Бесплатный автореферат и диссертация по биологии на тему
Инициация трансляции эукариотических мРНК на эффективных лидерах
ВАК РФ 03.01.03, Молекулярная биология

Автореферат диссертации по теме "Инициация трансляции эукариотических мРНК на эффективных лидерах"

На правах рукописи

Николай Эдуардович Широких

ИНИЦИАЦИЯ ТРАНСЛЯЦИИ ЭУКАРИОТИЧЕСКИХ мРНК НА ЭФФЕКТИВНЫХ ЛИДЕРАХ: ЗАВИСИМОСТЬ ОТ ФАКТОРОВ ИНИЦИАЦИИ И СТРУКТУРЫ ЛИДЕРА

03.01.03 - Молекулярная биология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

-2 пс

Н 2010

Москва-2010

004615687

Работа выполнена в Институте белка РАН

Научный руководитель:

доктор биологических наук, профессор,

академик Спирин Александр Сергеевич

Официальные оппоненты:

доктор химических наук, профессор,

член-корреспондент РАН Донцова Ольга Анатольевна

кандидат биологических наук,

старший научный сотрудник Дмитриев Сергей Евгеньевич

Ведущая организация: Институт биоорганической химии

им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН

Защита состоится «17» декабря 2010 года в _Н часов на заседании совета Д 501.001.76 по защите докторских и кандидатских диссертаций при Московском государственном университете имени М.В. Ломоносова по адресу: 119992, Москва, ГСП-2, Ленинские горы, МГУ, НИИ физико-химической биологии имени А.Н. Белозерского, Лабораторный корпус «А», аудитория 536.

С диссертацией можно ознакомиться в библиотеке Биологического факультета МГУ им. М.В. Ломоносова

Автореферат разослан «15» ноября 2010 года

Ученый секретарь диссертационного <

кандидат биологических наук \С>чсг> —' И.А. Крашенинников

диссертационного совета, к л О

► «¡^ЛЛ^1-^ *

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Экспрессия генов у эукариот в значительной степени регулируется после транскрипции ДНК. Многие регуляторные механизмы экспрессии генов эукариот сфокусированы на этапе биосинтеза белка и более всего - на стадии инициации трансляции.

Современная модель инициации трансляции у эукариот подразумевает реализацию двух разных механизмов. В случае кэпированной клеточной мРНК, нахождение правильного стартового кодона происходит благодаря механизму сканирования. Сканирование мРНК рибосомами было постулировано Мэрилин Козак в 1978 году. Основой этого механизма является присоединение рибосом к 5'-кэп-структуре мРНК через белки инициации трансляции, и их последующее АТФ-зависимое перемещение по 5'-нетранслируемой области мРНК до момента узнавания стартового кодона.

В другом случае, на мРНК ряда вирусов, узнавание стартового кодона мРНК рибосомой диктуется специальным пространственным модулем мРНК -сайтом внутренней посадки рибосом. Инициация трансляции на сайтах внутренней посадки рибосом впервые была описана в 1988 году для мРНК вируса энцефаломиокардита группой Виммера, и для полиовируса - группой Зоненберга. Сайт внутренней посадки рибосом специфически связывает белковые факторы инициации трансляции или рибосомы в строго определенном месте мРНК. Благодаря этому механизму, рибосома оказывается в непосредственной близости к инициаторному кодону и, как правило, не нуждается в продолжительном сканировании мРНК.

Некоторые лидерные последовательности мРНК известны своей способностью обеспечивать эффективную кэп-независимую инициацию трансляции. Как было показано ранее, 5'-поли(А) лидерная последовательность, характерная для мРНК осповирусов, и омега-последовательность 5'-нетранслируемой области РЖ вируса табачной мозаики (ВТМ) могут усиливать трансляцию чужеродных кодирующих частей РНК в разных клетках и системах бесклеточной трансляции, не зависимо от наличия кэп-структуры. В то же время, обе этих лидерных последовательности не содержат явных сайтов внутренней посадки рибосом. Трансляционные свойства 5'-поли(А)- и омега-лидеров плохо описываются имеющейся моделью эукариотической инициации трансляции и могут быть объяснены реализацией иного механизма инициации трансляции на них.

Цель и задачи исследования. Основной целью работы было получение новых знаний о механизмах инициации трансляции у эукариот. Главной задачей работы было нахождение ответа на вопрос: какой механизм обеспечивает эффективную кэп-независимую инициацию трансляции на 5'-поли(А)- и омега-лидерах мРНК?

Чтобы выяснить механизм инициации трансляции на 5'-поли(А)- и омега-лидерах, мы исследовали зависимость эффективности инициации трансляции на мРНК, содержавших эти последовательности, от набора

факторов инициации трансляции в системе, собранной из отдельных очищенных компонентов. Мы применили методику ингибирования удлинения праймера мРНК-рибосомными комплексами (тупринтинг) - подход, ранее хорошо зарекомендовавший себя для решения подобных задач.

Вторичная и третичная структуры лидерной части мРНК могут оказывать существенное влияние на эффективность инициации трансляции. Структура полирибонуклеотидов типа (А)„ изучалась ранее, и было показано, что в физиологических условиях поли(А)-РНК имеет тенденцию формировать нестабильную одноцепочечную спираль. Структура омега-РНК не была изучена ранее. Большинство исследователей предполагало, что омега-РНК лишена вторичной и третичной структуры, и что именно неструктурированность является первопричиной трансляционной эффективности омега-лидера. Мы исследовали структурную организацию омега-РНК в растворе при физиологических условиях с помощью методов скоростного ультрацентрифугирования, теплового плавления, ядерного магнитного резонанса и химического и энзиматического тестирования структур РНК.

Научная новизна работы. Нами создан усовершенствованный вариант метода тупринтинга, позволяющий обнаруживать и идентифицировать мРНК-рибосомные комплексы на всех стадиях трансляции (инициации, элонгации и терминации), а также быстро и точно подсчитывать количество обнаруженных мРНК-рибосомных комплексов и эффективность соответствующих стадий трансляции. В методе для мечения продуктов реакции обратной транскрипции используются флуоресцентные группы, а для их разделения применяется капиллярный электрофорез. Усовершенствованный метод тупринтинга имеет уникальные преимущества перед обычным вариантом метода с использованием радиоактивных изотопов: благодаря возможности применять флуорофоры с разными спектральными характеристиками, метод позволяет исследовать несколько мест сборки мРНК-рибосомных комплексов в одной и той же реакционной смеси независимо друг от друга.

Методом тупринтинга мы обнаружили, что как лидерная поли(А)-последовательность, так и омега-лидер мРНК способны обеспечивать эффективную инициацию трансляции без участия белков АТФ-зависимого сканирования е1Р4А, еШ4В и е№4Р. Как следует из полученных результатов, инициация трансляции на этих мРНК протекает по особому механизму, исключающему энергозависимое сканирование. Обнаруженный нами механизм инициации трансляции имеет значительные отличия как от канонической инициации трансляции посредством 5'-концевой кэп-структуры мРНК и последующего АТФ-зависимого сканирования, так и от инициации трансляции на сайтах внутренней посадки рибосом. По-видимому, целесообразно выделение такого механизма инициации трансляции как отдельностоящего, третьего пути в существующей модели инициации трансляции у эукариот.

Мы обнаружили, что эффективная инициация трансляции на мРНК с поли(А)-лидером оказалась возможной и без самого большого мультисубъединичного белка инициации трансляции - eIF3. С помощью метода тупринтинга мы показали, что после стадии формирования 48S комплекса завершение инициации трансляции, включающее в себя объединение рибосомных субъединиц с образованием 80S инициаторного комплекса, способного к элонгации, может происходить без участия белка eIF3.

Методами скоростного ультрацентрифугирования и теплового плавления мы показали, что омега-РНК ВТМ имеет коэффициент седиментации компактно свернутой РНК и кооперативно плавится при высокой температуре. Методами химического и энзиматического тестирования, а также методом ядерного магнитного резонанса мы обнаружили, что центральная (САА)„-содержащая часть омега-РНК не модифицируется агентами, действующими на одноцепочечную РНК, а вся структура омега-РНК формирует компактную укладку на основе неканонических взаимодействий нуклеотидов.

Апробация работы. Материалы диссертации были представлены на российских и международных конференциях, а также в сборниках отчетов: «Конференция, посвященная 40-летию Института белка: Биосинтез, структура и функция белка» (Институт белка РАН, Пущино, Россия; 2007 год), «8-я Международная Энгельгардтовская конференция: РНК-белковые взаимодействия» («Буран», Сергиев-Посад, Россия; 2006 год); симпозиум «Пикорнавирусы: открывая большое в малом» (МГУ, Москва, Россия; 2009 год), «Ежегодная научная конференция Института белка» (Институт белка РАН, Пущино, Россия; 2005-2006, 2008-2010 годы), отчетные конференции по программе РАН «Молекулярная и клеточная биология» (Институт молекулярной биологии им. В.А. Энгельгардта РАН, Москва, Россия; 2008, 2010 годы), «Итоговые аннотированные отчеты» (РФФИ, Москва, Россия; 2009 год), «Избранные научные отчеты 2008-2009» (Фонд содействия отечественной науке РАН, Москва, Россия; 2010 год), «Meeting on Mechanisms and Control of Posttranscriptional Gene Expression» (New York Academy of Sciences, New York, New York, США; 2005 год), «Translational Control Meeting» (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, США; 2004, 2008, 2010 годы), «ЕМВО Conference on Protein Synthesis and Translational Control» (EMBL, Heidelberg, Германия; 2007,2009 годы).

Публикации. По материалам диссертации опубликовано 4 статьи в рецензируемых журналах.

Структура диссертации. Диссертационная работа изложена на J_85 страницах машинописного текста и состоит из следующих разделов: введение, обзор литературы, материалы исследования, методы исследования, результаты и обсуждение результатов работы, резюме результатов работы, выводы и список цитированной литературы. Работа содержит 45 рисунков и 5 таблиц. Библиографический указатель включает 517 цитированных работ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Часть 1. Инициация трансляции на мРНК с поли(А)-лидером -5'-нетранслируемой последовательностью мРНК осповирусов

1.1 мРНК с поли(А)-лидерами эффективно транслируются в зараженной осповирусами клетке и in vitro

Несмотря на то, что мРНК осповирусов никогда не находятся в ядре клетки хозяина, после транскрипции все они содержат 5'-концевую кэп-структуру и поли(А)-последовательность на 3'-конце длиной в несколько сотен нуклеотидов, как обычные клеточные мРНК. Во время инициации транскрипции промежуточных и поздних генов, РНК-полимераза осповирусов узнает последовательность ТАААТ в промоторах геномной ДНК и добавляет в среднем около 30 адениловых нуклеотидов с 5'-конца синтезируемой мРНК. Механизм необычен: ДНК-зависимая РНК-полимераза в этом случае синтезирует часть цепи РНК de novo, независимо от последовательности нуклеотидов в матричной цепи. Весь геном осповакцины кодирует приблизительно 35 мРНК, 5'-нетранслируемые области которых содержат только поли(А)-последовательности, которые возникают котранскрипционно при помощи нематричного синтеза. Таким образом, поли(А)-последовательности могут рассматриваться как универсальные лидеры для осповирусных мРНК. В то же время, данных относительно возможных функций поли(А)-лидеров в составе мРНК осповирусов в литературных источниках не имеется.

Осповирусы подавляют синтез белка на клеточных мРНК с самого начала развития инфекции, но особенно сильно на поздних стадиях своего развития. Подавление трансляции клеточных мРНК происходит без их деградации на фоне интенсивного синтеза белков осповирусов. Было показано, что синтез белка на осповирусных мРНК менее чувствителен к добавлению в реакционную смесь универсального ингибитора трансляции -полирибоадениловой кислоты, по сравнению с трансляцией клеточных мРНК. Предположительно, одним из факторов, подавляющих синтез белка на мРНК клетки-хозяина, могут быть относительно короткие поли(А)-содержащие РНК, входящие в состав вириона и синтезируемые также при развитии вируса в клетке. При этом такие РНК селективно не ингибируют синтез белка на осповирусных мРНК. Существуют данные, свидетельствующие о том, что ингибирование белкового синтеза в клетке хозяина осуществляется осповирусами без уменьшения активности лимитирующих факторов инициации трансляции, в отличие от стратегии развития многих других вирусов. В составе осповирусных мРНК не известно наличие сайтов внутренней посадки рибосом (= Internal Ribosome Entry Site, IRES). Возникает противоречие: если мРНК осповирусов имеют такую же организацию, как и клеточные мРНК (содержат кэп-структуру и 3'-поли(А) последовательность), то каким образом происходит выборочное усиление трансляции вирусных мРНК и

4

подавление трансляции клеточных мРНК? Единственным возможным объяснением могло бы служить использование осповирусами альтернативного механизма инициации трансляции, отличного от кэп- и IRES-зависимых путей инициации. Тот факт, что в составе некоторых мРНК осповирусов 5'-нетранслируемые области при помощи специального механизма целиком замещены на поли(А)-последовательности, может свидетельствовать о вкладе лидерных поли(А)-последовательностей в обеспечение эффективной трансляции вирусных мРНК.

Чтобы проверить предположение о функции поли(А)-лидеров как элементов, повышающих эффективность трансляции мРНК, ранее в нашей лаборатории исследовали свойства таких мРНК в бесклеточных системах трансляции (А.Т. Gudkov et al., Biotechnology and Bioengineering, 2005, 91:468473). Были обнаружены следующие факты: (1) поли(А)-лидеры обеспечивают эффективную трансляцию некэпированных мРНК, (2) поли(А)-лидеры обеспечивают эффективную трансляцию мРНК при высокой ее концентрации в реакционной смеси и (3) эффективность трансляции на мРНК с поли(А)-лидером прямо зависит от длины 5'-поли(А) последовательности. Свойства усилителя трансляции в этом случае нельзя списать только на предполагаемую неструктурированную природу поли(А)-последовательностей: в таких же экспериментах мРНК с истинно неструктурированными 5'-последовательностями, такими как поли(и), не проявили трансляционных свойств, характерных для лидерных поли(А)-последовательностей. Поэтому нами было предпринято детальное исследование механизма инициации трансляции на мРНК с поли(А)-лидерами.

1.2 Поли(А)-лидеры обеспечивают эффективную инициацию трансляции мРНК без факторов инициации группы eIF4 и мультисубъединичного белка eIF3

Чтобы выяснить детали механизма инициации трансляции на мРНК с поли(А)-лидером, мы исследовали эффективность инициации трансляции на этой мРНК при разных наборах факторов инициации методом ингибирования удлинения праймера. В качестве контрольного объекта мы использовали природную кэпированную мРНК бета-глобина кролика.

В наших экспериментах рекомбинантная мРНК с поли(А)-лидером содержала GA25C последовательность как 5'-нетранслируемук> область, после которой следовало 592 нуклеотида кодирующей части люциферазы американского светлячка (Photinus pyralis). Общая длина исследуемой мРНК была близка к таковой у цитоплазматической мРНК бета-глобина кролика (589 нуклеотидов плюс З'-поли(А) последовательность переменной длины). Длина 5'-поли(А) участка в 25 нуклеотидов в составе рекомбинантной мРНК оказалась достаточной для проявления им свойств усилителя трансляции и примерно соответствует длинам 5'-поли(А) последовательностей осповирусов. Необходимо отметить, что транскрибируемая при помощи Т7 РНК-полимеразы

LU О

of s

а б

I ПОЛНЫЙ НАБОР ПОЛНЫЙ НАБОР

Л___L *_JL

и

-1А

,1

|

I jL

■4А

■4F

¡1

I 1

-4F, -4А

-4F, -4А, -4В

-В, -4F

1 1

-3, -4А, -4F

-1А

Л. A..

-2 ik.

-4А

ft, . . . r |l«.

-4F

fk. , , . jil.

-4F, -4A

Ik . . .jul..

-4F, -4A, -4В

Ml

-3, -4F

liu

-3, -4A, -4F

0k

3, -4А, -4В, -4F .„ -3, -4А, -4В, -4F

. .1. - , , /Л Л------ -

5'конец.....р-глобин 5'НТО......AUG... 5'конец........А25 5'НТО.........AUG...

Последовательность мРНК, нт

Рис. 1. Образование инициаторных 48S комплексов на природной кэпированной мРНК белка бета-глобина кролика (а) и рекомбинантной некэпированной мРНК с поли(А)-лидером, кодирующей люциферазу (б), обнаруженное методом тупринтинга. Верхние графики показывают результат, полученный, когда в реакционных смесях присутствовал полный набор факторов инициации трансляции: elFl, elFIA, elF2, elF3, elF4A, elF4B и elF4F. Ниже расположенные графики - результаты, когда один или несколько факторов инициации трансляции не были добавлены в реакционные смеси. Показанные графики нормированы по общей флуоресценции каждого из образцов и выровнены с последовательностями соответствующих мРНК (показаны внизу графиков).

рекомбинантная мРНК с поли(А)-лидером имела гетерогенную длину, проистекающую из эффекта «проскальзывания» РНК-полимеразы на гомополимерных последовательностях. Обнаруженная микрогетерогенность мРНК с поли(А)-лидером не влияла на результаты, получаемые при реакции ингибирования удлинения праймера.

48Б инициаторный комплекс собирался на кэпированной мРНК бета-глобина в присутствии полного набора факторов инициации (еШ, е1ПА, е1Р2, еШЗ, е1Р4А, е№4В, е1Р4Р) на правильном стартовом кодоне с высоким выходом (Рис. 1, а). Примерно 30% мРНК образовывали инициаторные комплексы в использованных условиях реакционной смеси (Табл. 1). Как можно было ожидать, исключение любого из перечисленных факторов, кроме фактора инициации еПЧ, приводило к практически полному блокированию инициации трансляции на бета-глобиновой мРНК. Без е1Р1 выход 48Б комплекса уменьшался приблизительно вдвое, и появлялись дополнительные сигналы остановки обратной транскриптазы в неспецифической зоне 5'-нетранслируемой области бета-глобиновой мРНК. Эти данные в целом хорошо соответствуют данным, полученным ранее для кэпированной бета-глобиновой мРНК в других группах.

Табл. 1. Удельный выход инициаторных 48Б комплексов (в процентах от всей мРНК), собранных на природной кэпированной мРНК белка бета-глобина кролика (мРНК бета-глобина) и рекомбинантной некэпированной мРНК с поли(А)-лидером (А25-Ьис мРНК), кодирующей люциферазу. Полный набор факторов инициации трансляции включал белки е1Р1, е1Р1А, е!Р2, е)РЗ, е1Р4А, е1Р4В и е1Р4Р (отмечен как «Все»). «Н/Д»-нет данных.

Набор факторов Зоны электрофореграмм реакции тупринтинга

инициации мРНК бета-глобина А25-Ц|СМРНК

трансляции, 5' конец Неспецифическая Аий 5' конец Неспецифическая диб

Все 65 ±3 5 ±1 30 ±3 64 ±4 6 ±3 30 ±4

-1 66 +3 16 ±3 18 ±3 91 ±3 5 ±3 4 ±5

-1А 93 ±2 2+2 5 ±2 90 ±4 4 ±2 6+3

-1, -1А 87 ±2 5 ±2 6 ±3 93 ±3 4 ±3 3+2

-2 92 ±3 5 ±2 3 ±2 95 +2 3 ±2 2+1

-4А 92 ±3 4 ±2 4 ±2 77 ±5 3 ±3 20 ±6

-4Р 92 ±2 4 ±3 4+2 77 ±5 4 ±2 19 +5

-4А, -4Р 93 ±2 4+2 3 ±2 78 ±4 3 ±2 19 ±5

-4А, -4 В, -4Р 92 ±3 4 ±2 4 ±2 81 ±3 3+1 16 ±5

-3, -4Р 93 ±2 4 ±2 3+2 80 ±3 3 ±2 17 ±4

-3, -4А, -4Р 93 ±2 3 ±2 4+2 80 ±3 2 ±2 18+6

-3, -4А, -4В, -4Р 94 ±2 3 ±3 3 ±2 80 ±4 3 ±1 17 ±5

Все, +РАВР н/д Н/д н/д 68 ±3 4 ±2 28 ±2

-4Р, +РАВР н/д н/д Н/Д 81 ±2 2 ±2 17 ±3

Иную зависимость от факторов инициации демонстрирует мРНК с некэпированным поли(А)-лидером (Рис. 1, б). В этом случае только фактор инициации еШ2 и факторы еПЧ и еНЧА оказались строго необходимыми для инициации трансляции. Факторы инициации е1Р4А, е№4В, еПЧР и самый большой белок инициации трансляции еШЗ оказались не обязательными для образования 48Б инициаторного комплекса на этой мРНК. В отсутствие любого из перечисленных факторов, и даже в отсутствие сразу всех этих факторов (еШЗ, еШ4А, е1Р4В, е1Е4Р), эффективность сборки 48Б комплекса на мРНК с поли(А)-лидером составляла более 55% от контрольных экспериментов с полным набором факторов инициации в реакционной смеси (Табл. 1).

Слабая зависимость инициации трансляции на мРНК с поли(А)-лидером от факторов АТФ-зависимого сканирования предполагает, что рибосомная субъединица связывается с поли(А)-последовательностью в случайных местах, и последующий поиск стартового кодона происходит за счет ненаправленной, энергонезависимой одномерной диффузии 408 субъединицы вдоль цепи лидера. Это также подтверждается данными, полученными в нашей лаборатории ранее: увеличение длины поли(А)-лидера с 5 до 25 адениловых остатков увеличивало эффективность трансляции мРНК с таким лидером. Увеличение вероятности инициации на мРНК может быть пропорционально увеличению длины лидерной последовательности только в случае связывания 40Б субъединицы в случайных местах лидера. Некоторое уменьшение выхода 48 Б комплекса в отсутствие факторов сканирования свидетельствует о том, что АТФ-зависимое сканирование может происходить на мРНК с поли(А)-лидером, дополнительно улучшая (убыстряя) нахождение инициаторного кодона.

Рис. 2. Влияние поли(А)-связывающего белка (РАВР) на эффективность образования инициаторных 48Б комплексов на рекомбинантной некэпированной мРНК с поли(А)-лидером, кодирующей люциферазу. Верхние два графика показывают результат, полученный, когда в реакционных смесях присутствовал полный набор факторов инициации трансляции: е1Р1, е1Р1А, е1Р2, е1РЗ, е1Р4А, е1Р4В и е1Р4Р. Нижние два графика - результаты, когда в реакционные смеси не был добавлен е1Р4Р. Добавление поли(А)-связывающего белка в реакционные смеси указано на графиках (+РАВР). Графики нормированы по общей флуоресценции каждого из образцов и выровнены с последовательностью А25-1-ис мРНК (показана внизу графиков).

ПОЛНЫЙ НАБОР |

£ К_ик^

о;

§ ПОЛНЫЙ НАБОР | к.___

0 „г

1

£ -4Р | РАВР

5'конец..............А25 5'НТО..............АиО..

