Schneider B., Xu Y.W., Janin J., Véron M., Deville-Bonne D. (1998) 3'

540. Phosphorylated nucleotides are tight binding inhibitors of nucleoside diphosphate kinase activity // J. Biol. Chem., 273(44), 28773-28778.

541. Schneider B., Xu Y.W., Sellam O., Sarfati R., Janin J., Veron M., Deville-Bonne D.1998) Pre-steady state of reaction of nucleoside diphosphate kinase with anti-HIV nucleotides II J. Biol. Chem, 273(19), 11491-11497.

542. Schwerzmann K., Hoppeler H., Kayar S.R., Weibel E.R. (1989) Oxidative capacityof muscle and mitochondria: correlation of physiological, biochemical, and morphometric characteristics II Proc. Natl. Acad. Sci. U. S. A., 86(5), 1583-1587.

543. Sedmak J., Ramaley R. (1971) Purification and properties of Bacillus subtilisnucleoside diphosphokinase I I J. Biol. Chem., 246(17), 5365-5372.

544. Seltzer W.K., Firminger H., Klein J., Pike A., Fennessey P., McCabe E.R. (1985)

545. Adrenal dysfunction in glycerol kinase deficiency II Biochem. Med., 33(2), 189199.

546. Seltzer W.K., McCabe E.R. (1984) Subcellular distribution and kinetic properties ofsoluble and particulate-associated bovine adrenal glycerol kinase II Mol. Cell Biochem., 64(1), 51-61.

547. Shao L., Kinnally K.W., Mannella C.A. (1996) Circular dichroism studies of themitochondrial channel, VDAC, from Neurospora crassa II Biophys. J., 71(2), 778-786.

548. Shapiro J.I., Whalen M., Chan L. (1990) Hemodynamic and hepatic pH responses tosodium bicarbonate and Carbicarb during systemic acidosis II Magn. Reson. Med., 16(3), 403-410.

549. Sheffield W.P., Shore G.C., Randall S.K. (1990) Mitochondrial precursor protein.

550. Effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence II J. Biol. Chem., 265(19), 11069-11076.

551. Shimizu S., Narita M., Tsujimoto Y. (1999) Bcl-2 family proteins regulate therelease of apoptogenic cytochrome c by the mitochondrial channel VDAC II Nature., 399(6735), 483-487.

552. Shingai R., Maeda T., Onishi S., Yamamoto Y. (1995) Autoantibody against 70 kDheat shock protein in patients with autoimmune liver diseases // J. Hepatol., 23(4), 382-390.

553. Shoshan-Barmatz V., Gincel D. (2003) The voltage-dependent anion channel:characterization, modulation, and role in mitochondrial function in cell life and death II Cell Biochem. Biophys., 39(3), 279-292.

554. Shoshan-Barmatz V., Zalk R., Gincel D., Vardi N. (2004) Subcellular localization of

555. VDAC in mitochondria and ER in the cerebellum II Biochim. Biophys. Acta., 1657(2-3). 105-114.

556. Shrode L.D., Tapper H., Grinstein S. (1997) Role of intracellular pH in proliferation,transformation, and apoptosis 11 J. Bioenerg. Biomembr., 29(4), 393-399.

557. Siekevitz P. (1959) Ciba Foundation Symposium on the regulation of cellmetabolism II J. & A. Churchill. Ltd, London, 17-49.

558. Silver B.J. (1992) Platelet-derived growth factor in human malignancy // Biofactors.,3(4), 217-227.

559. Simbeni R., Paltauf F., Daum G. (1990) Intramitochondrial transfer of phospholipidsin the yeast, Saccharomyces cerevisiae // J. Biol. Chem., 265(1), 281-285.

560. Sjostrand F.S. (1978) The structure of mitochondrial membranes II J. Ultrastruct.1. Res., 64, 217-245.

561. Sobol S., Conrad A., Keller M., Flebisch S. (1992) The role of the mitochondriialcreatine kinase system for myocardial function during ischemia and reperfusion 11 Biochim. Biophys. Acta, 1100, 27-32.