Последовательность мРНК, нт

Таким образом, в основе эффективной трансляции мРНК с поли(А)-лидерами лежит особый механизм инициации трансляции на этой последовательности, а не комбинация ранее известных взаимодействий мРНК и белков. Очевидная идея о стимуляции трансляции мРНК поли(А)-лидерами посредством их кэп-независимого взаимодействия с eIF4F (или только eIF4G) через поли(А)-связывающий белок не подтверждается нашими экспериментами, где эффективная инициация трансляции происходила на некэпированных поли(А)-лидерах без поли(А)-связывающего белка (= Ро1у(А)-Binding Protein, РАВР) в реакционной смеси. Добавление избытка РАВР (20 молекул РАВР на 1 молекулу мРНК) в аналогичных условиях реакции не приводило к стимуляции формирования 48S инициаторных комплексов как в присутствии eIF4F, так и без него (Рис. 2); наоборот, имело место некоторое ингибирование инициации, что может быть следствием РНК-связывающих свойств РАВР.

Рис. 3. Влияние 60S рибосомных субъединиц на эффективность образования инициаторных 48S комплексов на рекомбинантной некэпированной мРНК с поли(А)-лидером, кодирующей люциферазу, в присутствии и без elF3. Базовый набор инициаторных факторов и субъединиц, использованный в реакционных смесях, указан на верхнем графике. На нижних графиках показаны результаты, когда факторы инициации трансляции и субъединицы рибосом были дополнительно введены в состав (+) или исключены из состава (-) реакционной смеси относительно базового набора факторов. Графики нормированы по общей флуоресценции каждого из образцов и выровнены с последовательностью А25- Luc м РНК. Цифрами над зоной комплекса указан удельный выход 48S инициаторных комплексов относительно количества мРНК в долях из ста.

Особо следует отметить обнаруженную возможность инициации трансляции на мРНК с поли(А)-лидером без фактора инициации eIF3: таких свойств не было обнаружено у других стимулирующих трансляцию лидерных последовательностей, не содержащих сайтов внутренней посадки рибосом. Этот результат свидетельствует о том, что мРНК с поли(А)-лидерами используют механизм инициации трансляции, не характерный для других гомо-и гетеронуклеотидных последовательностей. С другой стороны, в этом

elFs: 1,1А, 2, 3, 4А, 4В; 14% 40S

UJ 1%

0

п;" s ZI

х ai

1 -з

17%

—......

CL

0 £

1 +60S 18% л

5

JIIL.

'¿s 16%

Йк_

5'конец.............A25 5'HTO............AUG..

Последовательность мРНК, нт

случае одной из функций белка eIF3 может быть обеспечение эффективной инициации трансляции на обычных гетеронуклеотидных последовательностях. Одной из возможных функций eIF3 также может быть предотвращение неспецифического объединение рибосомных субъединиц. Мы проверили влияние очищенных 60S рибосомных субъединиц на эффективность формирования 48S комплексов в экспериментах, где eIF3 был исключен из реакционной смеси (Рис. 3). 40S и 60S субъединицы в этих экспериментах находились в реакционной смеси вместе с самого начала эксперимента. Эффективность сборки 48S комплексов на мРНК с поли(А)-лидерами в таких условиях не отличалась от экспериментов, где eIF3 был добавлен в реакционную смесь. Таким образом, инициация трансляции на поли(А)-лидерах без белка eIF3 может осуществляться в условиях, похожих на физиологические. Так же, как и независимость поли(А)-лидеров от белков сканирования (eIF4A, eIF4B, eIF4F), еШЗ-независимая инициация на поли(А)-последовательностях может быть основой трансляционных преимуществ мРНК осповирусов.

1.3 мРНК с поли (А)-лидерами обладают конкурентным преимуществом в трансляции по сравнению с обычными клеточными мРНК

Чтобы проверить возможные конкурентные преимущества мРНК с поли(А)-лидером над типичной клеточной мРНК в трансляции, мы воспользовались свойствами усовершенствованного метода тупринтинга. Тупринтинг с использованием флуоресцентной метки и капиллярного электрофореза позволяет различать и независимо анализировать сигналы от нескольких мРНК, одновременно находящихся в реакционной смеси. Используя такой подход, мы исследовали эффективность сборки 48S комплексов в эквимолярной смеси некэпированной мРНК с поли(А)-лидером и природной бета-глобиновой мРНК. Указанные мРНК были одновременно добавлены в количестве 15 нМ каждая в реакционные смеси, содержавшие разные наборы факторов инициации.

В присутствии всех факторов инициации 48 S комплекс собирался на стартовом AUG кодоне на обеих мРНК (Рис. 4). В контрольном эксперименте без фактора инициации eIF2 сигналы, соответствующие образованию 48S комплекса, отсутствовали в обоих случаях. Исключение из реакционной смеси РНК-хеликазы eIF4A полностью блокировало инициацию трансляции на бета-глобиновой мРНК, как и в случае без конкурирующей мРНК. Такой же эффект ингибирования сборки 48S комплекса на бета-глобиновой мРНК наблюдался, если в реакционную смесь не были добавлены факторы инициации eIF4F или eIF3 и их комбинации. В то же время, в реакционных смесях, собранных без факторов инициации eIF4A, eIF4F, eIF4A и eIF4F, а также eIF3 и eIF4F, формирование инициаторных комплексов на мРНК с поли(А)-лидером происходило с высокой эффективностью в присутствии конкурирующей клеточной мРНК. Во всех исследованных нами условиях реакции, выход 48S

ПОЛНЫЙ НАБОР

40%

12%

_

4%

3%

3%

3%

1%

2%

-4А

25%

)

Аж.

3%

Ж

27%

к.

2%

-4Р, -4А

27%

-3,

I

28%

5'конец..................р-глобин 5'НТО....................А11С..

5'конец......А25-1_ис 5'НТО.......АиС...............................

Последовательность мРНК, нт

Рис. 4. Образование инициаторных 48Б комплексов в эквимолярной смеси природной кэпированной мРНК белка бета-глобина кролика (красные линии) и рекомбинантной некэпированной мРНК с лоли(А)-лидером. Верхние графики показывают результат, полученный когда в реакционных смесях присутствовал полный набор факторов инициации трансляции: е1Р1, е1Р1А, е1Г2, е1РЗ, е1Р4А, е1Р4В и е1Р4Р. Ниже расположенные графики - результаты, когда один или несколько факторов инициации трансляции не были добавлены в реакционные смеси. Показанные графики нормированы по общей флуоресценции каждого из образцов и выровнены с последовательностями соответствующих мРНК (показаны внизу графиков). Цифрами над зоной комплекса указан удельный выход 48Б инициаторных комплексов относительно каждой из мРНК в долях из ста.

инициаторных комплексов на мРНК с поли(А)-лидером был близок к выходу 48Б комплексов на этой мРНК, обнаруженному в экспериментах без добавления конкурирующей мРНК (Рис. 4 и Табл. 1). Зависимость эффективности сборки 48Б комплексов на мРНК с поли(А)-лидером от набора факторов инициации также была практически одинаковой в реакциях с и без добавления конкурирующей РНК.

Неожиданным результатом является то, что в случае бета-глобиновой мРНК, выход 48Б инициаторных комплексов был существенно ниже во всех экспериментах, где конкурирующая мРНК с поли(А)-лидером была добавлена в реакционную смесь. В присутствии полного набора факторов инициации трансляции, эффективность инициации снизилась более чем в 2 раза для бета-глобиновой мРНК после добавления конкурента. Без фактора инициации еШ1,

но в присутствии elFlA, eIF2, eIF4A, eIF4B, eIF3 и eIF4F, сборка инициаторных комплексов на бета-глобиновой мРНК была полностью заблокирована, когда в реакции находилось эквимолярное количество мРНК с поли(А)-лидером.

Обнаруженное нами ингибирование образования 48 S комплексов на природной бета-глобиновой мРНК при добавлении мРНК с поли(А)-лидером является свидетельством прямого конкурентного подавления синтеза белка на типичной клеточной мРНК. В реакционных смесях, одновременно содержавших бета-глобиновую мРНК и мРНК с поли(А)-лидером, отсутствовал поли(А)-связывающий белок или другие белки, кроме факторов инициации трансляции. Следовательно, мРНК с поли(А)-лидером непосредственно является агентом, вызывающим ингибирование синтеза белка на кэпированной клеточной мРНК.

По всей видимости, в основе конкурентных преимуществ мРНК с поли(А)-лидерами во время трансляции лежит упрощенный механизм инициации на таких мРНК. С одной стороны, для формирования 48S инициаторного комплекса на этих мРНК требуется минимальный набор факторов инициации: elFl, elFlA и eIF2. С другой стороны, эффективность инициации на таких мРНК практически не уменьшается при использовании только этого минимального набора факторов инициации. Кроме того, мРНК с поли(А)-лидерами могут участвовать в подавлении синтеза белка на других мРНК, инициация трансляции на которых происходит по каноническому кэп-зависимому пути. Благодаря непосредственному взаимодействию с 40S субъединицей рибосом мРНК с поли(А)-лидерами, вероятно, могут начинать трансляцию быстрее и затем связывать белковые факторы, необходимые для инициации трансляции на других мРНК.

1.4 Фактор инициации трансляции eIF3 не требуется для процесса объединения субъединиц рибосом во время инициации трансляции на мРНК с поли(А)-лидерами

Феномен образования 48S комплекса на мРНК с поли(А)-лидерами без фактора инициации eIF3 может быть использован для прояснения функций eIF3 в инициации трансляции. После образования 48S комплекса на инициаторном кодоне, следующим этапом процесса инициации является присоединение 60S рибосомных субъединиц, которое обеспечивают факторы инициации eIF5 и eIF5B, и формирование 80S рибосомы на стартовом кодоне мРНК. Способен ли 48S комплекс, сформированный без фактора инициации eIF3, к присоединению 60S рибосомных субъединиц? Этот вопрос особенно важен, так как eIF3 является фактором инициации с наименее ясно установленными функциями. Чтобы ответить на этот вопрос, мы собирали 48S инициаторные комплексы в присутствии и без eIF3. После сборки 48S комплексов, мы добавляли в реакционную смесь компоненты, необходимые для объединения рибосомных субъединиц - белки eIF5 и eIF5B - а также чистые 60S субъединицы рибосом. Эффективность формирования и выход 80S инициаторного комплекса на мРНК

с поли(А)-лидером были идентичными для реакций с участием или без еГБЗ (Рис. 5). Таким образом, 48Б комплекс, в состав которого не входит еШЗ,

является компетентным к Следовательно, белок eIF3 рибосомных субъединиц и

ÜJ О

of S

з-

X ф

ZS

о

V о. о >, с -8-к та

X

л ё £

belF3

-elF3

присоединению 60S рибосомных субъединиц, не принимает участия в процессе объединения не нужен для формирования 80S рибосомы и завершения инициации на мРНК с поли(А)-лидером.

elFs: 1, 1 А, 2, 4А, 4В; 40S

-2

+5, +5В; +60S

Последовательность мРНК, нт в области специфической зоны

Рис. 5. Формирование инициаторных 80S комплексов из исходных 48S комплексов, собранных на некэпированной мРНК с А25-лидером в присутствии (а) и без (б) фактора инициации elF3. Вверху: образование 48S комплекса в присутствии факторов инициации elFl, elFIA, elF2, elF4A и elF4B. В середине: контрольная реакция с теми же факторами инициации, что и на верхнем графике, но без elF2. Внизу: результат добавления elF5, elF5B и 60S субъединиц рибосом к 48S комплексам, собранным, как это указано на верхних графиках. Показаны нормированные графики только в комплекс-специфической зоне электрофореграмм.

1.5 Предполагаемая модель механизма инициации трансляции на мРНК с поли(А)-лидерами

В случае мРНК с поли(А)-лидером достижение инициаторного кодона возможно без направленного сканирования, так как факторы еШ4А/В/Р не влияли на эффективность инициации трансляции на этой мРНК. В то же время, эффективность поли(А)-лидера как усилителя трансляции зависела от длины этой последовательности: А25 способствовала более эффективной трансляции, чем А12, и еще большей, чем А5. Этот факт подразумевает связывание инициирующей 40Б субъединицы рибосом во внутренних областях лидерной поли(А)-последовательности. После внутреннего связывания с поли(А)-лидером мРНК, инициирующие рибосомные субъединицы могут производить энергонезависимое диффузионное движение вдоль цепи 5'-нетранслируемой области РНК, как следует из отсутствия потребности в е1Р4АЛ\ Инициирующая рибосома фиксируется на стартовом кодоне по достижению его в результате одномерной диффузии вдоль поли(А)-последовательности, после чего инициация трансляции завершается так же, как в общем случае. Механизм инициации трансляции такого рода был ранее постулирован для объяснения процесса поиска инициаторного кодона между открытыми рамками считывания полицистронных мРНК у прокариот, и для его описания был предложен термин

«бесфазное блуждание» рибосомы по цепи мРНК. Впоследствии этот механизм был подтвержден с использованием прямых экспериментальных данных. Мы предполагаем, что такой же принцип «бесфазного блуждания» по цепи мРНК является основой механизма инициации трансляции на мРНК с поли(А)-лидерами.

Уникальные трансляционные свойства поли(А)-лидеров мРНК могут быть объяснены их структурными особенностями. В отличие от поли(1_Г), поли(А) не может рассматриваться исключительно как пространственно неупорядоченный полимер. В условиях физиологических температур и нейтральных значений рН, поли(А)-РНК имеет тенденцию к образованию регулярной одноцепочечной спирали. Взаимодействие с белками и/или рибосомами может дополнительно стабилизировать эту структуру. Вероятно, одноцепочечная спираль, образуемая поли(А)-РНК, обладает специфическим сродством к мРНК-связывающему участку 40S субъединицы рибосом. Известно, что в случае прокариотической инициации трансляции 30S субъединица рибосом также вызывает формирование одноцепочечной спирали А-формы в 5'-части связываемой мРНК (G.L. Yusupova et al., Nature, 2006, 444:391-394). Возможно, что в случае гетеронуклеотидных лидерных последовательностей фактор инициации eIF3 необходим для обеспечения увеличенного сродства мРНК к 40S рибосомной субъединице или же приданию мРНК конформации одноцепочечной спирали. В рамках такого механизма действия, eIF3 мог бы служить функциональным аналогом последовательности анти-Шайн-Дальгарно, которая участвует в спирализации части связываемой рибосомой мРНК у прокариот.

Часть 2. Инициация трансляции на мРНК с омега-лидером -5'-нетранслируемой областью РНК вируса табачной мозаики (ВТМ)

2.1 Особенности омега-лидера: необычная последовательность нуклеотидов и эффективная кэп-независимая инициация трансляции

Поскольку частица ВТМ не содержит никаких других компонентов, кроме геномной РНК и белка оболочки, весь репликационный цикл ВТМ зависит от успешности первого раунда прочтения геномной РНК рибосомами. За эффективность этого процесса отвечает 5'-нетранслируемая область РНК ВТМ, также называемая омега-последовательностью РНК. По-видимому, омега-последовательность РНК обеспечивает быстрое отсоединение белков оболочки и присоединение рибосом к РНК вириона ВТМ. Только после этого становится возможным дальнейшее котрансляционное освобождение РНК ВТМ от белка оболочки.

Нуклеотидная последовательность омега-лидера РНК ВТМ штамма U1 приведена на Рис. 6. Последовательность обладает необычной первичной структурой. Во-первых, омега-лидер практически полностью лишен остатков гуаниловых нуклеотидов (G). Во-вторых, более трети омега-последовательности составляет ее центральная часть, состоящая только из

14

адениловых и цитидиловых остатков. В-третьих, адениловые и цитидиловые остатки центральной части, а также адениловые и цитидиловые остатки примыкающих 5'- и З'-проксимальных частей омега-последовательности, в основном сгруппированы в триплеты CAA. В целом характер нуклеотидной последовательности омега-лидера указывает на невозможность образования собственной стабильной вторичной структуры за счет канонического уотсон-криковского спаривания нуклеотидов по типу G:C и A:U. Это обстоятельство долгое время служило доводом в пользу предположения, что именно «неструктурированность» омега-лидера обеспечивает ему легкую доступность для рибосом и, следовательно, свойства усилителя трансляции.

Из-за своей возможной физиологической функции, омега-последовательность ВТМ с самого начала привлекала внимание исследователей как потенциальный эффективный лидер для различных мРНК. Действительно, как было показано, в рекомбинантных конструкциях лидерная омега-последовательность усиливает трансляцию чужеродных РНК как in vivo, так и in vitro (в бесклеточных системах) и обеспечивает эффективную кэп-независимую инициацию трансляции. Омега-лидер может быть усилителем трансляции в разных типах клеток, как растительных, так и животных, и в разных бесклеточных системах трансляции, в том числе полученных из клеток бактерий. Механизм работы омега-лидера как усилителя трансляции не был выяснен.

5IGG6AM6CUUUAUUUUUACAACMUUACCAACAACMCAAACAACAAACMCAUUACAAUUACUAUUUACMUUACAGUCGACCWJG...3'

10 нт 67 нт омега 10 нт

5' фланк 3' фланк

Рис. 6. 5'-концевая последовательность рекомбинантной РНК, содержащая 67 нуклеотидов омега-последовательности ВТМ штамма U1. Жирным черным шрифтом выделена омега-последовательность ВТМ штамма U1. Подчеркнут и выделен жирным шрифтом стартовый кодон AUG открытой рамки считывания мРНК люциферазы.

2.2 Омега-лидер обеспечивает эффективную инициацию трансляции без факторов инициации eIF4F и eIF4A

Чтобы выяснить возможный механизм усиления трансляции мРНК лидерной омега-последовательностью, мы изучили эффективность сборки 48S комплекса на рекомбинантной мРНК с омега-лидером в зависимости от набора факторов инициации в системе инициации трансляции, собранной из очищенных компонентов. Для оценки эффективности сборки 48S комплекса мы использовали метод тупринтинга. Некэпированная рекомбинантная мРНК в качестве 5'-нетранслируемой области содержала омега-последовательность ВТМ штамма U1 без первого хуанилового остатка, которая была фланкирована десятинуклеотидными последовательностями (Рис. 6). После стартового AUG кодона следовали 589 нуклеотидов кодирующей части мРНК люциферазы.

Hi о

ПОЛНЫЙ НАБОР: elF1,elF1A, elF2, elF3, elF4A, elF4B, elF4F

i

-2

-4E

I

5'конец....................ii 5'HTO.......................AUG..

Последовательность мРНК, нт

8

-4F

J

-4A.-4F

JL

-3

JUL

5'конец....................П 5'HTO.......................AUG..

Последовательность мРНК, нт

Рис. 7. Образование инициаторного 48S комплекса на некэпированной рекомбинантной мРНК с лидерной омега-последовательностью в системе инициации трансляции из очищенных компонентов. Показаны нормированные электрофореграммы реакций тупринтинга. Верхний левый график демонстрирует результаты, полученные при использовании полного набора факторов инициации трансляции (elFl, elFIA, elF2, elF3, elF4A, elF4B и elF4F) в реакционной смеси. Остальные графики показывают результат исключения одного или нескольких факторов инициации трансляции. На графиках отложена удельная флуоресценция продуктов обратной транскрипции против последовательности мРНК от 5'- к З'-концу. Суммарная флуоресценция трех основных тупринтных пиков в области AUG кодона отражает эффективность образования 48S комплекса.

Так же, как и в случае мРНК, содержавшей поли(А)-лидер, и бета-глобиновой мРНК, в присутствии полного набора факторов инициации (elFl, elFIA, eIF2, eIF3, eIF4A, eIF4B, eIF4F) 48S инициаторный комплекс собирался на мРНК с омега-лидером на правильном стартовом кодоне с высоким выходом (Рис. 7). В контрольной реакции без фактора инициации eIF2 сборки 48S комплекса не было. В то же время, инициаторный 48S комплекс эффективно собирался на мРНК с омега-лидером без факторов АТФ-зависимого сканирования - белков eIF4F и eIF4A (Рис. 7). Без фактора инициации eIF3 эффективность образования 48S комплекса на мРНК с омега-лидером в использованных нами условиях реакции была пренебрежимо малой, что подтверждает уникальную способность поли(А)-лидера к еШЗ-независимой инициации трансляции.

Практически полная независимость эффективности инициации трансляции от основных факторов АТФ-зависимого сканирования, которую демонстрирует омега-лидер, свидетельствует о неканоническом механизме инициации трансляции на этой последовательности. Возможно, что так же, как и в случае поли(А)-лидера мРНК, имеет место непосредственная посадка инициирующей рибосомы в неспецифическом месте омега-лидера, после чего происходит энергонезависимая одномерная диффузия инициирующей 40S субъединицы вдоль цепи этой РНК.

2.3 Омега-РНК обладает стабильной компактной структурой в растворе

Для того чтобы определить, обладает ли РНК с омега-последовательностью какими-либо структурными особенностями, которые могли бы служить объяснением феномена усиления трансляции ею, мы исследовали физические свойства этой РНК в растворе. Синтетические РНК, содержащие омега-последовательность РНК ВТМ штамма Ш, а также полирибонуклеотид с (САА)19 последовательностью, были получены нами при помощи транскрипции соответствующих ДНК РНК-полимеразой из фага Т7. Высокомолекулярный статистический сополимер (С„,А2„), полученный с помощью полирибонуклеотид-нуклеотидилтрансферазы, был частично гидролизован в щелочных условиях, и образовавшиеся фрагменты с длинами 50±10 нт, 80±10 нт, 85±10 нт и 110±10 нт были получены препаративной очисткой из денатурирующего полиакриламидного геля после электрофоретического разделения.

0) о

га"

<в ш

0 ш

1 О

о

Е о с.

0.52 ■

0.48

0.44 •

0.40

Рис. 8. Тепловое плавление 87 нт РНК с омега-последовательностью

незаполненные круги), 71 нт РНК с (САА)1д-последовательностью (•, заполненные круги) и 80±10 нт (С„,А2„)-сополимера (▼, заполненные треугольники). Условия плавления: водный буфер, содержащий 10 мМ какодилат натрия с рН 7,5, 100 мМ хлорид натрия и 0,5 мМ ЭДТА.

20

40 60

Температура,

80

Мы исследовали тепловое разворачивание (плавление) указанных РНК в буфере, содержащем 10 мМ какодилат натрия с рН 7,5, 100 мМ хлорид натрия и 0,5 мМ ЭДТА. Статистический (С„,А2„)-сополимер обладал довольно низким гипохромизмом. Плавление (С„,А2„)-сополимера не сопровождалось кооперативными изменениями его структуры (Рис. 8). В отличие от (С„,А2„)-сополимера, как РНК с регулярной (САА)19-последовательностью, так и омега-РНК проявили значительный гипохромизм и кооперативный структурный переход при достаточной высокой температуре: более 60 °С (Рис. 8). Кривые плавления омега-РНК и РНК с регулярной (САА^-последовательностью напоминают кривые плавления тРНК - макромолекулы с хорошо развитой вторичной и третичной структурами.

Так как тепловое плавление РНК с (С А А) ^-последовательностью и омега-РНК показало наличие пространственной структуры в этих РНК, мы оценили компактность укладки этих структур с помощью аналитического ультрацентрифугирования. Мы сравнили коэффициент седиментации всех исследуемых РНК с таковым, полученным для известной компактно свернутой

молекулы РНК - фенилаланиновой тРНК дрожжей длиной 76 нт - в одних и тех же условиях: водном растворе, содержащем 20 мМ Трис-ацетат с рН 7,5, 100 мМ хлорид калия и 0,1 мМ ЭДТА. Все исследованные РНК обнаружили гомогенное распределение при седиментации (симметричные пики распределения), без появления денатурированных форм молекул или абсорбции света вне основных пиков поглощения. Расчетные коэффициенты седиментации составили: 2,2 ед. Сведберга для (С„,А2„)-сополимера, 3,5 ед. Сведберга для РНК с регулярной (С А А) ^-последовательностью, 4,0 ед. Сведберга для 11ШАРЬе и 4,4 ед. Сведберга для омега-РНК.

Мы совместили полученные нами коэффициенты седиментации исследованных РНК, а также (С„,А2п)-сополимеров длиной 50±10 нт, 85±Ю нт и 110±10 нт, с уже известными данными о седиментации других РНК, структура которых хорошо охарактеризована, на графике зависимости коэффициента седиментации молекулы РНК от логарифма ее молекулярной массы (Рис. 9). Молекулы РНК статистических сополимеров (С„,А2„) всех длин оказались ближе всего к прямой, соответствующей развернутым цепям РНК. Все остальные РНК, исследованные нами, включая омега-РНК и РНК с регулярной (САА)19-последовательностью, расположились вблизи прямой, характеризующей компактно свернутые молекулы РНК. При этом степень компактности омега-РНК оказалась не меньшей, чем у тРНК - молекулы, почти все мономерные звенья которой задействованы в образовании вторичных или

третичных взаимодействий.

Рис. 9. Зависимость коэффициента седиментации молекул РНК в водных растворах от логарифма их молекулярной массы. Теоретическая прямая распределения полностью развернутых цепей РНК показана штриховой линией. Теоретическая прямая распределения компактно уложенных молекул РНК показана сплошной линией.

Мы также провели исследование спектров ядерного магнитного резонанса протонов омега-РНК в водном растворе, содержавшем 10 мМ ортофосфат натрия рН 7,5, 100 мМ хлорид натрия, 0,2 мМ дейтерий-замещенный ЭДТА и 10 % дейтериевой воды, при разных температурах раствора. Во всем исследованном диапазоне температур (от 6 °С до 35 °С) обнаружилось не менее 19 различаемых сигналов от протонов, находящихся в составе имино-групп (Рис. 10). Так как в последовательности исследуемой РЖ содержалось всего 5 гуаниловых остатков нуклеотидов, как минимум 14 сигналов резонанса имино-протонов должны происходить от уридиловых остатков, формирующих

20 25 30 35 40 Молекулярная масса, кДа

Рис. 10. Одномерные спектры резонанса протонов омега-РНК в области, соответствующей резонансам протонов в составе имино-групп, при разных температурах раствора (указаны слева от графиков). Условия записи спектра: водный раствор, содержащий 10 мМ ортофосфат натрия рН 7,5, 100 мМ хлорид натрия, 0,2 мМ дейтерий-замещенный ЭДТА и 10 % дейтериевой воды.

стабильные водородные связи по типу

15

14 13 12 11

Сдвиг частоты резонанса'Н, ррт

ю

взаимодействия оснований Уотсона и Крика или Хугстена. Всего омега-РНК содержала 19 уридиловых остатков. Мы сравнили

двумерные спектры резонанса протонов омега-РНК (второе направление разделения по величине ядерного эффекта Оверхаузера) с двумерными спектрами резонанса протонов другой высокоструктурированной РНК - TAR (Trans Activation Responsive = малая РНК, ответственная за транс-активацию) из вируса иммунодефицита человека 2. Известно, что TAR РНК образует развитую третичную структуру, в основе которой лежат взаимодействия нуклеотидов по типу Уотсона и Крика. Частоты резонанса протонов в составе омега-РНК формируют совершенно иную зависимость, чем таковые у TAR РНК вируса иммунодефицита человека 2 (Рис. И). Это свидетельствует об ином принципе структурной организации омега-РНК.

Чтобы объяснить возможную структурную организацию ядра омега-РНК, A.B. Ефимов и A.C. Спирин предложили модель укладки цепи (САА)„ полимера (A.V. Efimov and A.S. Spirin, BBRC, 2009, 388:127-130). Модель подразумевает образование тройной спирали РНК, где нуклеотиды разных участков цепи - два А и один С - располагаются в одной плоскости, взаимодействуя между собой при помощи пар водородных связей не-уотсон-криковского типа, формируя плоские триады, уложенные друг на друга. Ключевой особенностью модели является то, что при чередовании нуклеотидов по ходу цепи полимера (САА)„ нуклеотидные остатки также чередуются в составе триад нуклеотидов. При этом все возможные тройки нуклеотидов тройной спирали (САА)„ образуют триады оснований нуклеотидов с идентичными размерами и углами внешних валентных связей, что является основой образования регулярных спиральных структур. В то же время, из экспериментальных данных следует, что структура омега-РНК более компактна и стабильна, чем структура, образуемая полимером (САА))9 похожей длины.

•4М"! ,,

Ц|('Н

Сдвиг частоты резонанса 1Н, ррт

Сдвиг частоты резонанса 'Н, ррт

Рис. 11. Двумерные спектры резонанса протонов (второе направление разделения по величине ядерного эффекта Оверхаузера): (А) омега-РНК, (Б) TAR РНК вируса иммунодефицита человека 2. Условия записи спектров: температура 30 "С, водный раствор, содержащий 10 мМ ортофосфат натрия рН 7,5, 100 мМ хлорид натрия, 0,2 мМ дейтерий-замещенный ЭДТА и 10 % дейтериевой воды.

2.4 Стабильная и компактная пространственная укладка омега-РНК основана на вторичной структуре неканонического типа

Для того чтобы выяснить тип возможной структурной организации омега-лидера РНК и ее согласованность с предложенной моделью, мы применили стандартные методы неполной химической модификации оснований и ограниченной энзиматической деградации, широко используемые при тестировании пространственных структур РНК.

РНК, содержащую нуклеотидную последовательность омега-лидера РНК ВТМ и 49 нуклеотидов кодирующей части мРНК люциферазы, обрабатывали модифицирующими или расщепляющими агентами при комнатной температуре (25 °С) в буфере, содержащем 40 мМ НЕРЕ8-КОН рН 7,5, 50 мМ КС1, 0,5 мМ ЭДТА, за исключением реакций с РНКазой VI, где в реакционный буфер был дополнительно добавлен ацетат магния до концентрации 10 мМ. Условия для всех реакций были подобраны таким образом, чтобы обеспечить модификацию или гидролиз менее половины молекул РНК в каждой реакционной смеси. Положение мест модификации или расщепления было определено при помощи анализа длин кДНК-продуктов обратной транскрипции (метод ингибирования удлинения праймера), полученных на матрице модифицированной или расщепленной омега-РНК.

ге5йШ0СиииАиииииАСМСМииДССМСМСМСШСМСШСМСАииДСМииАСиАиуиАСМииАСА21Ю0АССШСМ...З' Последовательность мРНК, нт

Рис. 12. Результаты химических модификаций и энзиматических расщеплений омега-РНК. Контрольную немодифицированную омега-РНК (А) или омега-РНК после модификации (Б-Д) использовали для реакции обратной транскрипции, где в качестве затравки применялся флуоресцентно меченый ДНК-праймер. На рисунке представлены графики зависимости флуоресценции кДНК от соответствующей позиции нуклеотидов в исходной омега-РНК. Все графики нормированы по тотальной флуоресценции в геле. Цифры около пика полноразмерной кДНК (слева посередине графиков) показывают количество полноразмерных транскриптов омега-РНК (где нет гидролиза или модификаций) в % от общего количества транскриптов с этой РНК. Серым прямоугольником выделен участок омега-РНК, содержащий последовательные (САА)„-повторы. А - Немодифицированная (контрольная) омега-РНК. Б - Модификация омега-РНК диметилсульфатом. В -Модификация омега-РНК диэтилпирокарбонатом. Г - Частичное расщепление омега-РНК РНКазой VI. Д - Частичное расщепление омега-РНК РНКазой А.

Диэтилпирокарбонат и РНКаза А воздействовали приблизительно на одну и ту же - З'-проксмальную - часть полирибонуклеотидной цепи омега-РНК (Рис. 12). 5'-проксимальная половина и центральная часть омега-последовательности, включающие упорядоченный регулярный участок с

21

(САА)„-повторами, слабо подвергались их воздействию. Значительная стабильность структуры центральной части по отношению к этим агентам сопровождалась также ее полной устойчивостью против РНКазы VI, расщепляющей полинуклеотидные цепи в составе уотсон-криковских двойных спиралей (Рис. 12). Эти экспериментальные данные хорошо согласуются с предложенной моделью тройной спирали РНК и подтверждают, что, во-первых, регулярная последовательность (САА)„, характерная для центральной части омега-лидера, действительно может формировать стабильную вторичную структуру и, во-вторых, формируемая структура не является канонической двойной спиралью уотсон-криковского типа или близкой к ней по характеру взаимодействий между основаниями.

2.5 Предполагаемое функциональное значение структуры омега-последовательности РНК

Уникальность укладки цепи РНК в полинуклеотиде, содержащем омега-последовательность, может способствовать образованию обособленной и стабильной структуры в составе полноразмерной РНК ВТМ. Известно, что белок оболочки тобамовирусов взаимодействует с развернутой одноцепочечной конформацией РНК. Таким образом, тенденция омега-последовательности к формированию стабильной структуры должна уменьшать сродство белка оболочки ВТМ к этой последовательности, что может объяснять начало 5'-проксимальной разборки вириона ВТМ при его попадании в клетку, которое жизненно необходимо для репликации этого вируса. Здесь уместна аналогия с З'-частью РНК ВТМ, для которой ранее было показано образование стабильных тРНК-подобных и псевдоузловых структур. Другими исследователями было показано, что 3'-проксимальные структуры РНК ВТМ необходимы для успешной репликации этого вируса в клетках хозяина. Возможно, что наличие способности к образованию этих структур в З'-концевой области РНК ВТМ также способствует началу репликации благодаря пониженному сродству белка оболочки к этой области РНК.

Несмотря на наличие стабильной вторичной и третичной структуры, омега-лидер обеспечивает эффективную кэп-независимую инициацию трансляции. Возможно, трехмерная конфигурация омега-РНК способствует облегченному присоединению 408 субъединиц к этому лидеру и формирование 48Б инициаторного комплекса с высоким выходом без факторов сканирования - так же, как одноцепочечная спираль поли(А)-РНК, вероятно, обеспечивает е1РЗ-независимую инициацию трансляции. Вместе с этим, структура омега-РНК ВТМ не обеспечивает высокоаффинного (и специфического) сродства этой последовательности к рибосомам или факторам инициации трансляции, как это имеет место в случае инициации трансляции на сайтах внутренней посадки рибосом. Эти факты приводят нас к заключению о том, что инициация трансляции на омега-лидере ВТМ может происходить по альтернативному пути, отличному от кэп-зависимого сканирования и инициации на сайтах внутренней посадки рибосом.

выводы

1. Разработан усовершенствованный метод ингибирования удлинения праймера мРНК-рибосомными комплексами (тупринтинг), в котором для мечения продуктов реакции обратной транскрипции используются флуоресцентные группы, а для их разделения применяется капиллярный электрофорез. Показано, что усовершенствованным методом тупринтинга можно обнаруживать, идентифицировать и количественно подсчитывать мРНК-рибосомные комплексы на всех стадиях трансляции: инициации, элонгации и терминации.

2. Методом тупринтинга показано, что поли(А)-лидер, характерный для мРНК осповирусов, обеспечивает эффективную инициацию трансляции на рекомбинантной мРНК без факторов инициации еШ4А, е!Р4В и еПЧР, ответственных за АТФ-зависимое сканирование, а также без белка е1РЗ. Методом тупринтинга на мРНК с поли(А)-лидером показано также, что фактор инициации еШЗ не требуется для объединения субъединиц рибосом при инициации трансляции.

3. Методом тупринтинга показано, что для сборки инициаторного 48Б комплекса на омега-лидере вируса табачной мозаики не требуется факторов инициации трансляции еШ4А и еПЧР, ответственных за АТФ-зависимое сканирование, но требуется е1РЗ.

4. Изучена структура омега-лидера РНК вируса табачной мозаики.

(а) Методами аналитического центрифугирования и теплового плавления показано, что РНК с последовательностью омега-лидера геномной РНК вируса табачной мозаики обладает коэффициентом седиментации, характерным для компактно уложенных

гиперхромного эффекта при плавлении, сопровождающимся кооперативным структурным переходом в области высоких температур

(б) Методами химического и энзиматического тестирования, а также методом ядерного магнитного резонанса, показано, что центральная (САА)„-содержащая часть омега-РНК не модифицируется агентами, действующими на одноцепочечную РНК, а вся структура омега-РНК формирует укладку на основе неканонических взаимодействий нуклеотидов.

5. Предложена модель альтернативного механизма инициации трансляции на А-обогащенных лидерных последовательностях эукариотических мРНК. Модель предполагает посадку инициирующей субъединицы рибосом в произвольном месте лидерной последовательности мРНК и ее последующее энергонезависимое диффузионное движение («бесфазное блуждание») по цепи мРНК.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

В изданиях, рекомендованных Высшей аттестационной комиссией:

1. Н.Э. Широких, С.Ч. Агаларов и А.С. Спирин (2010) Тестирование пространственной структуры лидерной последовательности РНК вируса табачной мозаики методами химической и энзиматической модификации. Биохимия, 75,405-411.

В рецензируемых журналах:

2. N.E. Shirokikh, E.Z. Alkalaeva, K.S. Vassilenko, Z.A. Afonina, O.M. Alekhina, L.L. Kisselev, A.S. Spirin (2010) Quantitative analysis of ribosome-mRNA complexes at different translation stages. Nucleic Acids Research, 38, el5.

3. N.E. Shirokikh, A.S. Spirin (2008) PoIy(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proceedings of the National Academy of Sciences U. S. A, 105,10738-10743.

4. A.A. Kovtun, N.E. Shirokikh, A.T. Gudkov, A.S. Spirin (2007) The leader sequence of tobacco mosaic virus RNA devoid of Watson-Crick secondary structure possesses a cooperatively melted, compact conformation. Biochemical and Biophysical Research Communications, 358,368-372.

В сборниках тезисов докладов конференций:

5. Е.А. Согорин, Н.Э. Широких, С.Ч. Агаларов и А.С. Спирин (2010) Исследование адресно-измененных форм РНК омега-последовательности ВТМ. Ежегодная научная конференция Института белка РАН, Институт белка РАН, Пущино, Московская область, Россия, Сборник тезисов, 8.

6. N.E. Shirokikh, Е.А. Sogorin, S.C. Agalarov and A.S. Spirin (2010) Omega sequence of tobacco mosaic virus genomic RNA possesses a non-canonical compact tertiary structure. Translational Control Meeting, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, США, Abstract book, 254.

7. N.E. Shirokikh, E.Z. Alkalaeva, K.S. Vassilenko, Z.A. Afonina, O.M. Alekhina, L.L. Kisselev, A.S. Spirin (2009) Quantitative analysis of ribosome-mRNA complexes at different translation stages. EMBO Conference on Protein Synthesis and Translational Control, EMBL, Heidelberg, Германия, Abstract book, 236.

8. N.E. Shirokikh and A.S. Spirin (2008) Initiation of translation on eukaryotic high-expressible mRNAs with poly(A) leaders does not require eIF3 and eIF4F. Translational Control Meeting, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, США, Abstract book, 291.

9. N.E. Shirokikh and A.S. Spirin (2007) Localization of the ribosomal initiation 48S complex on eukaryotic mRNA by the method of primer extension inhibition with the use of fluorescent label. 40th Anniversary of the Institute of Protein Research meeting: Protein Biosynthesis, Structure and Function, Институт белка РАН, Пущино, Московская область, Россия, Conference abstracts book, 10.

10.А.А. Kovtun, N.E. Shirokikh, A.T. Gudkov and A.S. Spirin (2007) Leader sequence of tobacco mosaic virus RNA possesses cooperatively melted, compact conformation. 40th Anniversary of the Institute of Protein Research meeting: Protein Biosynthesis, Structure and Function, Институт белка РАН, Пущино, Московская область, Россия, Conference abstracts book, 70.

11. N.E. Shirokikh, T.V. Pestova, A.T. Gudkov and A.S. Spirin (2006) Translation initiation on non-capped eukaryotic mRNAs. The 8th international Engelhardt Conference on Molecular Biology: RNA-Protein Interactions, пансионат «Буран», Сергиев-Посад, Московская область, Россия, Program and abstracts book, 78.

24

Заказ № 160-1/11/2010 Подписано в печать 12.11.2010 Тираж 100 экз. Усл. п.л. 1,2

/б'-^Ч ООО "Цифровичок", тел. (495) 649-83-30

'Ч>'' ^1 www.cfr.ru; е-тай:т/о@с/г.ги

Содержание диссертации, кандидата биологических наук, Широких, Николай Эдуардович

Титульный лист.

Содержание.

Список условных сокращений.б

Глава 1. Введение.

Глава 2. Обзор литературы.'.

2.1. Контроль экспрессии генов и биосинтез белка.

2.1.1. Центральная догма молекулярной биологии.

2.1.2'. Основные способы посттранскрипционной регуляции экспрессии генов в цитоплазме эукариот.

2.1.3. Регуляция экспрессии генов во время трансляции мРНКу эукариот.

2.2. Инициация трансляции у эукариот.

2.2.1. Отличие инициации от других этапов трансляции мРНК.

2.2.2. Инициация трансляции у эукариотических организмов: ключевые участники процесса.

2.2.3. Общепринятая модель инициации трансляции мРНК клеточного происхождения у эукариот.

2.3. Задачи исследования.

Глава 3. Материалы исследования.

3.1. Оборудование.

3.2. Химические реагенты.

3.3. Ферменты.

3.4. Буферные растворы и микробиологические среды.

3.5. Генетические конструкции.

3.6. ДНК-олигонуклеотиды.

3.7. Штаммы клеток.

3.8. Программные инструменты.

Глава 4. Методы исследования.

4.1. Стандартные методики.

4.2. Получение компетентных клеток Escherichia coil штаммов DH5a и BL21(DE3).

4.3. Трансформация компетентных клеток Escherichia coli плазмидными векторами.

4.4. Электрофорез нуклеиновых кислот в неденатурирующем агарозном геле.

4.5. Очистка ДНК-плазмид.

4.6. Очистка ДНК-плазмид без использования РНКаз.

4.7. Очистка ДНК-плазмид от низкополимерных нуклеиновых кислот.

4.8. Препаративная рестрикция плазмид и фрагментов ДНК.

4.9. Препаративное разделение и очистка фрагментов ДНК разной длины с помощью электрофореза в неденатурирующем агарозном геле.

4.10. Отщепление 5'-концевых фосфатных групп от фрагментов ДНК после их расщепления рестриктазами.

4.11. Отжиг комплементарных участков цепей синтетических олигонуклеотидов для последующего встраивания двуцепочечного фрагмента ДНК в плазмидный вектор с помощъюлигирования.

4.12. Амплификация фрагментов ДНК с помощью полимеразой цепной реакции.

4.13. Фосфорилирование 5'-концов двуцепочечных фрагментов ДНК с помощью полинуклеотидкиназы.

4.14. Лигирование фрагментов ДНК.

4.15. Секвенирование плазмид и фрагментов ДНК.

4.16. Конструирование плазмиды рп50.

4.17. Конструирование плазмиды pTZA25Luc.

4.18. Конструирование плазмид pTZMlluc, pTZM2Luc, pTZM3Luc.

4.19. Конструирование плазмиды pTZOX2FRLuc.

4.20. In vitro транскрипция.

4.21. Осаждение фрагментов РНК длиной от 20 нт с минимальным соосаждением свободных нуклеотидов.

4.22. Гель-фильтрация макромолекул РНК или ДНК для очистки от низкомолекулярных примесей.

4.23. Гель-фильтрационное разделение молекул РНК.

4.24. Электрофоретическое разделение нуклеиновых кислот в денатурирующем полиакриламидном геле.

4.25. Неполный щелочной гидролиз РНК.

4.26. Препаративное электрофоретическое разделение нуклеиновых кислот в денатурирующем полиакриламидном геле.:.

4.27. Электрофорез РНК в агарозном геле в солевых условиях, близких к

• физиологическим.

4.28. Модификация РНК диметилсульфатом.

4.29. Модификация РНК диэтилпирокарбонатом.

4.30. Расщепление РНКРНКазой VI.

4.31. Расщепление РНКРНКазой А.

4.32. Обратная транскрипция РНК после частичной модификации или расщепления.

4.33. Капиллярный электрофорез, считывание флуоресценции и анализ сигнала от разделенных кДНК-транскриптов модифицированной или расщепленной РНК.

4.34. Аналитическое ультрацентрифугирование водных растворов РНК.

4.35. Тепловое плавление РНК, измеренное по изменению абсорбции света на длине волны 258 нм.

4.36. ЯМР-спектрометрия водных растворов РНК.

4.37. Получениелизата ретикулоцитов кролика.

4.38. Удаление эндогенных мРНК из лизата ретикулоцитов кролика с помощью обработки микрококковой нуклеазой.

4.39. In vitro трансляция.

4.40. Осаждение фракции белков из реакционной смеси для in vitro трансляции, нерастворимой в трихлоруксусной кислоте.

4.41. Подсчет количества радиоактивности во фракции белков трансляционной смеси, осажденных на бумаге трихлоруксусной кислотой.

4.42. Ионообменная хроматография белков на колонке, содержащей диэтиламиноэтил-целлюлозу.

4.43. Ионообменная хроматография белков на колонке, содержащей фосфоцеллюлозу.

4.44. Ионообменная хроматография белков на колонках Mono-Q и Mono-S.

4.45. Аффинная очистка белков на колонке с Ni-NTA агарозой.

4.46. Аффинная очистка белков на колонке с 7тСТР-сефарозой.

4.47. Концентрирование белков, рибосом и их субъединиц ультрафильтрацией.

4.48. Диализ рибосом, субъединиц рибосом и белков.

4.49. Осаждение белков ацетоном в целях их концентрирования и удаления ионов К+ из раствора.

4.50. Электрофоретическое разделение белков в денатурирующем полиакриламидном геле.

4.51. Выделение факторов инициации трансляции eIF2, eIF3, eIF3-eIF4F из лизата ретикулоцитов кролика.

4.52. Выделение субъединиц рибосом из лизата ретикулоцитов кролика.

4.53. Выделение мРНКр-глобина из лизата ретикулоцитов кролика.

4.54. Экспрессия рекомбинантных плазмид, кодирующих факторы инициации трансляции млекопитающих и инициаторную аминоацил-тРНК синтетазу Escherichia coli, в клетках Escherichia coli, и очистка соответствующих белков.

4.55. Подсчет радиоактивности в срт в водных растворах, содержащих радиоактивно меченые белки или нуклеиновые кислоты.