562. Soboll S., Scholz R., Heidt H.W. (1978) Subcellular metabolite concentrations.

563. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver 11 Eur. J. Biochem., 87(2), 377-390.

564. Sonnemann J., Mutzel R. (1995) Cytosolic nucleoside diphosphate kinase associatedwith the translation apparatus may provide GTP for protein synthesis II Biochem. Biophys. Res. Commun. 209(2), 490-496.

565. Soric S., Belanger M.P., Askin N., Wittnich C. (2007) Impact of female sexhormones on liver tissue lactic acidosis during ischemia II Transplantation., 84(6), 763-770.

566. Sorscher S.M., Steeg P., Feramisco J.R., Buckmaster C., Boss G.R., Meinkoth J.1993) Microinjection of an nm23 specific antibody inhibits cell division in rat embryo fibroblasts 11 Biochem. Biophys. Res. Commun., 195(1), 336-345.

567. Speer O., Bäck N., Buerklen T., Brdiczka D., Koretsky A., Wallimann T., Eriksson

568. O. (2005) Octameric mitochondrial creatine kinase induces and stabilizes contact sites between the inner and outer membrane II Biochem. J. 385(Pt 2), 445-450.

569. Sperandio S„ de Belle I., Bredesen D.E. (2000) An alternative, nonapoptotic form ofprogrammed cell death 11 Proc. Natl. Acad. Sei. U. S. A., 97(26), 14376-14381.

570. Srere P.A. (1982) The structure of the mitochondrial inner membrane-matrixcompartment II Trends Biochem. Sei., 7(10), 375-378.

571. Srere P.A., Mattiasson B., Mosbach K. (1973) An immobilized three-enzyme system:a model for microenvironmental compartmentation in mitochondria II Proc. Natl. Acad. Sei. U. S. A., 70(9), 2534-2538.

572. Srere P.A., Mosbach K. (1974) Metabolic compartmentation: symbiotic, organellar,multienzymic, and microenvironmental 11 Annu. Rev. Microbiol., 28(0). 61-83.

573. Stahl J.A. Leone A., Rosengard A.M., Porter L., King C.R., Steeg P.S. (1991)1.entification of a second human nm23 gene, nm23-H2 H Cancer Res., 51(1), 445-449.

574. Stankiewicz A.R., Lachapelle G., Foo C.P., Radicioni S.M., Mosser D.D. (2005)

575. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation I I J. Biol. Chem., 280(46), 38729-38739.

576. Steeg P.S, Bevilacqua G, Kopper L, Thorgeirsson U.P, Talmadge J.E, Liotta L.A,

577. Sobel M.E. (1988) Evidence for a novel gene associated with low tumor metastatic potential U J. Natl. Cancer Inst., 80(3), 200-204.

578. Strelkov S.V, Perisic O, Webb P.A., Williams R.L. (1995) The 1.9 A crystalstructure of a nucleoside diphosphate kinase complex with adenosine 3',5'-cyclic monophosphate: evidence for competitive inhibition // J. Mol. Biol, 249(3), 665674.

579. Struglics A, Hakansson G. (1999) Purification of a serine and histidinephosphorylated mitochondrial nucleoside diphosphate kinase from Pisum sativum II Eur. J. Biochem. 262(3), 765-773.

580. Szabo I, De Pinto V, Zoratti M. (1993) The mitochondrial permeability transitionpore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel II FEBS Lett, 330(2), 206-210.

581. Szabo I, Zoratti M. (1993) The mitochondrial permeability transition pore maycomprise VDAC molecules. I. Binary structure and voltage dependence of the pore 11 FEBS Lett, 330(2), 201-205.

582. Takahashi T. (1997) Significant role of electrostatic interactions for stabilization ofprotein assemblies // Adv. Biophys, 34, 41-54.