4.56. Визуализация и оценка радиоактивности изотопов в полиакриламидном геле после электрофоретического разделения белков или нуклеиновых кислот.

4.57. Аминоацилирование инициаторной тРНК млекопитающих рекомбинантной аминоацил-тРНК синтетазой Escherichia coli.

4.58. Аминоацилирование тотальной тРНКпо Met, Val, His и Leu.

4.59. Сборка инициаторных комплексов эукариот из очищенных компонентов in vitro.

4.60. Сборка инициаторных комплексов эукариот в нефракционированном лизате ретикулоцитов кролика, обработанном микрококковой нуклеазой, in vitro.

4.61. Реакция удлиненияпептида в мРНК-рибосомных комплексах эукариот, собранных из очищенных компонентов in vitro.

4.62. Сборка и очистка пре-терминационного комплекса трансляции эукариот из очищенных компонентов in vitro.

4.63. Реакция терминации трансляции в мРНК-рибосомных комплексах эукариот, собранных из очищенных компонентов in vitro.

4.64. Реакция ингибированияудлинения праймера мРНК-рибосомными комплексами эукариот (тупринтинг).

4.65. Анализ флуоресцентно меченых кДНК, полученных в реакции тупринтинга, капиллярным электрофорезом на автоматическом секвенаторе.

Глава 5. Результаты и обсуждение результатов работы.

5.1. Улучшенный метод ингибирования удлинения праймера рибосомными комплексами на мРНК (тупринтинг).

5.1.1. Основы метода ингибирования удлинения праймера.

5.1.2. Стандартный метод ингибирования удлинения праймера рибосомными комплексами на мРНК.

5.1.3. Метод ингибирования удлинения праймера рибосомными комплексами на мРНК с использованием флуоресцентной метки и капиллярного электрофореза.

5.1.4. Оптимизация условий обратной транскрипции для реакции тупринтинга.

5.1.5. мРНК-рибосомные комплексы, которые могут быть исследованы методом ингибирования удлинения праймера.

5.1.6. Обнаружение рибосомных комплексов на мРНК.

5.1.7. Анализ электрофореграмм, полученных методом тупринтинга с флуоресцентной меткой.

5.1.8. Оптимизация выхода инициаторных мРНК-рибосомных комплексов для реакции тупринтинга.

5.1.9. Идентификация мРНК-рибосомных комплексов методом тупринтинга с флуоресцентной меткой.

5.1.10. Расчет эффективности реакций инициации, элонгации и терминации трансляции методом флуоресцентного тупринтинга.

5.1.11. Обнаружение нескольких мест сборки мРНК-рибосомных комплексов в одной и той же реакционной смеси с помощью метода тупринтинга.

5.1.12. Общая характеристика улучшенного метода тупринтинга с применением флуоресцентной метки и капиллярного электрофореза.

Заключение Диссертация по теме "Молекулярная биология", Широких, Николай Эдуардович

Выводы:

1. Методами аналитического центрифугирования и теплового плавления показано, что РНК с последовательностью омега-лидера геномной РНК вируса табачной мозаики обладает коэффициентом седиментации, характерным для компактно уложенных РНК, и имеет большую величину гиперхромного эффекта при плавлении, сопровождающимся кооперативным структурным переходом в области высоких температур;

2. Методами химического и энзиматического тестирования, а также методом ядерного магнитного резонанса показано, что центральная (САА)„-содержащая часть омега-РНК не модифицируется агентами, действующими на одноцепочечную РНК, а вся структура омега-РНК формирует укладку на основе неканонических взаимодействий нуклеотидов;

3. Методом тупринтинга показано, что для сборки инициаторного 48Б комплекса на омега-РНК не требуется факторов инициации трансляции еШ4А и еШ4Р, ответственных за АТФ-зависимое сканирование;

4. Сделано предположение о возможном участии структуры омега-последовательности РНК в ее функциональной активности как универсального лидера, усиливающего трансляцию мРНК.

Глава 6. Резюме результатов работы

Согласно современным представлениям, инициация трансляции на мРНК у эукариот происходит по одному из двух возможных сценариев. В случае клеточных мРНК, трансляция начинается кэп-зависимо, с последующим АТФ-зависимым, 5'—>3' направленным сканированием 5'-нетранслируемой области до нахождения первого стартового кодона в определенном нуклеотидном контексте. В противоположность этому, на мРНК некоторых вирусов трансляция может начинаться вдалеке от 5'-конца мРНК благодаря непосредственному или опосредованному специфическому связыванию 40Б субъединицы рибосом со специальным структурным модулем в составе мРНК — сайте внутренней посадки рибосом. В этой работе мы изучили механизм инициации трансляции на двух разных лидерных последовательностях мРНК, известных свой способностью обеспечивать эффективную кэп-независимую инициацию трансляции. Как было показано ранее, 5'-поли(А) лидерная последовательность, характерная для мРНК осповирусов, и омега-последовательность 5'-нетранслируеммой области РНК вируса табачной мозаики могут кэп-независимо усиливать трансляцию чужеродных кодирующих частей РНК в разных клетках и системах бесклеточной трансляции. В то же время, обе этих лидерных последовательности не содержат сайтов внутренней посадки рибосом. Трансляционные свойства 5'-поли(А) и омега-лидерных последовательностей плохо описываются имеющейся моделью эукариотической инициации трансляции и могут быть объяснены реализацией иного механизма инициации трансляции на них.

Чтобы выяснить механизм инициации трансляции на 5'-поли(А) и омега- лидерных последовательностях, мы исследовали зависимость эффективности инициации трансляции на мРНК, содержавшей эти последовательности, от набора факторов инициации трансляции в системе, собранной из отдельных очищенных компонентов. Для того, чтобы получить данные этой зависимости, мы применили метод ингибирования удлинения праймера мРНК-рибосомными комплексами (тупринтинг) — метод, ранее хорошо зарекомендовавший себя для решения подобных задач. Нами был создан усовершенствованный вариант метода тупринтинга, в котором для обнаружения и подсчета кДНК продуктов обратной транскрипции используется флуоресцентная метка, а для их разделения — капиллярный электрофорез. Усовершенствованный метод тупринтинга позволяет обнаруживать и идентифицировать мРНК-рибосомные комплексы на всех стадиях трансляции (инициации, элонгации и терминации), а также быстро и точно подсчитывать количество обнаруженных мРПК-рибосомных комплексов и эффективность соответствующих стадий трансляции. Усовершенствованный метод тупринтинга имеет уникальные преимущества перед обычным вариантом метода с использованием, радиоактивных изотопов: благодаря возможности применять флуорофоры с разными спектральными' характеристиками, метод позволяет исследовать несколько мест сборки мРНК-рибосомных комплексов в одной и той же реакционной смеси независимо друг от друга.

Некэпированные мРНК с 5'-поли(А) и омега-лидерами продемонстрировали полную-независимость инициации трансляции на них от факторов сканирования — белков е1Р4А, еШ4В и е№4Р. Известно, что для типичной клеточной мРНК, например природной бета-глобиновой мРНК, требуется полный набор факторов инициации трансляции, включающий в себя белки еШ1, сШ1А, с1¥2, еШЗ, е1Р4А, е№4В и е1Р4Р, несмотря на отсутствие в лидере бета-глобиновой мРНК стабильных вторичных структур РНК. Эффективная инициация трансляции на мРНК с 5'-поли(А) и омега-лидерами без белков еШ4А/Р подразумевает энергонезависимый механизм инициации трансляции, в котором не используется энергия гидролиза АТФ. Так как ранее в нашей лаборатории было показано, что эффективность инициации трансляции не мРНК с поли(А)-лидером прямо зависит от длины поли(А)-лидера, то присоединение инициирующей малой рибосомной субъединицы должно происходить в этом случае по всей длине лидерной последовательности, а не только зависимо от 5-конца мРНК. Какой механизм может обеспечивать нахождение стартового кодона в этом случае после присоединения 40Б субъединицы рибосом к последовательности лидера мРНК? Механизм энергонезависимой одномерной диффузии был ранее предложен и подтвержден для объяснения нахождения стартового кодона, находящегося в составе многоцистронной мРНК прокариот, ЗОБ рибосомными субъединицами после терминации трансляции на предшествующем цистроне. По-видимому, такой же механизм «бесфазного блуждания» малых рибосомных субъединиц по лидерной последовательности мРНК реализуется у эукариот в случае е1Р4А/Р независимой инициации трансляции. Альтернативный механизм инициации трансляции, обнаруженный нами на мРНК с 5'-поли(А) и омега-лидерами, состоит из следующих этапов: (1) неспецифическое присоединение инициирующей малой рибосомной субъединицы к цепи лидерной последовательности мРНК, (2) ненаправленное, энергонезависимое диффузионное движение 40Б субъединицы рибосом вдоль цепи лидера, (3) фиксация на стартовом кодоне, когда нужный триплет мРНК в правильном нуклеотидном окружении окажется в Р-сайте рибосомы. Обнаруженный нами механизм инициации трансляции имеет значительные отличия как от канонической инициации трансляции посредством 5-концевой кэп-структуры мРНК и сканирования, так и от инициации трансляции на сайтах внутренней посадки рибосом. По-видимому, целесообразно выделение такого механизма инициации трансляции как отдельностоящего, третьего пути в существующей модели инициации трансляции у эукариот.

179

Эффективная инициация1 трансляции на мРНК с поли(А)-лидером- оказалась возможной без самого большого мультисубъединичного белка инициации трансляции — eIF3. Это уникальное свойство поли(А)-лидера: эффективная инициация трансляции без фактора инициации eIF3 известна только для ограниченного числа' вирусных сайтов« внутренней' посадки рибосом, и не наблюдается для других лидерных последовательностей, не содержащих сайты внутренней посадки рибосом. Несмотря на размер белка, функциональная активность eIF3 остается наименее точно обозначенной из всех основных факторов инициации трансляции. Независимость эффективности инициации трансляции на мРНК с поли(А)-лидером от фактора инициации eIF3 вместе с отсутствием структур сайтов внутренней посадки рибосом в этой последовательности позволила нам прояснить функцию этого белка в инициации трансляции. С помощью метода тупринтинга мы показали, что завершение инициации трансляции, включающее в себя гидролиз е1Р2-связанного ГТФ в составе 48S инициаторного комплекса, выход eIF2-GDP из состава инициаторного комплекса, присоединение eIF5B-GTP к инициаторному комплексу, гидролиз eIF5B-связанного ГТФ, отсоединение CIF5B-GDP и присоединение 60S рибосомных субъединиц с образованием 80S инициаторного комплекса, способного к элонгации, происходят без участия белка eIF3 с такой же эффективностью, как и в присутствии eIF3. Согласно данным других исследователей, отсоединение eIF3 от инициаторного комплекса происходило преимущественно после образования 80S инициаторного комплекса, что косвенно предполагало участие eIF3 во всех стадиях инициации трансляции. Данные, полученные нами, свидетельствуют о функциональной активности eIF3, необходимой только во время присоединения рибосом к мРНК, сканирования и образования инициаторного 48S комплекса. Чем могут объясняться уникальные трансляционные свойства поли(А)-лидеров мРНК, обеспечивающего е1РЗ-независимую инициацию трансляции? Возможно, эти свойства связаны со структурными особенностями РНК с поли(А)-последовательностями. Известно, что полирибонуклеотид (А)„ в растворе при физиологических условиях формирует стабильную одноцепочечную спираль, конформационно близкую к A-форме спирали РНК. В составе прокариотических инициаторных комплексов, структура которых детально изучена, 5'-лидерная часть мРНК формирует примерно один виток одноцепочечной А-спирали, стабилизированный в этом случае взаимодействиями с анти-Шайн-Дальгарно последовательностью pPHK. eIF3 располагается на эукариотической рибосоме в области 5'-лидерной части связанной мРНК, находящейся непосредственно перед стартовым' кодоном. Возможно, в случае гетеронуклеотидных последовательностей в лидерной части мРНК, eIF3 необходим для придания им нужной для связывания с 40S субъединицей рибосом конформации. поли(А)-лидерные последовательности обладают такой конформацией сами

180 по себе, и поэтому еШЗ не требуется для^ эффективной инициации трансляции» на них. Указанная вероятная функция еШЗ характеризует его активность на рибосоме как аналогичную функциям анти-Шайн-Дальгарно последовательности рРНК или белка Б1 у эубактерий и архей.

Уникальность укладки цепи РНК в полинуклеотиде, содержащем омега-последовательность, может способствовать образованиюь обособленной' и стабильной структуры в составе полноразмерной РНК ВТМ. Известно, что белок оболочки тобамовирусов взаимодействует с развернутой одноцепочечной конформацией РНК. Таким образом, тенденция омега-последовательности к формированию стабильной структуры должна уменьшать сродство белка оболочки ВТМ к этой последовательности, что может объяснять начало 5'-проксимальной разборки вириона ВТМ при его попадании в клетку, которое жизненно необходимо для репликации этого вируса. Здесь уместна аналогия с 3'-частью РНК ВТМ, для которой ранее было показано образование стабильных тРНК-подобных и псевдоузловых структур. Другими исследователями было показано, что 3'-проксимальные структуры РНК ВТМ необходимы для успешной репликации этого вируса в клетках хозяина. Возможно, что наличие способности к образованию этих структур в З1-концевой области РНК ВТМ также способствует началу репликации благодаря пониженному сродству белка оболочки к этой области РНК.

Несмотря на наличие стабильной вторичной и третичной структуры, омега-лидер обеспечивает эффективную кэп-независимую инициацию трансляции. Возможно, трехмерная конфигурация омега-РНК способствует облегченному присоединению 40Б субъединиц к этому лидеру и формирование 48Б инициаторного комплекса с высоким выходом без факторов сканирования — так же, как одноцепочечная спираль поли(А)-РНК, вероятно, обеспечивает еШЗ-независимую инициацию трансляции. Вместе с этим, структура омега-РНК ВТМ не обеспечивает высокоаффинного (и специфического) сродства этой последовательности к рибосомам или факторам инициации трансляции, как это имеет место в случае инициации трансляции на сайтах внутренней посадки рибосом. Эти факты приводят нас к заключению о том, что инициация трансляции на омега-лидере ВТМ может происходить по альтернативному пути, отличному от кэп-зависимого сканирования и инициации на сайтах внутренней посадки рибосом.

1. Разработан усовершенствованный метод ингибирования удлинения праймера мРНК-рибосомными комплексами (тупринтинг), в котором для мечения продуктов реакции обратной транскрипции используются флуоресцентные группы, а для их разделения применяется капиллярный электрофорез. Показано, что усовершенствованным методом тупринтинга можно обнаруживать, идентифицировать и количественно подсчитывать мРНК-рибосомные комплексы на всех стадиях трансляции: инициации, элонгации и терминации.

2. Методом тупринтинга показано, что поли(А)-лидер, характерный для мРНК осповирусов, обеспечивает эффективную инициацию трансляции на рекомбинантной мРНК без факторов инициации е1Р4А, е1Р4В и е1Р4Р, ответственных за АТФ-зависимое сканирование, а также без белка е1РЗ. Методом тупринтинга на мРНК с поли(А)-лидером показано также, что фактор инициации е1РЗ не требуется для объединения субъединиц рибосом при инициации трансляции.

3. Методом тупринтинга показано, что для сборки инициаторного 48Б комплекса на омега-лидере вируса табачной мозаики не требуется факторов инициации трансляции еШ4А и е1Р4Р, ответственных за АТФ-зависимое сканирование, но требуется е№3.

4. Изучена структура омега-лидера РНК вируса табачной мозаики. а) Методами аналитического центрифугирования и теплового плавления показано, что РНК с последовательностью омега-лидера геномной РНК вируса табачной мозаики обладает коэффициентом седиментации, характерным для компактно уложенных РНК и имеет большую величину гиперхромного эффекта при плавлении, сопровождающимся кооперативным структурным переходом в области высоких температур б) Методами химического и энзиматического тестирования, а также методом ядерного магнитного резонанса, показано, что центральная (САА)„-содержащая часть омега-РНК не модифицируется агентами, действующими на одноцепочечную РНК, а вся структура омега-РНК формирует укладку на основе неканонических взаимодействий нуклеотидов.

5. Предложена модель альтернативного механизма инициации трансляции на А-обогащенных лидерных последовательностях эукариотических мРНК. Модель предполагает посадку инициирующей субъединицы рибосом в произвольном месте лидерной последовательности мРНК и ее последующее энергонезависимое диффузионное движение («бесфазное блуждание») по цепи мРНК.

5.3.9. Заключение

Методами скоростного ультрацентрифугирования, температурного плавления и ядерного магнитного резонанса мы показали, что РНК, содержащая. омега-РНК ВТМ, имеет коэффициент седиментации компактно свернутой РНК и кооперативно плавится при высокой температуре. Следовательно, эта РНК формирует стабильную и компактную структуру в растворе при физиологических условиях. Омега-РНК — известный

174 универсальный усилитель эффективности трансляции открытых рамок считывания, белков. Основным доводом исследователей, изучавших ранее эффект усиления трансляции мРНК омега-лидером, было объяснение эффективной инициации трансляции омега-лидером через презумпцию неструктурированности этой РНК. Неструктурированность (или низкая структурированность) омега-РНК подтверждалась в первую - очередь невозможностью предсказания ее вторичной структуры стандартными методами компьютерного моделирования. На основе природной последовательности' омега-РНК другими исследователями ранее был предложен эффективный «неструктурированный» синтетический лидер РНК — последовательность (САА)щ. Компактность и температурная стабильность (CAA)i9-PHK, определенные нами, не позволяют идентифицировать (CAA) 19 РНК как неструктурированную РНК.

Методами химического и энзиматического тестирования, а также методом ядерного магнитного резонанса, мы показали, что центральная (САА)„-содержащая часть омега-РНК не модифицируется агентами, действующими на одноцепочечную РНК, а вся структура омега-РНК формирует укладку на основе неканонических взаимодействий нуклеотидов. Следовательно, омега-РНК имеет стабильную вторичную структуру не уотсон-криковского типа. Эта структура может быть основана на структуре тройной спирали (CAA) 19. На основе данных о расщеплении коротких участков в З'-проксимальной (А,и)„-содержащей области омега-РНК РНКазой VI, высоком коэффициенте седиментации этой РНК и консервативности последовательностей в 3'-(А,и)„-области омега-РНК, мы предположили, что 3'-проксимальные (А,^„-последовательности омега-РНК могут принимать участие в третичных взаимодействиях в составе структуры этой РНК.

Методами скоростного ульграцентрифугирования и температурного плавления мы исследовали гидродинамические свойства РНК, содержавших последовательности омега-РНК, измененные в местах, которые по нашим предположениям являлись ключевыми для формирования стабильной и компактной структуры этой РНК. В частности, РНК с заменами трех аденинов на три цитозина в составе (САА)„-содержащей части омега-последовательности обладала существенно более низким коэффициентом седиментации, а также меньшим гипохромизм и кооперативностью структурного перехода при плавлении, чем исходная омега-РНК. Замена трех аденинов на три цитозина была предложена для омега-РНК как воздействие, способное дестабилизировать возможную тройную спираль РНК в этой молекуле. Таким образом, этот результат является доводом в пользу существования тройной спирали предложенного типа в омега-РНК. РНК, в которой консервативные 3'-проксимальные (А,^„-последовательности омега-РНК были замещены на (G,C)„-последовательности, также показала снижение коэффициента седиментации, (потерю

175 компактности) и практически полное отсутствие кооперативности плавления и уменьшенный гиперхромный эффект (потерю стабильности). Следовательно, 3'-проксимальные (А,^„-последовательности омега-РНК принимают участие в стабилизации и компактизации общей третичной укладки этой РНК.

Методом тупринтинга мы показали, что для сборки инициаторного 48Б комплекса на омега-РНК не требуется факторов инициации трансляции, ответственных за АТФ-зависимое сканирование: е1Р4А/Р. Так как омега-РНК обеспечивает эффективную кэп-независимую инициацию трансляции без АТФ-зависимого сканирования, но не содержит явных сайтов внутренней посадки рибосом, этот лидер инициирует трансляцию по альтернативному механизму. Так же, как и в случае поли(А)-лидеров РНК, на РНК с 5'-омега-послсдовательностью возможно неспецифическое присоединение инициирующей рибосомной субъединицы к последовательности лидера, с последующим «бесфазным блужданием» малой субъединицы рибосом по цепи лидера до нахождения инициаторного кодона. Способность формировать 48Б комплекс без АТФ была показана ранее другими исследователями для (САА)19-лидера РНК - что объяснялось неструктурированной природой и одноцепочечной конфигурацией (САА)19-РНК ([109]). В то же время хорошо известно, что инициация трансляции на лидере мРНК белка бета-глобина требует участия факторов АТФ-зависимого сканирования ([109, 167]), и методами энзиматического тестирования структуры РНК было показано, что РНК с последовательностью лидера бета-глобиновой мРНК находится в растворе в преимущественно неструктурированном виде [338, 846]. Следовательно, именно структурные особенности омега-последовательности могут быть ответственны за эффективную инициацию трансляции на мРНК с омега-ли дером.

Библиография Диссертация по биологии, кандидата биологических наук, Широких, Николай Эдуардович, Пущино

1. А.С. Спирин (2001) Биосинтез белков, мир РНК и происхождение жизни. Вестник РАН, 71(4): 320-328.

2. А.С. Спирин (2005) Мир РНК и его эволюция. Молекулярная биология, 39(4): 550-556.

3. A.S. Spirin (1994) Storage of messenger RNA in eukaryotes: envelopment with protein, translational barrier at 5' side, or conformational masking by 3' side? Mol Reprod Dev, 38(1): 107-117.

4. J.R. Buchan and R. Parker (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell, 36(6): 932-941.

5. K. Van Der Kelen, R. Beyaert, D. Inze, and L. De Veylder (2009) Translational control of eukaryotic gene expression. CritRev Biochem Mol Biol, 44(4): 143-168.

6. V. Balagopal and R. Parker (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol, 21(3): 403-408.

7. Z.S. Kai and A.E. Pasquinelli (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol, 17(1): 5-10.

8. S. Zhao and M.F. Liu (2009) Mechanisms of microRNA-mediated gene regulation. Sci China С LifeSci, 52(12): 1111-1116.

9. W.M. Li, T. Barnes, and C.H. Lee (2010) Endoribonucleases-enzymes gaining spotlight in mRNA metabolism. FEBSJ, 277(3): 627-641.

10. M. Chekulaeva and W. Filipowicz (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol, 21(3): 452-460.

11. J.M. Andrade, V. Pobre, I.J. Silva, S. Domingues, and C.M. Arraiano (2009) The role of 3'-5' exoribonucleases in RNA degradation. Prog Mol Biol Trans! Sci, 85: 187-229.

12. G. Neu-Yilik and A.E. Kulozik (2008) NMD: multitasking between mRNA surveillance and modulation of gene expression. Adv Genet, 62:185-243.

13. O. Muhlemann, A.B. Eberle, L. Stalder, and R. Zamudio Orozco (2008) Recognition and elimination of nonsense mRNA. Biochim Biophys Acta, 1779(9): 538-549.

14. M. Schmid and Т.Н. Jensen (2008) Quality control of mRNP in the nucleus. Chromosoma, 117(5): 419-429.

15. L. Stalder and 0. Muhlemann (2008) The meaning of nonsense. Trends Cell Biol, 18(7): 315321.

16. A.B. Shyu, M.F. Wilkinson, and A. van Hoof (2008) Messenger RNA regulation: to translate or to degrade. EMBO., 27(3): 471-481.

17. N. Sonenberg and A.G. Hinnebusch (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 136(4): 731-745.

18. A.G. Ryazanov 2002) Elongation factor-2 kinase and its newly discovered relatives. FEBS Lett, 514(1): 26-29.

19. A.G. Ryazanov and A.S. Spirin (1990) Phosphorylation of elongation factor 2: a key mechanism regulating gene expression in vertebrates. New Biol, 2(10): 843-850.

20. D.H. Lackner and J. Bahler (2008) Translational control of gene expression from transcripts to transcriptomes. IntRev Cell Mol Biol, 271: 199-251.

21. M.A. Aitkhozhin, N.V. Belitsina, and A.S. Spirin (1964) Nucleic Acids in the Early Stages of Development of Fish Embryos (Based on the Loach Misgurnus Fossilis).. Biokhimiia, 29: 169175.

22. N.V. Belitsina, M.A. Aitkhozhin, L.P. Gavrilova, and A.S. Spirin (1964) the Messenger Ribonucleic Acids of Differentiating Animal Cells.. Biokhimiia, 29: 363-374.

23. A.S. Spirin, N.V. Belitsina, and M.A. Aitkhozhin (1964) Messenger Rna in Early Embryogenesis.. Zh Obshch Biol, 25: 321-338.

24. A.S. Spirin and N.V. Belitsina (1965) Messenger RNA in early embryogenesis. Usp Sovrem Biol, 59(2): 187-204.

25. A.S. Spirin, N.V. Belitsina, and M.A. Aitkhozhin (1965) Messenger RNA in early embryogenesis. FedProc TranslSuppl, 24(5): 907-915.

26. A.S. Spirin and M. Nemer (1965) Messenger RNA in early sea-urchin embryos: cytoplasmic particles. Science, 150(693): 214-217.

27. A.S. Spirin (1966) "Masked" forms of mRNA Curr Top Dev Biol, 1: 1-38.

28. A.S. Spirin (1978) Eukaryotic messenger RNA and informosomes. Omnia mea mecum porto. FEBS Lett, 88(1): 15-17.

29. J. Kruh and H. Borsook(1956) Hemoglobin synthesis in rabbit reticulocytes in vitro. / Biol Chem, 220(2): 905-915.

30. G.P. Bruns and I.M. London (1965) The Effect of Hemin on the Synthesis of Globin. Biochem Biophys Res Commun, 18: 236-242.

31. B. Hardesty, R. Miller, and R. Schweet (1963) Polyribosome Breakdown and Hemoglobin Synthesis. Proc Natl Acad Sci USA, 50: 924-931.

32. E. Ehrenfeld and T. Hunt (1971) Double-stranded poliovirus RNA inhibits initiation of protein synthesis by reticulocyte lysates. Proc Natl Acad Sci USA, 68(5): 1075-1078.

33. M.B. Mathews, Т. Hunt, and A. Brayley (1973) Specificity of the control of protein synthesis by,' haemin. Nat New Biol, 243(129): 230-233.

34. P.J. Farrell, K. Balkow, T. Hunt, R.J. Jackson, and H. Trachsel (1977) Phosphorylation of initiationfactor elF-2 and the control of reticulocyte protein synthesis. Cell, 11(1): 187-200.

35. Y. Liu, E. Wimmer, and!A.V. Paul (2009) Cis-acting RNA elements in human?and animal plusstrand RNA viruses. Biochim BiophysActa, 1789(9-10): 495-517.

36. A.V. Komarova, A.L. Haenni, and B.C. Ramirez (2009) Virus versus host cell translation love and hate stories. Adv Virus Res, 73: 99-170.

37. T.W. Dreher (2009) Role of tRNA-like structures in controlling plant virus replication. Virus Res, 139(2): 217-229.

38. I. Brierley and F.J. Dos Ramos (2006) Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res, 119(1): 29-42.

39. I. Mohr (2006) Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Res, 119(1): 89-99.

40. K.M. Bedard and B.L. Semler (2004) Regulation of picornavirus gene expression. Microbes Infect, 6(7): 702-713.

41. T. Geoghegan, S. Cereghini, and G. Brawerman (1979) Inactive mRNA-protein complexes from mouse sarcoma-180 ascites cells. Proc Natl Acad Sci U S A, 76(11): 5587-5591.

42. A.J. Kinniburgh, M.D. McMullen, and Т.Е. Martin (1979) Distribution of cytoplasmic poly(A+)RNA sequences in free messenger ribonucleoprotein and polysomes of mouse ascites cells.У Mo/ Biol, 1324): 695-708.

43. A.J. Ouellette, C.P. Ordahl, J. Van Ness, and R.A. Malt (1982) Mouse kidney nonpolysomal messenger ribonucleic acid: metabolism, coding function, and translational activity. Biochemistry, 21(6): 1169-1177.

44. A. Marintchev and G. Wagner (2004) Translation initiation: structures, mechanisms and evolution. Q RevBiophys, 37(3-4): 197-284.

45. A.C. Спирин, H.B. Белицина, and M.A. Айтхожин (1964) Информационные РНК в раннем эмбриогенезе. Журнал Общая Биология, 25: 321-338.

46. A.S. Spirin (1969) The second Sir Hans Krebs Lecture. Informosomes. Eur J Biochem, 10(1): 2035.

47. A.S. Weisberger and S.A. Armentrout (1966) Directed protein synthesis by messenger ribonucleoprotein and ribosomes from different mammalian species. Proc Natl Acad Sci USA, 56(5): 1612-1619.

48. A. Burny, G. Huez, G. Marbaix, and H. Chantrenne (1969) On a messenger ribonucleoprotein complex from rabbit reticulocytes. Biochim BiophysActa, 190(1): 228-231.

49. E.S. Gander, R.U. Mueller, S. Goldenberg, and C. Morel (1975) EDTA-and puromycin-derived. duck- and rabbit globin-messenger ribonucleoprotein complexes isolated by oligo (dT)-cellulose chromatography. Mol Biol Rep, 2(4): 343-349.

50. D. Irwin, A. Kumar, and R.A. Malt (1975) Messenger ribonucleoprotein complexes isolated with oligo(dT)-cellulose chromatography from kidney polysomes. Cell, 4(2): 157-165.185

51. HiM. Princen, C.A. van Eekelen, F.A. Asselbergs, and W.J. van,Venrooij (1979) Free cytoplasmic messenger ribonucleoprotein complexes from rabbit reticulocytes. Mol Biol Rep, 5(1-2): 59-64.

52. R.T. Moon (1983) Poly(A)-containing messenger ribonucleoprotein complexes from sea urchin eggs and embryos: polypeptides associated with native and UV-crosslinked mRNPs. Differentiation, 24(1): 13-23.

53. W.B. Minich, E.V. Volyanik, N.L. Korneyeva, Y.V. Berezin, and L.P. Ovchinnikov (1990) Cytoplasmic mRNP proteins affect mRNA translation. Mol Biol Rep, 14(2-3): 65-67.

54. N. Standart (1993) The RNA-protein partners in mRNP. Mol Biol Rep, 18(2): 135-142.

55. F. Stutz and E. Izaurralde (2003) The interplay of nuclear mRNP assembly, mRNA surveillance and export Trends Cell Biol, 13(6): 319-327.

56. A.A. Preobrazhensky and A.S. Spirin (1978) Informosomes and their protein components: the present state of knowledge. Prog Nucleic Acid Res Mol Biol, 21: 1-38.

57. L.P. Ovchinnikov and A.S. Spirin (1970) Ribonucleoprotein particles in cytoplasmic extracts of animal cells. Naturwissenschaften, 57(11): 514-521.

58. S. Mili, H.J. Shu, Y. Zhao, and S. Pinol-Roma (2001) Distinct RNP complexes of shuttling hnRNP proteins with pre-mRNA and mRNA: candidate intermediates in formation and export of mRNA Mol Cell Biol, 21(21): 7307-7319.

59. G. Dreyfuss, V.N. Kim, and N. Kataoka (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol, 3(3): 195-205.

60. L.P. Ovchinnikov, M.A. Skabkin, P.V. Ruzanov, and V.M. Evdokimova (2001) Major mRNP proteins in the structural organization and function of mRNA in eukaryotic cells. Mol Biol (Mosk), 35(4): 548-558.

61. T. Urushibara, Y. Furuichi, C. Nishimura, and K. Miura (1975) A modified structure at the 5'-terminus of mRNA of vaccinia virus. FEBS Lett, 49(3): 385-389.

62. Y. Furuichi, M.A. Morgan, and A.J. Shatkin (1979) Synthesis and translation of mRNA containing 5'-terminal 7-ethylguanosine cap .J Biol Chem, 254(14): 6732-6738.

63. Y. Furuichi, K. Shimotohno, and K. Miura (1977) The 5'-terminal cap structure of eukaryotic messenger RNAs (author's transl). Tanpakushitsu Kakusan Koso, 22 Spec No(7): 931-950.

64. A.J. Shatkin and J.L. Manley (2000) The ends of the affair: capping and polyadenylation. Nat Struct Biol, 7(10): 838-842.

65. G.P. Georgiev (1972) The structure of transcriptional units in eukaryotic cells. Curr Top Dev Biol, 7:1-60.

66. G. Schutz, M. Beato, and P. Feigelson (1972) Isolation of eukaryotic messenger RNA on cellulose and its translation in vitro. Biochem Biophys Res Commun, 49(3): 680-689.

67. J.D. Lewis, S.I. Gunderson, and I.W. Mattaj (1995) The influence of 5' and 3' end structures on pre-mRNA metabolism. . Cell Sci Suppl, 19:13-19.

68. A. Cochrane (2009) How does the journey affect the message(RNA)? RNA Biol, 6(2): 169-170.

69. M. Kozak (1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell, 15(4): 1109-1123.

70. X. Jiao, S. Xiang, C. Oh, C.E.,Martin, L. Tong, and M. Kiledjian (2010)Tdentificationofa quality-control mechanism for mRNA 5'-end capping. Nature, 467(7315): 608-611.

71. V.H. Cowling (2010) Regulation of mRNA cap methylation. Biochem J, 425(2): 295-302.

72. N. Cougot, E. van Dijk, S. Babajko, and B. Seraphin (2004) 'Cap-tabolism'. Trends Biochem Sci, 29(8): 436-444.

73. Y. Furuichi and A.J. Shatkin (2000) Viral and cellular mRNA capping: past and prospects. Adv Virus Res, 55: 135-184.

74. M. Kozak (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res, 12(2): 857-872.

75. H. Liu and M. Kiledjian (2005) Scavenger decapping activity facilitates 5' to 3' mRNA decay. Mol Cell Biol, 25(22): 9764-9772.

76. L.D. Kapp and J.R. Lorsch (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem, 73: 657-704.

77. A.M. Cigan, L. Feng, and T.F. Donahue (1988) tRNAi(met) functions in directing the scanning ribosome to the start site of translation. Science, 242(4875): 93-97.

78. D.S. Peabody (1989) Translation initiation at non-AUG triplets in mammalian cells. / Biol Chem, 264(9): 5031-5035.

79. M. Kozak (1991) An analysis of vertebrate mRNA sequences: intimations of translational control ./ Cell Biol, 115(4): 887-903.

80. I. Huez, S. Bornes, D. Bresson, L. Creancier, and H. Prats (2001) New vascular endothelial growth factor isoform generated by internal ribosome entry site-driven CUG translation initiation. Mol Endocrinol, 15(12): 2197-2210.

81. H. Prats, M. Kaghad, A.C. Prats, et al. (1989) High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci USA, 86(6): 18361840.

82. R. Boeck and D. Kolakofsky (1994) Positions +5 and +6 can be major determinants of the efficiency of non-AUG initiation codons for protein synthesis. EMBO /, 13(15): 3608-3617.

83. R. Boeck, J. Curran, Y. Matsuoka, R. Compans, and D. Kolakofsky (1992) The parainfluenza virus type 1 P/C gene uses a very efficient GUG codon to start its C' protein. J Virol, 66(3): 17651768.

84. M. Kozak (1983) Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev, 47(1): 1-45.

85. M. Kozak (1989) The scanning model for translation: an update./ Cell Biol, 108(2): 229-241.

86. M. Kozak (1987) An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res, 15(20): 8125-8148.

87. M. Kozak (1989) Context effects and inefficient initiation at non-AUG codons in eucaryotic cellfree translation systems. Mol Cell Biol, 9(11): 5073-5080.

88. A.V. Kochetov (2008) Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays, 30(7): 683-691.

89. A.V. Kochetov, S. Ahmad) V. Ivanisenko, O.A. Volkova, N.A. Kolchanov, and A. Sarai (2008) uORFs, reinitiation and alternative translation start sites inihuman mRNAs. FEBS Lett, 582(9): 1293-1297.

90. M. Kozak (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J, 16(9): 2482-2492.

91. M. Kozak (1999) initiation of translation in prokaryotes and eukaryotes. Gene, 234(2): 187208.

92. W.C. Merrick, J. Hershey, A.S. Spirin, and N. Sonenberg (1996) Translational Control, ed. J. Hershey, M.B. Mathews, and N. Sonenberg. New York, Cold Spring Harbor Laboratory press.

93. S. Grunert and RJ. Jackson (1994) The immediate downstream codon strongly influences the efficiency of utilization of eukaryotic translation initiation codons. EMBO J, 13(15): 3618-3630.

94. G. Pesole, G. Bernardi, and C. Saccone (1999) Isochore specificity of AUG initiator context of human genes. FEBS Lett, 464(1-2): 60-62.

95. D.R. Cavener and S.C. Ray (1991) Eukaryotic start and stop translation sites. Nucleic Acids Res, 19(12): 3185-3192.

96. C.P. Joshi, H. Zhou, X. Huang, and V.L. Chiang (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol, 35(6): 993-1001.

97. R. Hamilton, C.K. Watanabe, and H.A. de Boer (1987) Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res, 15(8): 3581-3593.

98. R.E. Lockard, J.F. Connaughton, and A. Kumar (i982) Nucleotide sequence of the 5'- and 3'-domains for rabbit 18S ribosomal RNA Nucleic Acids Res, 10(11): 3445-3457.

99. U. Maitra, E.A. Stringer, and A. Chaudhuri (1982) Initiation factors in protein» biosynthesis. Annu Rev Biochem, 51: 869-900.

100. R. Saito and M. Tomita (1999) On negative selection against ATG triplets near start codons in eukaryotic and prokaryotic genomes./ Mol Evol, 48(2): 213-217.

101. A.V. Kochetov (2005) AUG codons at the beginning of protein coding sequences are frequent in eukaryotic mRNAs with a suboptimal start codon context Bioinformatics, 21(7): 837-840.

102. M.C. Ganoza, E.C. Kofoid, P. Marliere, and B.G. Louis (1987) Potential secondary structure at translation-initiation sites. Nucleic Acids Res, 15(1): 345-360.

103. G. Pesole, F. Mignone, C. Gissi, G. Grillo, F. Licciulli, and S. Liuni (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene, 276(1-2): 73-81.

104. G. Pesole, S. Liuni, G. Grillo, and C. Saccone (1997) Structural and compositional features of untranslated regions of eukaryotic mRNAs. Gene, 205(1-2): 95-102.

105. A.M. Cigan and T.F. Donahue (1987) Sequence and structural features associated with translational initiator regions inyeast-a review. Gene, 59(1): 1-18.

106. C.P. Joshi (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res, 15(16): 6643-6653.

107. A.V. Kochetov, I.V. Ischenko, D.G. Vorobiev, A.E. Kel, V.N. Babenko, L.L. Kisselev, and N.A. Kolchanov (1998) Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Lett, 440(3): 351-355.

108. L. Kisselev, M. Ehrenberg, and L. Frolova (2003) Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J, 22(2): 175-182.

109. E.Z. Alkalaeva, A.V. Pisarev, L.Y. Frolova, L.L. Kisselev, and T.V. Pestova (2006) In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRFl and eRF3. Cell, 125(6): 1125-1136.

110. B. Mazumder, V. Seshadri, and P.L. Fox (2003) Translational control by the 3'-UTR: the ends specify the means. Trends Biochem Sci, 28(2): 91-98.

111. R.J. Jackson and N. Standart (1990) Do the poly(A) tail and 3' untranslated region control mRNA translation? Cell, 62(1): 15-24.

112. C. Merritt, D. Rasoloson, D. Ko, and G. Seydoux (2008) 3' UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol, 18(19): 1476-1482.

113. C.H. de Moor, H. Meijer, and S. Lissenden (2005) Mechanisms of translational control by the 3' UTR in development and differentiation. Semin Cell Dev Biol, 16(1): 49-58.

114. J. Hesketh (2004) 3'-Untranslated regions are important in mRNA localization and translation: lessons from selenium and metallothionein. Biochem Soc Trans, 32(Pt 6): 990-993.

115. S. Kuersten and E.B. Goodwin (2003) The power of the 3' UTR: translational control and development Nat Rev Genet, 4(8): 626-637.

116. N.J. Proudfoot, A. Furger, and M.J. Dye (2002) Integrating mRNA processing with transcription. Cell, 108(4): 501-512.

117. T. Raabe, K.G. Murthy, and J.L. Manley (1994) Poly(A) polymerase contains multiple functional domains. Mol Cell Biol, 14(5): 2946-2957.

118. D. Munroe and A. Jacobson (1990) Tales of poly(A): a review. Gene, 91(2): 151-158.

119. A. Sachs and E. Wahle (1993) Poly(A) tail metabolism and function in eucaryotes./ Biol Chem, 268(31): 22955-22958.

120. D. Munroe and A. Jacobson (1990) mRNA poly(A) tail, a 3' enhancer of> translational initiation. Mol Cell Biol, 10(7): 3441-3455.

121. D.R. Gallie and R. Tanguay (1994) Poly(A) binds to initiation factors and increases cap-dependent translation in vitro .J Biol Chem, 269(25): 17166-17173.

122. S. Slomovic, V. Portnoy, and G. Schuster (2008) Detection and» characterization^ of polyadenylated RNA in Eukarya, Bacteria, Archaea, and organelles. Methods Enzymol; 447: 501-520.

123. D.R. Morris and A.P. Geballe (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol, 20(23): 8635-8642.

124. A.G. Hinnebusch (1993) Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol, 10(2): 215-223.

125. A.G. Hinnebusch (1994) Translational control of GCN4: an in vivo barometer of initiation-factor activity. Trends Biochem Sci, 19(10): 409-414.

126. A.G. Hinnebusch (1997) Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem, 272(35): 21661-21664.

127. M. Kozak (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299(1-2): 1-34.

128. J.E. Wilson, M.J. Powell, S.E. Hoover, and P. Sarnow (2000) Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol, 20(14): 4990-4999.

129. A.V. Pisarev, N.E. Shirokikh, and C.U. Hellen (2005) Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites. C R Biol, 328(7): 589-605.

130. D.S. Adams, D. Noonan, and W.R. Jeffeiy (1980) A model for the organization of the poly(A) . protein complex in messenger ribonucleoprotein. FEBS Lett, 114(1): 115-118.

131. R.C. Deo, J.B. Bonanno, N. Sonenberg, and S.K. Burley (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell, 98(6): 835-845.

132. U. Kuhn and E. Wahle (2004) Structure and function of poly(A) binding proteins. Biochim BiophysActa, 1678(2-3): 67-84.

133. Y.V. Svitkin and N. Sonenberg (2006) Translational control by the poly(A) binding protein: a check for mRNA integrity. Mol Biol (Mosk), 40(4): 684-693.

134. D.R. Gallie (1998) A tale of two termini: a functional interaction between.the termini of an mRNA is a prerequisite for efficient translation initiation. Gene, 216(1): 1-11.

135. Y.M. Michel, D. Poncet, M. Piron, K.M. Kean, and A.M. Borman (2000) Cap-Poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J Biol Chem, 275(41): 32268-32276.

136. S. Cheng, S. Sultana, D.J. Goss, and D.R. Gallie (2008) Translation initiation factor 4B homodimerization, RNA binding, and interaction with Poly(A)-binding protein are enhanced by zinc. J Biol Chem, 283(52): 36140-36153.

137. N. Hosoda, T. Kobayashi, N. Uchida, Y. Funakoshi, Y. Kikuchi, S. Hoshino, and T. Katada (2003) Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. / Biol Chem, 278(40): 38287-38291.

138. N. Uchida, S. Hoshino, H. Imataka, N. Sonenberg, and T. Katada (2002) A novel role of the mammalian GSPT/eRF3 associating with poly (A)-binding protein in Cap/Poly(A)-dependent translation./Biol Chem, 277(52): 50286-50292.

139. S. Hoshino, N. Hosoda, Y. Araki, T. Kobayashi, N. Uchida, Y. Funakoshi, and T. Katada (1999) Novel function of the eukaryotic polypeptide-chain releasing factor 3 (eRF3/GSPT) in the mRNA degradation pathway. Biochemistry (Mosc), 64(12): 1367-1372.

140. M.A. Skabkin, O.I. Kiselyova, K.G. Chernov, A.V. Sorokin, E.V. Dubrovin, I.V. Yaminsky, V.D. Vasiliev, and L.P. Ovchinnikov (2004) Structural organization of mRNA complexes with major core mRNP protein YB-1. Nucleic Acids Res, 32(18): 5621-5635.

141. M.A. Skabkin, V. Evdokimova, A.A. Thomas, and L.P. Ovchinnikov (2001) The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing. J Bio! Chem, 276(48): 44841-44847.

142. O.V. Skabkina, M.A. Skabkin, D.N. Lyabin, and L.P. Ovchinnikov (2004) P50/YB-1, a major protein of cytoplasmic mRNPs, regulates its own synthesis. Dokl Biochem Biophys, 395: 93-95.

143. Y.V. Svitkin, L.P. Ovchinnikov, G. Dreyfuss, and N. Sonenberg (1996) General RNA binding proteins render translation cap dependent EMBO J, 15(24): 7147-7155.

144. V. Evdokimova, P. Ruzanov, H. Imataka, B. Raught, Y. Svitkin, L.P. Ovchinnikov, and N. Sonenberg (2001) The major mRNA-associated protein YB-1 is a potent 5' cap-dependent mRNA stabilizer. EMBO J, 20(19): 5491-5502.

145. W.B. Minich and L.P. Ovchinnikov (1992) Role of cytoplasmic mRNP proteins in translation. Biochimie, 74(5): 477-483.

146. K.S. Browning, D.R. Gallie, J.W. Hershey, A.G. Hinnebusch, U. Maitra, W.C. Merrick, and C. Norbury 2001. Unified nomenclature for the subunits of eukaryotic initiation factor 3. Trends Biochem Sci, 26(5]: 284.

147. N.C. Kyrpides and C.R. Woese (1998) Universally conserved translation initiation factors. Proc Natl Acad Sci USA, 95(1): 224-228.