583. Tepper A.D, Dammann H. Bominaar A.A, Veron M. (1994) Investigation of theactive site and the conformational stability of nucleoside diphosphate kinase by site-directed mutagenesis I/ J. Biol. Chem, 269(51), 32175-32180.

584. Terada K, Ueda I, Ohtsuka K„ Oda T, Ichiyama A, Mori M. (1996) Therequirement of heat shock cognate 70 protein for mitochondrial import varies among precursor proteins and depends on precursor length II Mol. Cell. Biol, 16(11), 6103-6109.

585. Timmons L, Hcrsperger E, Woodhouse E, Xu J. Liu L.Z, Shearn A. (1993) Theexpression of the Drosophila awd gene during normal development and in neoplastic brain tumors caused by Igl mutations II Dev. Biol, 158(2), 364-379.

586. Timmons L, Shearn A. (2000) Role of AWD/nucleoside diphosphate kinase in

587. Drosophila development I I J. Bioenerg. Biomembr, 32(3), 293-300.

588. Tokarska-Sch 1 attner M., Boissan M, Munier A, Borot C, Mailleau C, Speer O,

589. Schlattner U, Lacombe M.L. (2008) The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration II J. Biol. Chem, Epub ahead of print.

590. Traut T.W. (1994) Physiological concentrations of purines and pyrimidines II Mol.

591. Cell Biochem, 140(1), 1-22.

592. Troll H„ Winckler T, Lascu I, Miiller N, Saurin W„ Veron M, Mutzel R. (1993)

593. Separate nuclear genes encode cytosolic and mitochondrial nucleoside diphosphate kinase in Dictyostelium discoideum // J. Biol. Chem, 268(34), 25469-25475.

594. Tsuiki H, Nitta M, Furuya A, Hanai N, Fujiwara T, Inagaki M, Kochi M., Ushio

595. Y, Saya H, Nakamura H. (1999) A novel human nucleoside diphosphate (NDP) kinase, Nm23-H6, localizes in mitochondria and affects cytokinesis II J. Cell Biochem, 76(2), 254-269.

596. Tsujimoto Y, Shimizu S. (2000) VDAC regulation by the Bcl-2 family of proteins //

597. Cell Death Differ, 7(12), 1174-1181.

598. Tsujimoto Y, Shimizu S. (2002) The voltage-dependent anion channel: an essentialplayer in apoptosis II Biochimie, 84(2-3), 187-193.

599. Tsumoto K, Ejima D, Scnczuk A.M., Kita Y, Arakawa T. (2007) Effects of salts onprotein-surface interactions: applications for column chromatography II J. Pharm. Sci. 96(7). 1677-1690.

600. Vanhaesebroeck B, Alessi D.R. (2000) The P13K-PDK1 connection: more than justa road to PKBII Biochem. J, 346 Pt 3, 561-576.

601. Veech R.L. Lawson J.W., Cornell N.W., Krebs H.A. (1979) Cytosolicphosphorylation potential // J. Biol. Chem., 254(14). 6538-6547.

602. Veloso D., Guynn R.W., Oskarsson M., Veech R.L. (1973) The concentrations offree and bound magnesium in rat tissues. Relative constancy of free Mg2+ concentrations // J. Biol. Chem., 248(13), 4811-4819.

603. Ventura-Clapier R., Kuznetsov A., Veksler V., Boehm E., Anflous K. (1998)

604. Functional coupling of creatine kinases in muscles: species and tissue specificity il Mol. Cell Biochem., 184(1-2), 231-247.

605. Venturelli D., Martinez R., Melotti P., Casella I., Peschle C., Cucco C., Spampinato

606. Verhagen A.M. Ekert P.G., Pakusch M., Silke J., Connolly L.M. Reid G.E., Moritz

607. R.L., Simpson R.J., Vaux D.L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins I I Cell., 102(1), 43-53.

608. Vial C., Godinot C., Gautheron D. (1972) Membranes: creatine kinase (E.C.2.7.3.2.)in pig heart mitochondria. Properties and role in phosphate potential regulation Il Biochimie., 54(7), 843-852.