148. T. von der Haar and J.E. McCarthy (2002) Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function. Mol Microbiol, 46(2): 531544.

149. E. Sanz, L. Yang, T. Su, D.R. Morris, G.S. McKnight, and P.S. Amieux (2009) Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci USA, 106(33): 13939-13944.

150. R. Duncan and J.W. Hershey (1983) Identification and quantitation of levels of protein synthesis initiation factors in crude HeLa cell lysates by two-dimensional polyacrylamide gel electrophoresis./ Biol Chem, 258(11): 7228-7235.

151. C.L. Wei, S.E. MacMillan, and J.W. Hershey (1995) Protein synthesis initiation factor elF-lA is a moderately abundant RNA-binding protein. / Biol Chem, 270(11): 5764-5771.

152. I.B. Lomakin, N.E. Shirokikh, M.M. Yusupov, C.U. Hellen, and T.V. Pestova (2006) The fidelity of translation initiation: reciprocal activities of elFl, IF3 and YciH. EMBO., 25(1): 196-210.

153. T.V. Pestova, S.I. Borukhov, and C.U. Hellen (1998) Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature, 394(6696): 854-859.

154. I.B. Lomakin, V.G. Kolupaeva, A. Marintchev, G. Wagner, and T.V. Pestova (2003) Position of eukaryotic initiation factor elFl on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev, 17(22): 2786-2797.

155. H.J. Yoon and T.F. Donahue (1992) The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon. Mol Cell Biol, 12(1): 248-260.

156. Y.N. Cheung, D. Maag, S.F. Mitchell, et al. (2007) Dissociation of elFl from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev, 21(10): 1217-1230.

157. S.F. Mitchell and J.R. Lorsch (2008) Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition. / Biol Chem, 283(41): 27345-27349.

158. Y. Cui, j.D. Dinman, T.G. Kinzy, and S.W. Peltz (1998) The Mof2/Suil protein is a general monitor of translational accuracy. Mol Cell Biol, 18(3): 1506-1516.

159. H. Miyasaka, S. Endo, and H. Shimizu (2010) Eukaryotic translation initiation factor 1 (elFl), the inspector of good AUG context for translation initiation, has an.extremely bad AUG context J Biosci Bioeng, 109(6): 635-637.

160. Y. Yu, A. Marintchev, V.G. Kolupaeva, et al. (2009) Position of eukaryotic translation initiation factor elFIA on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res, 37(15): 5167-5182.i

161. M.G. Acker, B.S. Shin, J.S. Nanda, A.K. Saini, T.E. Dever, and J.R. Lorsch (2009) Kinetic analysis of late steps of eukaryotic translation initiation./ Mol Biol, 385(2): 491-506.

162. J.M. Fringer, M.G. Acker, C.A. Fekete, J.R. Lorsch, and T.E. Dever (2007) Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol Cell Biol, 27(6): 2384-2397.

163. C.A. Fekete, D.J. Applefield, S.A. Blakely, N. Shirokikh, T. Pestova, J.R. Lorsch, and A.G. Hinnebusch (2005) The elFIA C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J, 24(20): 3588-3601.

164. T. Ito, A. Marintchev, and G. Wagner (2004) Solution structure of human initiation factor eIF2alpha reveals homology to the elongation factor eEFlB. Structure, 12(9): 1693-1704.

165. E. Schmitt, M. Naveau, and Y. Mechulam (2010) Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett, 584(2): 405-412.

166. T.E. Dever (1999) Translation initiation: adept at adapting. Trends Biochem Sci, 24(10): 398403.

167. P. Anderson and N. Kedersha (2002) Visibly stressed: the role of elF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones, 7(2): 213-221.

168. S. Das and U. Maitra (2000) Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and elF5 in eIF5 function in vitro and in vivo. Mol Cell Biol, 20(11): 3942-3950.

169. R. Gonsky, M.A. Lebendiker, R. Harary, Y. Banai, and R. Kaempfer (1990) Binding of ATP to eukaryotic initiation factor 2. Differential modulation of mRNA-binding activity and GTP-dependent binding of methionyl-tRNAMetf./B/o/ Chem, 265(16): 9083-9089.

170. K. Mitsui, A. Datta, and S. Ochoa (1981) Removal of beta subunit of the eukaryotic polypeptide chain initiation factor 2 by limited proteolysis. Proc Natl Acad Sci U S A, 78(7): 4128-4132.

171. N.C. Kyrpides and C.R. Woese (1998) Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families. Proc Natl Acad Sci USA, 95(7): 3726-3730.

172. L. Yatime, Y. Mechulam, S. Blanquet, and E. Schmitt (2007) Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states. Proc Natl Acad Sci USA, 104(47): 18445-18450.

173. L.D. Kapp and J.R. Lorsch (2004) GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2J Mol Biol, 335(4): 923-936.

174. J. Chaudhuri, D. Chowdhury, and U. Maitra (1999) Distinct functions of eukaryotic translation initiation factors elFIA and eIF3 in the formation of the 40 S ribosomal preinitiation complex. J Biol Chem, 274(25): 17975-17980.

175. I.M. Terenin, S.E. Dmitriev, D.E. Andreev, and I.N. Shatsky (2008) Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat Struct Mol Biol, 15(8): 836-841.

176. T.V. Pestova, S. de Breyne, A.V. Pisarev, I.S. Abaeva, and C.U. Hellen (2008) eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II. EMBO J, 27(7): 1060-1072.

177. H. Allam and N. Ali (2010) Initiation factor eIF2-independent mode of c-Src mRNA translation occurs via an internal ribosome entry site. / Biol Chem, 285(8): 5713-5725.

178. A.M. Lancaster, E. Jan, and P. Sarnow (2006) Initiation factor-independent translation mediated by the hepatitis C virus internal ribosome entry site. RNA, 12(5): 894-902.

179. R.C. Cevallos and P. Sarnow (2005) Factor-independent assembly of elongation-competent ribosomes by an internal ribosome entry site located in an RNA virus that infects penaeid shrimp.; Virol, 79(2): 677-683.

180. E. Jan and P. Sarnow (2002) Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J Mol Biol, 324(5): 889-902.

181. L. Phan, L.W. Schoenfeld, L. Valasek, K.H. Nielsen, and A.G. Hinnebusch (2001) A subcomplex of three eIF3 subunits binds elFl and eIF5 and stimulates ribosome binding of mRNA and tRNA(i)Met EMBO J, 20(11): 2954-2965.

182. K. Hofmann and P. Bucher (1998) The PCI domain: a common theme in three multiprotein complexes. Trends Biochem Sci, 23(6): 204-205.

183. F. Saletta, Y.S. Rahmanto, and D.R. Richardson (2010) The translational regulator eIF3a: The tricky eIF3 subunit! Biochim Biophys Acta.

184. Z. Dong, Z. Liu, P. Cui, R. Pincheira, Y. Yang, J. Liu, and J.T. Zhang (2009) Role of eIF3a in regulating cell cycle progression. Exp Cell Res, 315(11): 1889-1894.

185. M. Rodriguez Pulido, P. Serrano, M. Saiz, and E. Martinez-Salas (2007) Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a,b, and'PABP RNA-binding proteins. Virology, 364(2): 466-474.

186. Z. Liu, Z. Dong, Z. Yang, Q. Chen, Y. Pan, Y. Yang, P. Cui, X. Zhang, and J.T. Zhang (2007) Role of eIF3a (eIF3 pl70) in intestinal cell differentiation and its association with early development Differentiation, 75(7): 652-661.

187. J.M. Baugh and E.V. Pilipenko (2004) 20S proteasome differentially alters translation of different mRNAs via the cleavage of eIF4F and eIF3. Mol Cell, 16(4): 575-586.

188. N. Methot, M.S. Song, and N. Sonenberg (1996) A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol, 16(10): 5328-5334.

189. L. ElAntak, A.G. Tzakos, N. Locker, and P.J. Lukavsky (2007) Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit J Biol Chem, 282(11): 8165-8174.

190. S. Khoshnevis, P. Neumann, and R. Ficner (2010) Crystal structure of the RNA recognition motif of yeast translation initiation factor elF3b reveals differences to human eIF3b. PLoS One, 5(9).

191. D. Li and R. Roberts (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci, 58(14): 2085-2097.

192. L. Valasek, A.A. Mathew, B.S. Shin, K.H. Nielsen, B. Szamecz, and A.G. Hinnebusch (2003) The yeast eIF3 subunits TIF32/a, NIPl/c, and elF5 make critical connections with the 40S ribosome in vivo. Genes Dev, 17(6): 786-799.

193. A. Bandyopadhyay, T. Matsumoto, and U. Maitra (2000) Fission yeast Int6 is not essential for global translation initiation, but deletion of int6(+) causes hypersensitivity to caffeine and, affects spore formation. Mol Biol Cell, 11(11): 4005-4018.

194. D.L. Mack, C.A. Boulanger, R. Callahan, and G.H. Smith (2007) Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis. Breast Cancer Res, 9(4): R42.

195. V. Iadevaia, S. Caldarola, E. Tino, F. Amaldi, and F. Loreni (2008) All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5'-terminal oligopyrimidine (TOP) mRNAs. RNA, 14(9): 1730-1736.195

196. A.K. LeFebvre, N.L. Korneeva, M. Trutschl, U. Cvek; R.D. Duzan, C.A. Bradley, J.W. Hershey, and< R.E. Rhoads (2006) Translation initiation factor eIF4G-l binds to eIF3 through the eIF3e subunit J Biol Chem, 281(32): 22917-22932.

197. A.E. Higareda-Mendoza and M.A. Pardo-Galvan (2010) Expression of human eukaryotic initiation factor 3f oscillates with cell cycle in A549 cells and is essentiaLfor cell viability. Cell Div, 5:10.

198. J. Shi, J.W. Hershey, and M.A. Nelson (2009) Phosphorylation of the eukaryotic initiation factor 3f by cyclin-dependent kinase 11 during apoptosis. FEBSLett, 583(6): 971-977.

199. S.T. Valente, G.M. Gilmartin, C. Mott, B. Falkard, and S.P. Goff (2009) Inhibition of HIV-1 replication by eIF3f. Proc Natl Acad Sa USA, 106(11): 4071-4078.

200. H. Xiao, L.H. Xu, Y. Yamada, and D.X. Liu (2008) Coronavirus spike protein inhibits host cell translation by interaction with eIF3f. PLoS One, 3(1): el494.

201. A. Doldan, A. Chandramouli, R. Shanas, A. Bhattacharyya, J.T. Cunningham, M.A. Nelson, and J. Shi (2008) Loss of the eukaryotic initiation factor 3f in pancreatic cancer. Mol Carcinog, 47(3): 235-244.

202. J. Shi, A. Kahle, J.W. Hershey, B.M. Honchak, J.A. Warneke, S.P. Leong, and M.A. Nelson (2006) Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells. Oncogene, 25(35): 4923-4936.

203. A. Choudhuri, T. Evans, and U. Maitra (2010) Non-core subunit eIF3h of translation initiation factor elF3 regulates zebrafish embryonic development Dev Dyn, 239(6): 1632-1644.

204. L. Zhang, Z. Smit-McBride, X. Pan, J. Rheinhardt, and J.W. Hershey (2008) An oncogenic role for the phosphorylated h-subunit of human translation initiation factor eIF3 .J Biol Chem, 283(35): 24047-24060.

205. R.H. Chen, P.J. Miettinen, E.M. Maruoka, L. Choy, and R. Derynck (1995) A WD-domain protein that is associated with and phosphorylated by the type II TGF-beta receptor. Nature, 377(6549): 548-552.

206. L. Valasek, J. Hasek, K.H. Nielsen, and A.G. Hinnebusch (2001) Dual function of eIF3j/Hcrlp in, processing 20 S pre-rRNA and translation initiation.; Biol Chem, 276(46): 43351-43360.

207. A.V. Pisarev, C.U. Hellen, and T.V. Pestova (2007) Recycling of eukaryotic posttermination ribosomal complexes. Cell, 131(2): 286-299.

208. C.S. Fraser, K.E. Berry, J.W. Hershey, and J.A. Doudna (2007) eIF3j is located in the decoding center of the human 40S ribosomal subunit Mol Cell, 26(6): 811-819.

209. H. Scheel and K. Hofmann (2005) Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes. BMCBiomformatics, 6: 71.

210. Z. Wei, P. Zhang, Z. Zhou, Z. Cheng, M. Wan, and W. Gong (2004) Crystal structure of human e!F3k, the first structure of eIF3 subunit s. J Biol Chem, 279(33): 34983-34990.

211. X. Shen, Y. Yang, W. Liu, M. Sun, J. Jiang, H. Zong, and J. Gu (2004) Identification of the p28 subunit of eukaryotic initiation factor 3(eIF3k) as a new interaction partner of cyclin D3. FEBS Lett, 573(1-3): 139-146.

212. M. Zhou, A.M. Sandercock, C.S. Fraser, et al. (2008) Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc Natl Acad Sci USA, 105(47): 18139-18144.

213. M. Masutani, N. Sonenberg, S. Yokoyama, and H. Imataka (2007) Reconstitution reveals the functional core of mammalian eIF3. EMBO J, 26(14): 3373-3383.

214. B. Siridechadilok, C.S. Fraser, R.J. Hall, J.A. Doudna, and E. Nogales (2005) Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science, 310(5753): 15131515.

215. A.G. Hinnebusch (2006) eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci, 31(10): 553-562.

216. K. Asano, T.G. Kinzy, W.C. Merrick, and J.W. Hershey (1997) Conservation and diversity of eukaryotic translation initiation factor eIF3./5/o/ Chem, 272(2): 1101-1109.

217. A.V. Jivotovskaya, L. Valasek, A.G. Hinnebusch, and K.H. Nielsen (2006) Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast Mol Cell Biol, 26(4): 1355-1372.

218. V.G. Kolupaeva, A. Unbehaun, I.B. Lomakin, C.U. Hellen, and T.V. Pestova (2005) Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA, 11(4): 470-486.

219. R. Majumdar, A. Bandyopadhyay, and U. Maitra (2003) Mammalian translation initiation factor elFl functions with elFIA and eIF3 in the formation of a stable 40 S preinitiation complex. . Biol Chem, 278(8): 6580-6587.

220. L. Valasek, K.H. Nielsen, and A.G. Hinnebusch (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J, 21(21): 5886-5898.

221. C.M. Fletcher, T.V. Pestova, C.U. Hellen, and G. Wagner (1999) Structure and interactions of the translation initiation factor elFl. EMBO J, 18(9): 2631-2637.

222. S. Das, T. Maiti, K. Das, and U. Maitra (1997) Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2 .J Biol Chem, 272(50): 31712-31718.

223. A.V. Pisarev, M.A. Skabkin, V.P. Pisareva, O.V. Skabkina, A.M. Rakotondrafara, M.W. Hentze, C.U. Hellen, and T.V. Pestova (2010) The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell, 37(2): 196-210.

224. C.S. Lee, A.P. Dias, M. Jedrychowski, A.H. Patel, J.L. Hsu, and R. Reed (2008) Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res, 36(14): 4708-4718.

225. J.E. Wilson, T.V. Pestova, C.U. Hellen, and P. Sarnow (2000) Initiation of protein synthesis from the A site of the ribosome. Cell, 102(4): 511-520.

226. N.E. Shirokikh and A.S. Spirin (2008) Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc Natl Acad Sci USA, 105(31): 1073810743.

227. R.I. Enchev, A. Schreiber, F. Beuron, and E.P. Morris (2010) Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3. Structure, 18(4): 518-527.

228. E. Delagoutte and P.H. von Hippel (2003) Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: Integration of helicases into cellular processes. Q Rev Biophys, 36(1): 1-69.

229. E. Delagoutte and P.H. von Hippel (2002) Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: Structures and properties of isolated helicases. Q Rev Biophys, 35(4): 431-478.

230. A.E. Gorbalenya, E.V. Koonin, A.P. Donchenko, and V.M. Blinov (1989) Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res, 17(12): 4713-4730.

231. P. Linder, P.F. Lasko, M. Ashburner, P. Leroy, P.J. Nielsen, K. Nishi, J. Schnier, and P.P. Slonimski (1989) Birth of the D-E-A-D box. Nature, 337(6203): 121-122.

232. G. Hernandez and P. Vazquez-Pianzola (2005) Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev, 122(7-8): 865-876.

233. Q. Li, H. Imataka, S. Morino, G.W. Rogers, Jr., N.J. Richter-Cook, W.C. Merrick, and N. Sonenberg (1999) Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol Ceil Biol, 19(11): 7336-7346.

234. O.A. Koroleva, J.W. Brown, and P.J. Shaw (2009) Localisation of eIF4A-IIl in the nucleolus and splicing speckles is an indicator of plant stress. Plant Signal Behav, 4(12).

235. A.S. Spirin (2009) How does a scanning ribosomal particle move along the 5'-untransIated region of eukaryotic mRNA? Brownian Ratchet model. Biochemistry, 48(45): 10688-10692.

236. J. Lu, H. Aoki, and M.C. Ganoza (1999) Molecular characterization of a prokaryotic translation factor homologous to the eukaryotic initiation factor eIF4A, Int J Biochem Cell Biol, 31(1): 215229.

237. J.H. Chang, Y.H. Cho, S.Y. Sohn, J.M. Choi, A. Kim, Y.C. Kim, S.K. Jang, and Y. Cho (2009) Crystal structure of the eIF4A-PDCD4 complex. Proc Natl Acad Sci USA, 106(9): 3148-3153.

238. J.M. Caruthers, E.R. Johnson, and D.B. McKay (2000) Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc Natl Acad Sci USA, 97(24): 13080-13085.

239. R.M. Story, H. Li, and J.N. Abelson (2001) Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc Natl Acad Sci USA, 98(4): 1465-1470.

240. J.R. Lorsch and D. Herschlag (1998) The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry, 37(8): 2194-2206.

241. J.R. Lorsch and D. Herschlag (1998) The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry, 37(8): 2180-2193.

242. G.W. Rogers, Jr., N.J. Richter, W.F. Lima, and W.C. Merrick (2001) Modulation of the helicase activity of eIF4A by eIF4B, elF4H, and eIF4F.y Biol Chem, 276(33): 30914-30922.

243. A. Marintchev, K.A. Edmonds, B. Marintcheva, E. Hendrickson, M. Oberer, C. Suzuki, B. Herdy, Ni Sonenberg, and G. Wagner (2009) Topology and regulation of the human eIF4A/4G/4H' helicase complex in translation initiation. Cell, 136(3): 447-460.

244. T.M. Hinton, M.J. Coldwell, G.A: Carpenter, S.J. Morley, and-V.M. Pain (2007) Functional analysis of individual binding activities of the scaffold protein eIF4G .J Biol Chem; 282(3): 1695-1708.

245. M. Oberer, A. Marintchev, and G. Wagner (2005) Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev. 19(18): 2212-2223.

246. W. Li, G.J. Belsham, and C.G. Proud (2001) Eukaryotic initiation factors 4A' (eIF4A) and 4G< (eIF4G) mutually interact in a 1:1 ratio in vivo .J Biol Chem, 276(31): 29111-29115.

247. N.L. Korneeva, B.J. Lamphear, F.L. Hennigan, W.C. Merrick, and R.E. Rhoads (2001) Characterization of the two eIF4A-binding sites on human eIF4G-l./fl/o/ Chem, 276(4): 28722879.

248. C.L. Neff and A.B. Sachs (1999) Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiae interact physically and functionally. Mol Cell Biol, 19(8): 5557-5564.

249. D. Domínguez, M. Altmann, J. Benz, U. Baumann, and H. Trachsel (1999) Interaction of translation initiation factor elF4G with eIF4A in the yeast Saccharomyces cerevisiae. J Biol Chem, 274(38): 26720-26726.

250. H. Imataka and N. Sonenberg (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A Mol Cell Biol, 17(12): 69406947.

251. M. Hilbert, F. Kebbel, A. Gubaev, and D. Klostermeier (2010) eIF4G stimulates the activity of the DEAD box protein eIF4A by a conformational guidance mechanism. Nucleic Acids Res.

252. P.G. Loh, H.S. Yang, M.A. Walsh, Q. Wang, X. Wang, Z. Cheng, D. Liu, and H. Song (2009) Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J, 28(3): 274-285.

253. C. Suzuki, R.G. Garces, K.A. Edmonds, S. Hiller, S.G. Hyberts, A. Marintchev, and G. Wagner (2008) PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. Proc Natl Acad Sci USA, 105(9): 3274-3279.

254. N. LaRonde-LeBlanc, A.N. Santhanam, A.R. Baker, A. Wlodawer, and-N.H. Colburn (2007) Structural basis for inhibition of translation by the tumor suppressor. Pdcd4. Mol Cell Biol, 27(1): 147-156.

255. W.J. Kim, J.H. Kim, and S.K. Jang (2007) Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A. EMBO J, 26(24): 5020-5032.

256. M.C. Derry, A. Yanagiya, Y. Martineau, and N. Sonenberg (2006) Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol, 71: 537-543.200

257. S.H. Lee and F. McCormick (2006) p97/DAP5 is a ribosome-associated factor that facilitates protein synthesis and' cell proliferation by modulating' the synthesis of cell cycle proteins. EMBOJ, 25(17): 4008-4019.

258. K. Takahashi, M. Maruyama, Y. Tokuzawa, M. Murakami, Y. Oda, N. Yoshikane, K.W. Makabe, T. Ichisaka, and S. Yamanaka (2005) Evolutionarily conserved non-AUG translationiinitiation in NATl/p97/DAP5 (EIF4G2). Genomics, 85(3): 360-371.

259. S. Yamanaka, X.Y. Zhang, M. Maeda, K. Miura, S. Wang, R.V. Farese, Jr., H. Iwao, and T.L. Innerarity (2000) Essential role of NATl/p97/DAP5 in embryonic differentiation and the retinoic acid pathway. EMBO J, 19(20): 5533-5541.

260. H. Imataka, H.S. Olsen, and N. Sonenberg (1997) A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J, 16(4): 817-825.

261. B. Lankat-Buttgereit, C. Gregel, A. Knolle, A. Hasilik, R. Arnold, and R. Goke (2004) Pdcd4 inhibits growth of tumor cells by suppression of carbonic anhydrase type II. Mol Ceil Endocrinol, 214(1-2): 149-153.

262. J.A. Grifo, R.D. Abramson, C.A. Satler, and W.C. Merrick (1984) RNA-stimulated ATPase activity of eukaryotic initiation factors. J Biol Chem, 259(13): 8648-8654.

263. S.R. Lax, K.S. Browning, D.M. Maia, and J.M. Ravel (1986) ATPase activities of wheat germ initiation factors 4A, 4B, and 4F. J Biol Chem, 261(33): 15632-15636.

264. S. Blum, S.R. Schmid, A. Pause, P. Buser, P. Linder, N. Sonenberg, and H. Trachsel (1992) ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 89(16): 7664-7668.

265. N.J. Richter-Cook, Т.Е. Dever, J.O. Hensold, and W.C. Merrick (1998) Purification and characterization of a new eukaryotic protein translation factor. Eukaiyotic initiation factor 4H. J Biol Chem, 273(13): 7579-7587.