609. Vidal G., Durand T., Canioni P., Gallis J.L. (1998) Cytosolic pH regulation inperfused rat liver: role of intracellular bicarbonate production II Biochim. Biophys. Acta., 1425(1), 224-234.

610. Vieira H.L., Haouzi D., El Hamel C., Jacotot E., Belzacq A.S., Brenner C., Kroemer

611. G. (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator II Cell Death. Differ., 7(12), 1146-1154.

612. Viitanen P.V., Geiger P.J., Erickson-Viitanen S., Bessraan S.P. (1984) Evidence forfunctional hexokinase compartmentation in rat skeletal muscle mitochondria // J. Biol. Chera., 259(15), 9679-9686.

613. Vogelstein B, Lane D, Levine AJ. (2000) Surfing the p53 network, Nature.,408(6810), 307-10.

614. Vousden K.H. (2000)p53: death star II Cell., 103(5), 691-694.

615. Vyssokikli M.Y., Brdiczka D. (2003) The function of complexes between the outermitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis // Acta Biochim. Pol., 50(2), 389404.

616. Waddell W.J., Bates R.G. (1969) Intracellular pHU Physiol. Rev., 49(2), 285-329.

617. Wadhwa R., Yaguchi T., Hasan M.K., Mitsui Y., Reddel R.R., Kaul S.C. (2002)

618. Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein II Exp. Cell Res., 274(2), 246-253.

619. Wagner P.D., Steeg P.S. Vu N.D. (1997) Two-component kinase-like activity ofnm23 correlates with its motility-suppressing activity II Proc. Natl. Acad. Sci. U. S. A., 94(17), 9000-9005.

620. Wagner P.D., Vu N.D. (1995) Phosphorylation of ATP-citrate lyase by nucleosidediphosphate kinase 11 J. Biol. Chem., 270(37), 21758-21764.

621. Wagner P.D., Vu N.D. (2000) Histidine to aspartate phosphotransferase activity ofnm23 proteins: phosphorylation of aldolase C on Asp-319 II Biochem. J., 346 Pt 3, 623-630.

622. Walinder O. Zetterqvist O., Engstrom L. (1969) Intermediary phosphorylation ofbovine liver nucleoside diphosphate kinase. Studies with a rapid mixing technique II J. Biol. Chem., 244(3), 1060-1064.

623. Watts D.C. (1973) Creatine kinase (Adenosine 5'-triphosphate-creatinephosphotransferase) (edited by Boyer P.) // The Enzymes, 8, 384 455.

624. Webb P.A. Perisic O., Mendola C.E., Backer J.M., Williams R.L. (1995) The crystalstructure of a human nucleoside diphosphate kinase, NM23-H2 II J. Mol. Biol., 251(4). 574-587.

625. Weiler U., Riesinger I., Knoll G., Brdiczka D. (1985) The regulation ofmitochondrial-bound hexokinases in the liver II Biochem. Med., 33(2), 223-235.

626. Weiss JN, Korge P. (2001) The cytoplasm: no longer a well-mixed bag, Circ Res.,89(2), 108-10.

627. Wicker U., Biicheler K., Gellerich F.N., Wagner M., Kapischke M., Brdiczka D.1993) Effect of macromolecides on the structure of the mitochondrial intermembrane space and the regulation of hexokinase II Biochim. Biophys. Acta., 1142(3), 228-239.

628. Wieland T., Jakobs K.H. (1992) Evidence for nucleoside diphosphokinase-dependentchanneling of guanosine 5'-(gamma-thio)triphosphate to guanine nucleotide-bindingproteins II Mol. Pharmacol., 42(5), 731-735.