266. B.K. Ray, T.G. Lawson, J.C. Kramer, M.H. Cladaras, J.A. Grifo, R.D. Abramson, W.C. Merrick, and R.E. Thach (1985) ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J Biol Chem, 260(12): 7651-7658.

267. G.W. Rogers, Jr., W.F. Lima, and W.C. Merrick (2001) Further characterization of the helicase activity of eIF4A.'Substrate specificity.J Biol Chem, 276(16): 12598-12608.

268. G.W. Rogers, Jr., N.J. Richter, and W.C. Merrick (1999) Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J Biol Chem, 274(18): 1223612244.

269. R.D. Abramson, Т.Е. Dever, T.G. Lawson, B.K. Ray, R.E. Thach, and W.C. Merrick (1987) The ATP-dependent interaction of eukaryotic initiation factors with mRNA. J Biol Chem, 262(8): 3826-3832.

270. F. Rozen, I. Edery, K. Meerovitch, T.E. Dever, W.C. Merrick, and N. Sonenberg 1990) Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and.4F. Mol Cell Biol, 10(3): 1134-1144.

271. N.J. Richter, G.W: Rogers, Jr., J.O. Hensold, and W.C. Merrick (1999) Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H./ Biol Chem, 274(50): 3541535424.

272. M. Jaramillo, T.E. Dever, W.C. Merrick, and N. Sonenberg (1991) RNAunwinding in translation: assembly of helicase complex intermediates comprising eukaryotic initiation factors eIF-4F and eIF-4B. Mol Cell Biol, 11(12): 5992-5997.

273. D.R. Gallie, H. Le, C. Caldwell, R.L. Tanguay, N.X. Hoang, and K.S. Browning (1997) The phosphorylation state of translation initiation factors is regulated developmentaliy and following heat shock in wheat J Biol Chem, 272(2): 1046-1053.

274. H. Le, K.S. Browning, and D.R. Gallie (1998) The phosphorylation state of the wheat translation initiation factors eIF4B, eIF4A, and eIF2 is differentially regulated during seed development and germination. J Biol Chem, 273(32): 20084-20089.

275. R.G. op den Camp and C. Kuhlemeier (1998) Phosphorylation of tobacco eukaryotic translation initiation factor 4A upon pollen tube germination. Nucleic Acids Res, 26(9): 2058-2062.

276. P.J. Nielsen and H. Trachsel (1988) The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J, 7(7): 2097-2105.

277. D.C. Weinstein, E. Honore, and A. Hemmati-Brivanlou (1997) Epidermal induction and inhibition of neural fate by translation initiation factor 4AIII. Development, 124(21): 42354242.

278. R. Morgan and M.G. Sargent (1997) The role in neural patterning of translation initiation factor eIF4AII; induction of neural fold genes. Development, 124(14): 2751-2760.

279. K.D. Gulyas and T.F. Donahue (1992) SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell, 69(6): 1031-1042.

280. S. Marsden, M. Nardelli, P. Linder, and J.E. McCarthy (2006) Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation./Mol Biol, 361(2): 327-335.

281. B. Pertschy, C. Schneider, M. Gnadig, T. Schafer, D. Tollervey, and E. Hurt (2009) RNA helicase Prp43 and its co-factor Pfal promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nobl./ Biol Chem, 284(50): 35079-35091.

282. A. Parsyan, D. Shahbazian, Y. Martineau, et al. (2009) The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. Proc Natl Acad Sci USA, 106(52): 22217-22222.

283. J.S. Butler and J.M. Clark, Jr. (1984) Eucaryotic initiation factor 4B of wheat germ binds to the translation initiation region of a messenger ribonucleic acid. Biochemistry, 23(5): 809-815.

284. S.C. Milburn, J.W. Hershey, M.V. Davies, K. Kelleher, and R.J. Kaufman (1990) Cloning and expression of eukaryotic initiation factor 4B cDNA: sequence determination identifies a common RNA recognition motif. EMBO J, 9(9): 2783-2790.

285. M: Altmann, P.P. Muller, B. Wittmer, F. Ruchti, S. Lanker, and H. Trachsel (1993) A Saccharomyces cerevisiae homologue of mammalian- translation initiation» factor 4B contributes to RNA helicase activity. EMBOJ, 12(10): 3997-4003.

286. R. Coppolecchia, P. Buser, A. Stotz, and P. Linder (1993) A new yeast translation initiation factor suppresses a mutation in the eIF-4A RNA helicase. EMBO /, 12(10): 4005-4011.

287. A.M." Metz, K.C. Wong, S.A. Malmstrom, and K.S. Browning (1999) Eukaryotic initiation factor 4B from wheat and Arabidopsis thaliana is a member of a multigene family. BiochemBiophys Res Commun, 266(2): 314-321.

288. N. Methot, G. Pickett, J.D. Keene, and N. Sonenberg (1996) In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA remotif. RNA, 2(1): 38-50.

289. K. Fleming, J. Ghuman, X. Yuan, P. Simpson, A. Szendroi, S. Matthews, and S. Curry (2003) Solution structure and RNA interactions of the RNA recognition motif from eukaryotic translation initiation factor 4B. Biochemistry, 42(30): 8966-8975.

290. J.A. Grifo, S.M. Tahara, M.A. Morgan, A.J. Shatkin, and W.C. Merrick (1983) New initiation factor activity required for globin mRNA translation./ Bioi Chem, 258(9): 5804-5810.

291. B. Joshi, A. Cameron, and R. Jagus (2004) Characterization of mammalian eIF4E-family members. EurJBiochem, 271(11): 2189-2203.

292. A. Marintchev and G. Wagner (2005) eIF4G and CBP80 share a common origin and similar domain organization: implications for the structure and function of eIF4G. Biochemistry, 44(37): 12265-12272.

293. M. Sha, M.L. Balasta, and D.J. Goss (1994) An interaction of wheat germ initiation factor 4B with oligoribonucleotides./ B/o/ Chem, 269(21): 14872-14877.

294. X. Bi and D.J. Goss (2000) Wheat germ poly(A)-binding protein increases the ATPase and the RNA helicase activity of translation initiation factors eIF4A, eIF4B, and eIF-iso4F. / Biol Chem, 275(23): 17740-17746.

295. R.D. Abramson, K.S. Browning, T.E. Dever, T.G. Lawson, R.E. Thach, J.M. Ravel, and W.C. Merrick (1988) Initiation factors that bind mRNA. A comparison of mammalian factors with wheat germ factors .J Biol Chem, 263(11): 5462-5467.

296. M. Altmann, B. Wittmer, N. Methot, N. Sonenberg, and H. Trachsel (1995) The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J, 14(15): 3820-3827.

297. W.C. Merrick and N. Sonenberg (1997) Assays for eukaryotic translation factors that bind mRNA. Methods, 11(4): 333-342.

298. S. Cheng and D.R. Gallie (2006) Wheat eukaryotic initiation factor 4B organizes assembly of RNA and eIFiso4G, eIF4A, and poly(A)-binding protein .J Biol Chem, 281(34): 24351-24364.203343.344.345.346.347.348.349.350,351,352,353354355356

299. M.A. Khan and D.J. Goss (2005) Translationinitiation factor (elF) 4B affects the rates of binding-of the mRNA m7G cap analogue to wheat germ eIFiso4F and eIFiso4F.PABP. Biochemistry, 44(11.: 4510-4516.

300. X. Bi, J. Ren, and D.J. Goss (2000) Wheat germ translation initiation factor eIF4B affects eIF4A. and eIFiso4F helicase activity by increasing the ATP binding affinity of eIF4A Biochemistry, 39(19): 5758-5765.

301. B.K. Ray, T.G. Lawson, R.D. Abramson, W.C. Merrick, and R.E. Thach (1986) Recycling of. messenger RNA cap-binding proteins mediated by eukaryotic initiation factor 4B .J Biol Chem, 261(25): 11466-11470.

302. R.F. Duncan and J.W. Hershey (1989) Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation.) Cell Biol, 109(4 Pt 1): 1467-1481.

303. M.J. Clemens, M. Bushell, I.W. Jeffrey, V.M. Pain, and S.J. Morley (2000) Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ, 7(7): 603-615.

304. M.K. Holz, B.A. Ballif, S.P. Gygi, and J. Blenis (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 123(4): 569-580.

305. B. Kroczynska, S. Joshi, E.A. Eklund, A. Verma, S.V. Kotenko, E.N. Fish, and L.C. Platanias (2010) Regulatory effects of ribosomal S6 kinase 1 (RSKl)in IFN-lamda signaling./ Biol Chem.

306. D. Shahbazian, P.P. Roux, V. Mieulet, et al. (2006) The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBOJ, 25(12): 2781-2791.

307. S.J. Morley, T.E. Dever, D. Etchison, and J.A. Traugh (1991) Phosphorylation of eIF-4F by protein kinase C or multipotential S6 kinase stimulates protein synthesis at initiation. / Biol Chem, 266(8): 4669-4672.

308. S.J. Morley and J.A. Traugh (1990) Differential stimulation of phosphorylation of initiation factors eIF-4F, eIF-4B, eIF-3, and ribosomal protein S6 by insulin and phorbol esters. / Biol Chem, 265(18): 10611-10616. ,

309. A.M. Bonneau and N. Sonenberg 1987) Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis./Biol Chem, 262(23): 11134-11139.

310. R. Duncan and J.W. Hershey (1985) Regulation of initiation factors during translational repression caused by serum depletion. Covalent modification./ Biol Chem, 260(9): 5493-5497.

311. R. Duncan and J.W. Hershey (1984) Heat shock-induced translational alterations in HeLa cells. Initiation factor modifications and the inhibition of translation. / Biol Chem, 259(19): 1188211889.

312. M. Bushell, W. Wood, M.J. Clemens, and S.J. Morley (2000) Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur J Biochem, 267(4): 1083-1091.

313. C. Constantinou, M. Bushell, I.W. Jeffrey, V. Tilleray, M. West, V. Frost, J. Hensold, and M.J. Clemens (2003) p53-induced inhibition of protein synthesis is independent of apoptosis. Eur J Biochem, 270(15): 3122-3132.

314. D. Shahbazian, A. Parsyan, E. Petroulakis, J. Hershey, and N. Sonenberg (2010) eIF4B controls survival and proliferation and is regulated by proto-oncogenic signaling pathways. Cell Cycle, 9(20): 4106-4109.

315. D. Shahbazian, A. Parsyan, E. Petroulakis, I. Topisirovic, Y. Martineau, B.F. Gibbs, Y. Svitkin, and N. Sonenberg (2010) Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol Cell Biol, 30(6): 1478-1485.

316. N. Sonenberg, K.M. Rupprecht, S.M. Hecht, and A.J. Shatkin (1979) Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. Proc Natl Acad Sci USA, 76(9): 4345-4349.

317. D. Etchison and S. Milburn (1987) Separation of protein synthesis initiation factor eIF4A from a p220-associated cap binding complex activity. Mol Cell Biochem, 76(1): 15-25.

318. G. Hernandez, M. Altmann, J.M. Sierra, H. Urlaub, R. Diez del Corral, P. Schwartz, and R. Rivera-Pomar (2005) Functional analysis of seven genes encoding eight translation initiation facton4E (eIF4E) isoforms in Drosophila. Mech Dev, 122(4): 529-543.

319. L. Aravind and E.V. Koonin (2000) Eukaryote-specific domains in translation initiation factors: implications for translation regulation and evolution of the translation system. Genome Res, 10(8): 1172-1184.

320. K.S. Browning, J. Humphreys, W. Hobbs, G.B. Smith, and J.M. Ravel (1990) Determination of the amounts of the protein synthesis initiation and elongation factors in wheat germ. J Biol Chem, 265(29): 17967-17973.

321. N. Sonenberg- (2008) eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol, 86(2): 178-183.

322. J. Marcotrigiano, A.C. Gingras, N. Sonenberg, and S.K. Burley (1997) Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell, 89(6): 951-961.

323. J. Marcotrigiano, A.C. Gingras, N. Sonenberg, and S.K. Burley (1997) X-ray studies of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Nucleic Acids Symp Ser, (36): 8-11.

324. H. Matsuo, H. Li, A.M. McGuire, C.M. Fletcher, A.C. Gingras, N. Sonenberg, and G. Wagner (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol, 4(9): 717-724.

325. Z. Wieczorek, A. Niedzwiecka-Kornas, L. Chlebicka, et al. (1999) Fluorescence studies on association of human translation initiation factor eIF4E with mRNA cap-analogues. Z Naturforsch C, 54(3-4): 278-284.

326. K. Ruszczynska, K. Kamienska-Trela, J. Wojcik, J. Stepinski, E. Darzynkiewicz, and R. Stolarski (2003) Charge distribution in 7-methylguanine regarding cation-pi interaction with protein factor eIF4E. BiophysJ, 85(3): 1450-1456.

327. T. von der Haar, J.D. Gross, G. Wagner, and J.E. McCarthy (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. NatStructMol Biol, 11(6): 503-511.

328. K. Tomoo, X. Shen, K. Okabe, et al. (2003) Structural features of human, initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. / Mol Biol, 328(2): 365383.

329. J. Marcotrigiano, A.C. Gingras, N. Sonenberg, and S.K. Burley (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell, 3(6): 707-716.

330. J.D. Gross, N.J. Moerke, T. von der Haar, A.A. Lugovskoy, A.B. Sachs, J.E. McCarthy, and G. Wagner (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell, 115(6): 739-750.

331. A. Haghighat and N. Sonenberg (1997) eIF4G dramatically enhances the binding of eIF4E to the mRNA S'-cap structure./Biol Chem, 272(35): 21677-21680.

332. M. Ptushkina, T. von der Haar, S. Vasilescu, R. Frank, R. Birkenhager, and J.E. McCarthy (1998) Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20. EMBOJ, 17(16): 4798-4808.

333. T. von Der Haar, P.D. Ball, and J.E. McCarthy (2000) Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5'-Cap by domains of eIF4G./ Biol Chem, 275(39): 30551-30555.

334. S.V. Slepenkov, N.L. Korneeva, and R.E. Rhoads (2008) Kinetic mechanism for assembly of the m7GpppG.eIF4E.eIF4G complex J Biol Chem, 283(37): 25227-25237.

335. M. Sha, Y. Wang, T. Xiang, A. van Heerden, K.S. Browning, and D.J. Goss (1995) Interaction of wheat germ protein synthesis initiation factor eIF-(iso)4F and its subunits p28 and p86 with m7GTP and mRNA analogues .J Biol Chem, 270(50): 29904-29909.

336. B. Raught and A.C. Gingras (1999) eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol, 31(1): 43-57.

337. A. Niedzwiecka, J. Marcotrigiano, J. Stepinski, et al. (2002) Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins .J Mol Biol, 319(3): 615-635.

338. N. Oulhen, S. Boulben, M. Bidinosti, J. Morales, P. Cormier, and B. Cosson (2009) A variant mimicking hyperphosphorylated'4E-BP inhibits protein synthesis in a sea urchin cell-free, cap-dependent translation system. PLoS One, 4(3): e5070.

339. T. Youtani, K. Tomoo, T. Ishida, H. Miyoshi, and K. Miura (2000) Regulation of human eIF4E by 4E-BP1: binding analysis using surface plasmon resonance. IUBMB Life, 49(1): 27-31.

340. A.C. Gingras, S.P. Gygi, B. Raught, R.D. Polakiewicz, R.T. Abraham; M.F. Hoekstra, R. Aebersold, and N. Sonenberg (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev, 13(11): 1422-1437.

341. M. Rau, T. Ohlmann, S.J. Morley, and V.M. Pain (1996) A réévaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem, 271(15): 8983-8990.

342. A. Prasad, I.W. Park, H. Allen, X. Zhang, M.V. Reddy, R. Boominathan, E.P. Reddy, and J.E. Groopman (2009) Styryl sulfonyl compounds inhibit translation of cyclin Dl in mantle cell lymphoma cells. Oncogene, 28(12): 1518-1528.

343. B.A. Jacobson, A. De, M.G. Kratzke, et al. (2009) Activated 4E-BP1 represses tumourigenesis and IGF-I-mediated activation of the elF4F complex in mesothelioma. Br J Cancer, 101(3): 424-431.

344. B.C. Barnhart, J.C. Lam, R.M. Young, P.J. Houghton, B. Keith, and M.C. Simon (2008) Effects of 4E-BP1 expression on hypoxic cell cycle inhibition and tumor cell proliferation and survival. Cancer Biol Ther, 7(9): 1441-1449.

345. D.M. Peffley, C. Sharma, P. Hentosh, and R.D. Buechler (2007) Perillyl alcohol and genistein differentially regulate PKB/Akt and 4E-BP1 phosphorylation as well as eIF4E/eIF4G interactions in human tumor cells. Arch Biochem Biophys, 465(1): 266-273.

346. G. Otulakowski, W. Duan, S. Gandhi, and H. O'Brodovich (2007) Steroid and oxygen effects on eIF4F complex, mTOR, and ENaC translation in fetal lung epithelia. Am J Respir Cell Mol Biol, 37(4): 457-466.

347. C. Quevedo, M. Salinas, and A. Alcazar (2002) Regulation of cap-dependent translation by insulin-like growth factor-1 in neuronal cells. Biochem Biophys Res Commun, 291(3): 560-566.

348. M.W. Potter, S.A. Shah, K.K. Elbirt, and M.P. Callery (2001) Endotoxin (LPS) stimulates 4E-BP1/PHAS-I phosphorylation in macrophages./Surg Res, 97(1): 54-59.

349. J. Patel, X. Wang, and C.G. Proud (2001) Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochem J, 358(Pt 2): 497-503.

350. J.C. Anthony, T.G. Anthony, S.R. Kimball, and L.S. Jefferson (2001) Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. / Nutr, 131(3): 856S-860S.

351. V. Kumar, D. Sabatini, P. Pandey, et ah (2000) Regulation of the rapamycin and FKBP^target 1/mammalian target of rapamycin-and cap-dependent initiation of translation» by the c-Ablv protein-tyrosine kinase./Biol Chem, 275(15): 10779-10787.

352. P.E. Burnett, R.K. Barrow, N.A. Cohen, S.H. Snyder, and D.M. Sabatini (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U SA, 95(4): 1432-1437.

353. G.C. Scheper and C.G. Proud (2002) Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem, 269(22): 5350-5359.

354. A. Susor, L. Jelinkova, P. Karabinova, H. Torner, W. Tomek, H. Kovarova, and M. Kubelka (2008) Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol Reprod Dev, 75(12): 1716-1725.

355. R. Cuesta, Q. Xi, and R.J. Schneider (2004) Structural basis for competitive inhibition of eIF4G-Mnkl interaction by the adenovirus 100-kilodalton protein./ Virol, 78(14): 7707-7716.

356. J.L. Parra-Palau, G.C. Scheper, M.L. Wilson, and C.G. Proud (2003) Features in the N and C termini of the MAPK-interacting kinase Mnkl mediate its nucleocytoplasmic shuttling. / Biol Chem, 278(45): 44197-44204.

357. S. Pyronnet, J. Dostie, and N. Sonenberg (2001) Suppression of cap-dependent translation in mitosis. Genes Dev, 15(16): 2083-2093.

358. U. Knauf, C. Tschopp, and H. Gram (2001) Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol, 21(16): 5500-5511.

359. S. Pyronnet.(2000) Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnkl. Biochem Pharmacol, 60(8): 1237-1243.

360. R. Cuesta, Q. Xi, and R.J. Schneider (2000) Adenovirus-specific translation by displacement of kinase Mnkl from cap-initiation complex eIF4F. EMBO J, 19(13): 3465-3474.

361. A.J. Waskiewicz, J.C. Johnson, B. Penn, M. Mahalingam, S.R. Kimball, and J.A. Cooper (1999) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnkl in vivo. Mol Cell Biol, 19(3): 1871-1880.209

362. S. Pyronnet, H. Imataka, A.C. Gingras, R. Fukunaga, T. Hunter, and N. Sonenberg (1999) Human, eukaryotic translation initiation factor 4G (eIF4G) recruits mnkl to phosphorylate eIF4E. EMBOJ, 18(1): 270-279.

363. F. Lejbkowicz, C. Goyer, A. Darveau, S. Neron, R. Lemieux, and N. Sonenberg (1992) A fraction of the mRNA 5' cap-binding protein, eukaryotic initiation factor 4E, localizes to.the nucleus. Proc Natl Acad Sci USA, 89(20): 9612-9616.

364. V. Lang, N.I. Zanchin, H. Lunsdorf, M. Tuite, and J.E. McCarthy (1994) Initiation factor eIF-4E of Saccharomyces cerevisiae. Distribution within the cell, binding to mRNA, and consequences of its overproduction./Biol Chem, 269(8): 6117-6123.

365. J. Dostie, M. Ferraiuolo, A. Pause, S.A. Adam, and N. Sonenberg (2000) A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5' cap-binding protein, eIF4E. EMBO J, 19(12): 3142-3156.

366. J. Dostie, F. Lejbkowicz, and N. Sonenberg (2000) Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles .J Cell Biol, 148(2): 239-247.

367. S. Strudwick and K.L. Borden (2002) The emerging roles of translation factor eIF4E in the nucleus. Differentiation, 70(1): 10-22.

368. T. Pederson (2001) Is the nucleus in need of translation? Trends Cell Biol, 11(10): 395-397.

369. M.W. Hentze (2001) Protein synthesis. Believe it or not-translation in the nucleus. Science, 293(5532): 1058-1059.

370. N. Minshall, M.H. Reiter, D. Weil, and N. Standart (2007) CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes./ Biol Chem, 282(52): 37389-37401.

371. H.C. Lee, H. Cho, and Y.K. Kim (2008) Ectopic expression of eIF4E-transporter triggers the movement of eIF4E into P-bodies, inhibiting steady-state translation but not the pioneer round of translation. Biochem Biophys Res Commun, 369(4): 1160-1165.

372. L. Rong, M. Livingstone, R. Sukarieh, et al. (2008) Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs. RNA, 14(7): 1318-1327.

373. R. Sukarieh, N. Sonenberg, and J. Pelletier (2010) Nuclear assortment of eIF4E coincides with shut-off of host protein synthesis upon poliovirus infection. / Gen Virol, 91(Pt 5): 1224-1228.

374. J.C. Villaescusa, C. Buratti, D. Penkov, L. Mathiasen, J. Planaguma, E. Ferretti, and F. Blasi (2009) Cytoplasmic Prepl interacts with 4EHP inhibiting Hoxb4 translation. PLoS One, 4(4): e5213.

375. J. Zuberek, D. Kubacka, A. Jablonowska, J. Jemielity, J. Stepinski, N. Sonenberg, • and E. Darzynkiewicz (2007) Weak binding affinity of human 4EHP for mRNA cap analogs. RNA, 13(5): 691-697.

376. L. Vardy and T.L. Orr-Weaver (2007) Regulating translation of maternal messages: multiple repression mechanisms. Trends Cell Biol, 17(11): 547-554.

377. P. Rosettani, S. Knapp, M.G. Vismara, L. Rusconi, and A.D. Cameron (2007) Structures of the human eIF4E homologous protein, h4EHP, in its m7GTP-bound and unliganded forms. / Mol Biol, 368(3): 691-705.