629. Wierstra I., Alvcs J. (2008) The c-myc promoter: still MysterY and challenge II Adv.1. Cancer Res., 99, 113-333.

630. Williams R.L., Oren D.A., Muñoz-Dorado J., Inouye S., Inouye M., Arnold E. (1993)

631. Crystal structure of Myxococcus xanthus nucleoside diphosphate kinase and its interaction with a nucleotide substrate at 2.0 A resolution II J. Mol Biol., 234(4), 1230-1247.

632. Wilson J.E. (1995) Hexokinases I I Rev. Physiol. Biochem. Pharmacol., 126, 65-198.

633. Wilson J.E. (2003) Isozymes of mammalian hexokinase: structure, subcellularlocalization and metabolic function II J. Exp. Biol., 206(Pt 12), 2049-2057.

634. Wray S.K., Gilbert B.E., Knight V. (1985) Effect of ribavirin triphosphate on primergeneration and elongation during influenza virus transcription in vitro II Antiviral Res., 5(1), 39-48.

635. Wrogemann K., Nylen E.G., Adamson I., Pande S.V. (1985) Functional studies on insitu-like mitochondria isolated in the presence of polyvinyl pyrrolidone II Biochim. Biophys. Acta., 806(1), 1-8.

636. Wyllie A.H., Golstein P. (2001) More than one way to go II Proc. Natl. Acad. Sci. U.1. S. A., 98(1), 11-13.

637. Wyllie A.H., Kerr J.F., Currie A.R. (1980) Cell death: the significance of apoptosis II1.t. Rev. Cytol., 68, 251-306.

638. Xu J., Liu L.Z., Deng X.F., Timmons L., Hersperger E., Steeg P.S., Veron M.,

639. Shearn A. (1996) The enzymatic activity of Drosophila AWD/NDP kinase is necessary but not sufficient for its biological function II Dev. Biol., 177(2), 544557.

640. Xu L., Murphy J., Otero A.S. (1996) Participation of nucleoside-diphosphate kinasein muscarinic Kf channel activation does not involve GTP formation 11 J. Biol. Chem., 271(35), 21120-21125. (

641. Xu Y.W., Moréra S., .Tanin J., Cherfíls J. (1997) AIF3 mimics the transition state ofprotein phosphorylation in the crystal structure of nucleoside diphosphate kinase andMgADP II Proc. Natl. Acad. Sci. U. S. A, 94(8), 3579-3583.

642. Yang J„ Liu X., Bhalla K., Kim C.N., Ibrado A.M., Cai J., Peng T.I., Jones D.P.,

643. Wang X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked II Science., 275(5303), 1129-1132.

644. Yee KS, Vousden KH. (2005) Complicating the complexity of p53, Carcinogenesis,26(8), 1317-22.

645. Yehezkel G„ Hadad N. Zaid H, Sivan S, Shoshan-Barmatz V. (2006) Nucleotidebinding sites in the voltage-dependent anion channel: characterization and localization II J. Biol. Chem. 281(9), 5938-5946.

646. Yin X.M, Oltvai Z.N., Veis-Novack D.J, Linette G.P, Korsmeyer S.J. (1994) Bcl-2gene family and the regulation of programmed cell death II Cold Spring Harb. Symp. Quant. Biol, 59, 387-393.

647. Yokoyama-Sato K, Akimoto H. Imai N, Ishibashi S. (1987) Possible processing ofmitochondria-bindable hexokinase to the nonbindable form by a lysosomal protease in rat liver II Arch. Biochem. Biophys, 257, 56-62.

648. Yoon J.H., Singh P, Lee D.H. Qiu J, Cai S, O'Connor T.R, Chen Y, Shen B,

649. Pfeifer G.P. (2005) Characterization of the 3' — > 5' exonuclease activity found in human nucleoside diphosphate kinase 1 (NDK1) and several of its homologues II Biochemistry, 44(48), 15774-15786.

650. Yu W.H, Wolfgang W, Forte M. (1995) Subcellidar localization of human voltagedependent anion channel isoforms II J. Biol. Chem., 270(23), 13998-14006.

651. Zaid H., Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V. (2005) Thevoltage-dependent anion channel-1 modulates apoptotic cell death II Cell Death Differ, 12(7). 751-760.

652. Zalman L.S, Nikaido H, Kagawa Y. (1980) Mitochondrial outer membranecontains a protein producing nonspecific diffusion channels II J. Biol Chem, 255(5), 1771-1774.554.555.556.557.558.559.560561562563564565

653. Zamzami N, Hirsch T, Dallaporta B, Petit P.X, Kroemer G. (1997) Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis H J. Bioenerg. Biomembr. 29(2), 185-193.

654. Zhang J, Fukui Т. Ichikawa A. (1995) A third type of nucleoside diphosphate kinase from spinach leaves: purification, characterization and amino-acid sequence II Biochim. Biophys. Acta. 1248(1). 19-26.

655. Zhao T, Zhang H, Guo Y, Zhang Q, Hua G„ Lu PI, Hou Q„ Liu H, Fan Z. (2007) Granzyme К cleaves the nucleosome assembly protein SET to induce single-stranded DNA nicks of target cells 11 Cell Death Differ, 14(3), 489-499.

656. Zhou F.Q. (2005) Pyruvate in the correction of intracellular acidosis: a metabolic basis as a novel superior buffer II Am. J. Nephrol, 25(1), 55-63.

657. Zhou Q, Yang X. Zhu D, Ma L, Zhu W, Sun Z, Yang Q. (2007) Double mutant P96S/S120G of Nm23-Hl abrogates its NDPK activity and motility-suppressive ability 11 Biochem. Biophys. Res. Coinmun, 356(2), 348-353.

658. Ziegelhoffer-Mihalovicova B, Kolar F. Jacob W, Tribulova N. Uhrik B, Ziegelhoffer A. (1998) Modulation of mitochondrial contact sites formation in immature rat heart II Gen Physiol. Biophys, 17(4), 385-390.

659. Zimmermann S. Baumann A. Jaekel K, Marbach I, Engelberg D, Frohnmeyer H. (1999) UV-responsive genes of arabidopsis revealed by similarity to the Gcn4-mediated UVresponse in yeast II J. Biol. Chem, 274(24), 17017-17024.

660. Zoratti M, Szabo I. (1995) The mitochondrial permeability transition II Biochim. Biophys. Acta. 1241(2). 139-176.

661. Гороновский И.Т, Назаренко Ю.П. Некряч Е.Ф. (1962) Краткий справочник по химии // Изд-во АН УССР, Киев.

662. Ленинджер А. (1974) Биохимия // Мир, Москва.

663. Липская Т.Ю. (1989) Физико-химические свойства и регуляция активности митохондриальной креатинкиназы. Дисс. насоиск.уч. степ, доктора биол. наук IIМ.

664. Липская Т.Ю. (2001) Физиологическая роль креатинкиназной системы:эволюция представлений // Биохимия, 66(2), 149-166.

665. Липская Т.Ю., Плакида К.Н. (2003) В митохондриях печени крысы всянуклеозиддифосфаткиназа наружного компартмента локализована на внешней поверхности наружной мембраны // Биохимия, Москва, 68, 1136 — 1144.

666. Липская Т.Ю., Савченко М.С. (2003) Ещё раз о функциональном сопряжениимитохондриалъной креатинкиназы и транслоказы аденшовых нуклеотидов //Биохимия, 68. 82-95.

667. Липская Т.Ю., Темпл В.Д., Белоусова Л.В. Молокова Е.В., Рыбина И.В. (1980)

668. Взаимодействие между креатинкиназой митохондрий сердца и окислительным фосфоршированием // Биохимия, 45, 1347-1351.

669. Практикум по биохимии: Учеб. пособие (под ред. Северина С.Е., Соловьевой

670. Г.А.) (1989) // М., Изд-во МГУ.1. Благодарности

671. Автор выражает глубокую признательность научному руководителю д.б.н. Татьяне Юрьевне Липской за предложенную тему, время и внимание, уделённые работе автора.е/