378. F. Kippert and D.L. Gerloff (2009) Highly sensitive detection of individual HEAT and ARM repeats with HHpred and COACH. PLoSOne, 4(9): e7148.

379. H. Striegl, M.A. Andrade-Navarro, and U. Heinemann (2010) Armadillo motifs involved in vesicular transport PLoS One, 5(2): e8991.

380. L. Aravind and E.V. Koonin (1999) Novel predicted RNA-binding domains associated with the translation machinery./Mol Evol, 48(3): 291-302.

381. D. Prevot, J.L. Darlix, and T. Ohlmann (2003) Conducting the initiation of protein synthesis: the role of eIF4G. Biol Cell, 95(3-4): 141-156.

382. M. Piron, P. Vende, J. Cohen, and D. Poncet (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO., 17(19): 58115821.

383. P. Vende, M. Piron, N. Castagne, and D. Poncet (2000) Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3' end. / Virol, 74(15): 7064-7071.

384. R.C. Deo, C.M. Groft, K.R. Rajashankar, and S.K. Burley (2002) Recognition of the rotavirus mRNA 3' consensus by an asymmetric NSP3 homodimer. Cell, 108(1): 71-81.

385. C.M. Groft and S.K. Burley (2002) Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell, 9(6): 1273-1283.

386. L. Padilla-Noriega, 0. Paniagua, and S. Guzman-Leon (2002) Rotavirus protein NSP3 shuts off host cell protein synthesis. Virology, 298(1): 1-7.

387. W.J. Kim, S.H. Back, V. Kim, I. Ryu, and S.K. Jang (2005) Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol, 25(6): 2450-2462.

388. J. Ling, S.J. Morley, and J.A. Traugh (2005) Inhibition of cap-dependent translation via phosphorylation of eIF4G by protein kinase Pak2. EMBO J, 24(23): 4094-4105.

389. E. De Gregorio, T. Preiss, and M.W. Hentze (1999) Translation driven by an eIF4G core domain in vivo. EMBO J, 18(17): 4865-4874.

390. N.L. Korneeva, B.J. Lamphear, F.L. Hennigan, and' R.E. Rhoads (2000) Mutually cooperative binding of eukaryotic translation initiation factor (elF) 3 and eIF4A to human eIF4G-l. / Bioh Chem, 275(52): 41369-41376.

391. Z. Wei, Y. Xue, H. Xu; and W. Gong (2006) Crystal structure of the C-terminal domain- of S.cerevisiae eIF5./Mol Biol, 359(1): 1-9.

392. T. Boesen,.S.S. Mohammad, G.D. Pavitt, and G.R. Andersen (2004) Structure of the'catalytic fragment of translation initiation factor 2B and identification of a critically important catalytic residue./ Biol Chem, 279(11): 10584-10592.

393. J. Marcotrigiano, I.B. Lomakin, N. Sonenberg, T.V. Pestova, C.U. Hellen, and S.K. Burley (2001) A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol Cell, 7(1): 193-203.

394. C. Mazza, M. Ohno, A. Segref, I.W. Mattaj, and S. Cusack (2001) Crystal structure of the human nuclear cap binding complex. Mol Cell, 8(2): 383-396.

395. K. Ali, L. McKendrick, S.J. Morley, and R.J. Jackson (2001) Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation. EMBO J, 20(15): 42334242.

396. K. Ali and R.J. Jackson (2001) The translation of capped mRNAs has an absolute requirement for the central domain of eIF4G but not for the cap-binding initiation factor eIF4E. Cold Spring Harb Symp Quant Biol, 66: 377-387.

397. A.C. Gingras, B. Raught, and N. Sonenberg (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem, 68: 913-963.

398. S.E. Wells, P.E. Hillner, R.D. Vale, and A.B. Sachs (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell, 2(1): 135-140.

399. D.R. Gallie and K.S. Browning (2001) eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J Biol Chem, 276(40): 36951-36960.

400. C.Y. Kim, K. Takahashi, T.B. Nguyen, J.K. Roberts, and C. Webster (1999) Identification of a nucleic acid binding domain in eukaryotic initiation factor eIFiso4G from wheat J Biol Chem, 274(15): 10603-10608.

401. H. Le, K.S. Browning, and D.R. Gallie (2000) The phosphorylation state of poly(A)-binding protein specifiesiits binding to poly(A) RNA and its interaction with eukaryotic initiation factor (elF) 4F, eIFiso4F, and eIF4B./B/o/ Chem, 275(23): 17452-17462.

402. S. Ray, H. Yumak, A. Domashevskiy, M.A. Khan, D.R. Gallie, and D.J. Goss (2006) Tobacco etch virus mRNA preferentially binds wheat germ eukaryotic initiation factor (elF) 4G rather than eIFiso4G./Biol Chem, 281(47): 35826-35834.

403. J. Yoder-Hill, A. Pause, N. Sonenberg, and W.C. Merrick (1993) The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A J Biol Chem, 268(8): 5566-5573.

404. J.Y. Lu, N. Bergman, N. Sadri, and R.J. Schneider (2006) Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA, 12(5): 883-893.

405. Y.Y. Hsu, Y.N. Liu, W.W. Lu, and S.H. Kung (2009) Visualizing and quantifying the differential cleavages of the eukaryotic translation initiation factors eIF4GI and eIF4GII in the enterovirus-infected cell. Biotechnol Bioeng, 104(6): 1142-1152.

406. B.J. Kempf and D.J. Barton (2008) Poliovirus 2A(Pro) increases viral mRNA and polysome stability coordinately in time with cleavage of eIF4G./ Virol, 82(12): 5847-5859.

407. A. Castello, M.A. Sanz, S. Molina, and L. Carrasco (2006) Translation of Sindbis virus 26S mRNA does not require intact eukariotic initiation factor 4G./ Mol Biol, 355(5): 942-956.

408. X. Zhao, B.J. Lamphear, D. Xiong, K. Knowlton, and R.E. Rhoads (2003) Protection of cap-dependent protein synthesis in vivo and in vitro with an eIF4G-l variant highly resistant to cleavage by Coxsackievirus 2A protease./ Biol Chem, 278(7): 4449-4457.

409. W. Glaser, A. Triendl, and T. Skern (2003) The processing of eIF4GI by human rhinovirus type 2 2A(pro): relationship to self-cleavage and role of zinc / Virol, 77(8): 5021-5025.

410. E. Alvarez, L. Menendez-Arias, and L. Carrasco (2003) The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases./ Virol, 77(23): 12392-12400.

411. M. Zamora, W.E. Marissen, and R.E. Lloyd (2002) Multiple eIF4GI-specific protease activities present in uninfected and poliovirus-infected cells./ Virol, 76(1): 165-177.

412. P. Schlick and T. Skern' (2002) Eukaryotic initiation factor 4GI is a poor substrate for HIV-1 proteinase. FEBS Lett, 529(2-3): 337-340.

413. T. Ohlmann, D. Prevot, D. Decimo, F. Roux, J. Garin, S.J. Morley, and J.L. Darlix (2002) In vitro, cleavage of eIF4GI but not eIF4GII by HIV-1 protease and its effects on translation in the rabbit reticulocyte lysate system .J Mol Biol, 318(1): 9-20.

414. D. Goldstaub, A. Gradi, Z. Bercovitch, Z. Grosmann, Y. Nophar, S. Luria, N. Sonenberg, and C. Kahana (2000) Poliovirus 2A protease induces apoptotic cell death. Mol Cell Biol, 20(4): 12711277.

415. A. Barco, E. Feduchi, and L. Carrasco (2000) A stable HeLa cell line that inducibly expresses poliovirus 2A(pro): effects on cellular and viral gene expression./ Virol, 74(5): 2383-2392.

416. V. Kerekatte, B.D. Keiper, C. Badorff, A. Cai, K.U. Knowlton, and R.E. Rhoads (1999) Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff?/ Virol, 73(1): 709-717.

417. S.L. Hunt, T. Skern, H.D. Liebig, E. Kuechler, and R.J. Jackson'(1999) Rhinovirus 2A proteinase mediated stimulation of rhinovirus RNA translation is additive to the stimulation effected by cellular RNA binding proteins. Virus Res, 62(2): 119-128.

418. T. Ohlmann, M. Rau, V.M. Pain, and S.J. Morley (1996) The C-terminal domain of eukaryotic protein synthesis initiation factor (elF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBOJ, 15(6): 1371-1382.

419. W.E. Marissen, A. Gradi, N. Sonenberg, and R.E. Lloyd (2000) Cleavage of eukaryotic translation initiation factor 4GII correlates with translation inhibition during apoptosis. Cell Death Differ, 7(12): 1234-1243.

420. M. Bushell, L. McKendrick, R.U. Janicke, M.J. Clemens, and S.J. Morley (1999) Caspase-3 is necessary and sufficient for cleavage of protein synthesis eukaryotic initiation factor 4G during apoptosis. FEBSLett, 451(3): 332-336.

421. W.E. Marissen and R.E. Lloyd (1998) Eukaryotic translation initiation factor 4G is targeted for proteolytic cleavage by caspase 3 during inhibition of translation in apoptotic cells. Mol Cell Biol, 18(12): 7565-7574.

422. S.M. Lewis, S. Cerquozzi, T.E. Graber, N.H. Ungureanu, M. Andrews, and M. Holcik (2008) The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress. Nucleic Acids Res, 36(1): 168-178.

423. P. Hundsdoerfer, C. Thoma, and M.W. Hentze (2005) Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation. Proc Natl AcadSci USA, 102(38): 13421-13426. ■ ,. '

424. G. Roy, G. De Crescenzo, K. Khaleghpour, A. Kahvejian, M. O'Connor-McCourt, and N. Sonenberg (2002) Paipl interacts with poly(A) binding protein through two independent binding motifs. Mol Cell Biol, 22(11): 3769-3782.

425. K. Khaleghpour, Y.V. Svitkin, A.W. Craig, C.T. DeMaria, R.C. Deo, S.K. Burley, and N. Sonenberg (2001) Translational repressionby a novel partner of human poly(A) binding protein, Paip2. Mol Cell, 7(1): 205-216.

426. K. Khaleghpour, A. Kahvejian, G. De Crescenzo, G. Roy, Y.V. Svitkin, H. Imataka, M. O'Connor-McCourt, and N. Sonenberg (2001) Dual interactions of the translational repressor Paip2 with poly (A) binding protein. Mol Cell Biol, 21(15): 5200-5213.

427. G.Z. Yusupova, M.M. Yusupov, J.H. Cate, and H.F. Noller (2001) The path of messenger RNA through the ribosome. Cell, 106(2): 233-241.

428. A.V. Pisarev, V.G. Kolupaeva, M.M. Yusupov, C.U. Hellen, and T.V. Pestova (2008) Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO /, 27(11): 1609-1621.

429. S.G. Lazarowitz and H.D. Robertson (1977) Initiator regions from the small size class of reovirus messenger RNA protected by rabbit reticulocyte ribosomes. J Biol Chem, 252(21): 7842-7849.

430. D. Chakravarti and U. Maitra (1993) Eukaryotic translation initiation factor 5 from Saccharomyces cerevisiae. Cloning, characterization, and expression of the gene encoding the 45,346-Da protein .J Biol Chem, 268(14): 10524-10533.

431. P. Raychaudhuri, A. Chaudhuri, and U. Maitra (1985) Eukaryotic initiation factor 5 from calf liver is a single polypeptide chain protein of Mr = 62,000./ Biol Chem, 260(4): 2132-2139.

432. S. Ghosh, J. Chevesich, and U. Maitra (1989) Further characterization of eukaryotic initiation factor 5 from rabbit reticulocytes. Immunochemical characterization and phosphorylation by casein kinase II. J Biol Chem, 264(9): 5134-5140.

433. A. Chakrabarti and U. Maitra (1991) Function of eukaryotic initiation factor 5 in the formation of an 80 S ribosomal polypeptide chain initiation complex. J Biol Chem, 266(21): 14039-14045.

434. A. Chakrabarti and U. Maitra (1992) Release and recycling of eukaryotic initiation factor 2 in the formation of an 80 S ribosomal polypeptide chain initiation complex. / Biol Chem, 267(18): 12964-12972.

435. K. Das, J. Chevesich, and U. Maitra (1993) Molecular cloning and expression of cDNA for mammalian translation initiation factor 5. Proc Natl Acad Sci U SA, 90(7): 3058-3062.

436. K. Si, K. Das, and U. Maitra (1996) Characterization of multiple mRNAs that encode mammalian translation initiation factorS (eIF-5).J Biol Chem, 271(28): 16934-16938.

437. P. Raychaudhuri, A. Chaudhuri, and U. Maitra (1985) Formation and release of eukaryotic initiation factor 2 X GDP complex during eukaryotic ribosomal polypeptide chain initiation complex formation./ Biol Chem, 260(4): 2140-2145.

438. S. Cho and D.W. Hoffman (2002) Structure of the beta subunit of translation initiation-factor 2 from the archaeon Methanococcus jannaschii: a representative of the eIF2beta/eIF5 family of. proteins. Biochemistry, 41(18): 5730-5742.

439. M.R. Conte, G. Kelly, J. Babon, D. Sanfelice, J. Youell, S.J. Smerdon, and C.G. Proud (2006) Structure of the eukaryotic initiation factor (elF) 5 reveals at fold common to severah translation factors. Biochemistry, 45(14): 4550-4558.

440. C. Bieniossek, P. Schutz, M. Bumann, A. Limacher, I. Uson, and U. Baumann (2006) The crystal structure of the carboxy-terminal domain of human translation initiation factor eIF5.JMol Biol, 360(2): 457-465.

441. S. Das, R. Ghosh, and U. Maitra (2001) Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein./ Biol Chem, 276(9): 6720-6726.

442. F.E. Paulin, L.E. Campbell, K. O'Brien, J. Loughlin, and C.G. Proud (2001) Eukaryotic translation initiation factor 5 (eIF5) acts as a classical GTPase-activator protein. Curr Biol, 11(1): 55-59.

443. S. Das and U. Maitra (2001) Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation. Prog Nucleic Acid Res Mol Biol, 70: 207-231.

444. P.V. Alone and T.E. Dever (2006) Direct binding of translation initiation factor eIF2gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon. / Biol Chem, 281(18): 12636-12644.

445. S.E. Kolitz, J.E. Takacs, and J.R. Lorsch (2009) Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation. RNA, 15(1): 138152.

446. M.G. Acker, B.S. Shin, T.E. Dever, and J.R. Lorsch (2006) Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. / Biol Chem, 281(13): 8469-8475.

447. M.D. Jennings and G.D. Pavitt (2010) eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature, 465(7296): 378-381.

448. S.S. Mohammad-Qureshi, M.D. Jennings, and G.D. Pavitt (2008) Clues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation. Biochem Soc Trans, 36(Pt4): 658-664.i

449. C.R. Singh, B. Lee, T. Udagawa, S.S. Mohammad-Qureshi, Y. Yamamoto, G.D. Pavitt, and K. Asano (2006) An eIF5/eIF2 complex antagonizes guanine nucleotide exchange by eIF2B during translation initiation. EMBO J, 25(19): 4537-4546.

450. M.K. Homma, I. Wada, T. Suzuki, J. Yamaki, E.G. Krebs, and Y. Homma (2005) CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression. Proc Natl Acad Sci USA, 102(43): 15688-15693.

451. F. Llorens, A. Duarri, E. Sarro, N. Roher, M. Plana, and E. Itarte (2006) The N-terminal domain of the human eIF2beta subunit and the CK2 phosphorylation sites are required for its function. Biochem /, 394(Pt 1): 227-236.

452. T. Maiti, A. Bandyopadhyay, and U. Maitra (2003) Casein kinase II phosphorylates translation initiation factor 5 (eIF5) in Saccharomyces cerevisiae. Yeast, 20(2): 97-108.

453. M.D. Dennis and K.S. Browning (2009) Differential phosphorylation of plant translation1 initiation factors by Arabidopsis thaliana CK2 holoenzymes. J Biol Chem, 284(31): 2060220614.

454. M.D. Dennis, M.D. Person, and K.S. Browning (2009) Phosphorylation of plant translation initiation factors by CK2 enhances the in vitro interaction of multifactor complex components./ Biol Chem, 284(31): 20615-20628.

455. M.K. Homma and Y. Homma (2005) Regulatory role of CK2 during the progression of cell cycle. Mol Cell Biochem, 274(1-2): 47-52.

456. M.K. Homma and Y. Homma (2008) Cell cycle and activation of CK2. Mol Cell Biochem, 316(1-2): 49-55.

457. R. Majumdar, A. Bandyopadhyay, H. Deng, and U. Maitra (2002) Phosphorylation of mammalian translation initiation factor 5 (eIF5) in vitro and in vivo. Nucleic Acids Res, 30(5): 1154-1162.

458. G.S. Allen and J. Frank (2007) Structural insights on the translation initiation complex: ghosts of a universal initiation complex Mol Microbiol, 63(4): 941-950.

459. J.H. Lee, S.K. Choi, A. Roll-Mecak, S.K. Burley, and T.E. Dever (1999) Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci USA, 96(8): 4342-4347.

460. T. Nakamoto (2009) Evolution and the universality of the mechanism of initiation of protein synthesis. Gene, 432(1-2): 1-6.

461. T.E. Dever, A. Roll-Mecak, S.K. Choi, J.H. Lee, C. Cao, B.S. Shin, and S.K. Burley (2001) Universal translation initiation factor IF2/eIF5B. Cold Spring HarbSymp Quant Biol, 66: 417-424.

462. H.P. Sorensen, J. Hedegaard, H.U. Sperling-Petersen, and K.K. Mortensen (2001) Remarkable conservation of translation initiation factors: IFl/elFIA and IF2/eIF5B are universally distributed phylogenetic markers. IUBMB Life, 51(5): 321-327.

463. B.S. Shin and T.E. Dever (2007) Molecular genetic structure-function analysis of translation initiation factor eIF5B. Methods Enzymol, 429:185-201.

464. A. Roll-Mecak, B.S. Shin, T.E. Dever, and S.K. Burley (2001) Engaging the ribosome: universal IFs of translation. Trends Biochem Sci, 26(12): 705-709.

465. L. Guillon, E. Schmitt, S. Blanquet, and Y. Mechulam (2005) Initiator tRNA binding by e/aIF5B, the eukaryotic/archaeal homologue of bacterial initiation factor IF2. Biochemistry, 44(47): 15594-15601.

466. A. Antoun, M.Y. Pavlov, K. Andersson, T. Tenson, and M. Ehrenberg (2003) The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO /, 22(20): 5593-5601.

467. B.S. Shin, D. Maag, A. Roll-Mecak, M.S. Arefin, S.K. Burley, J.R. Lorsch, and T.E. Dever (2002) Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell, 111(7): 1015-1025.

468. S.K. Choi, J.H. Lee, W.L. Zoll, W.C. Merrick, and T.E. Dever (1998) Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast Science, 280(5370): 17571760.

469. J.H. Lee, T.V. Pestova, B.S. Shin, C. Cao, S.K. Choi, and T.E. Dever (2002) Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci U SA, 99(26): 16689-16694.

470. P. Milon, M. Carotti, A.L. Konevega, W. Wintermeyer, M.V. Rodnina, and C.O. Gualerzi (2010) The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Rep, 11(4): 312-316.

471. T.V. Pestova, I.B. Lomakin, J.H. Lee, S.K. Choi, T.E. Dever, and C.U. Hellen (2000) The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature, 403(6767): 332-335.

472. A. Roll-Mecak, C. Cao, T.E. Dever, and S.K. Burley (2000) X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell, 103(5): 781-792.

473. A. Unbehaun, A. Marintchev, I.B. Lomakin, T. Didenko, G. Wagner, C.U. Hellen, and T.V. Pestova (2007) Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing. EMBO J, 26(13): 3109-3123.

474. D.S. Olsen, E.M. Savner, A. Mathew, F. Zhang, T. Krishnamoorthy, L. Phan, and A.G. Hinnebusch (2003) Domains of elFIA that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J, 22(2): 193-204.

475. P. Sangthong, J. Hughes, and J.E. McCarthy (2007) Distributed control for recruitment, scanning and subunit joining steps of translation initiation. Nucleic Acids Res, 35(11): 3573-3580.

476. D. Maag, M.A. Algire, and J.R. Lorsch (2006) Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre-initiation complex plays a role in start site selection .J Mol Biol, 356(3): 724-737.

477. J.R. Lorsch and T.E. Dever (2010) Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation./Biol Chem, 285(28): 21203-21207.

478. S. de Breyne, J.M. Bonderoff, K.M. Chumakov, R.E. Lloyd, and C.U. Hellen (2008) Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases. Virology, 378(1): 118-122.570.571.572.573.574,575576,577,578579,580,581,582,583,584.585,586,587,

479. R: Basavappa and P.B. Sigler (1991) The 3 A crystal structure of yeast initiator tRNA: functional-implications in initiator/elongator discrimination. EMBO J, 10(10): 3105-3111.

480. R.J. Jackson, C.U. Hellen, and T.V. Pestova (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. NatRevMol Cell Biol, 11(2): 113-127.

481. M. Reibarkh, Y. Yamamoto, C.R: Singh, et al. (2008) Eukaryotic initiation factor, (elF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J Biol Chem, 283(2): 1094-1103.

482. D. Kapp, S.E. Kolitz, and J.R. Lorsch (2006) Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation. RNA, 12(5): 751-764.

483. S.U. Astrom, U. von Pawel-Rammingen, and A.S. Bystrom (1993) The yeast initiator tRNAMet can act as an elongator tRNA(Met) in vivo .J Mol Biol, 233(1): 43-58.

484. H.J. Drabkin, M. Estrella, and U.L. Rajbhandary (1998) Initiator-elongator discrimination in vertebrate tRNAs for protein synthesis. Mol Cell Biol, 18(3): 1459-1466.

485. N. Sonenberg and T.E. Dever (2003) Eukaryotic translation initiation factors and regulators. Curr Opin Struct Biol, 13(1): 56-63.

486. M. Kozak (1992) Regulation of translation in eukaryotic systems. Annu Rev Cell Biol, 8: 197225.

487. M. Kozak (1979) Inability of circular mRNA to attach to eukaryotic ribosomes. Nature, 280(5717): 82-85.

488. M. Kozak (1979) Migration of 40 S ribosomal subunits on messenger RNA when initiation is perturbed by lowering magnesium or adding drugs .J Biol Chem, 254(11): 4731-4738.

489. M. Kozak (1980) Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell, 19(1): 79-90.

490. M. Kozak (1980) Binding of wheat germ ribosomes to bisulfite-modified reovirus messenger RNA: evidence for a scanning mechanism./ Mol Biol, 144(3): 291-304.

491. M. Kozak (1980) Role of ATP in binding and migration of 40S ribosomal subunits. Cell, 22(2 Pt 2): 459-467.

492. M. Kozak (1980) Evaluation of the "scanning model" for initiation of protein synthesis in eucaryotes. Cell, 22(1 Pt 1): 7-8.

493. M. Kozak (1981) Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res, 9(20): 5233-5252.

494. M. Kozak (1981) Mechanism of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis. Curr Top Microbiol Immunol, 93: 81-123.219588.589.590.591.592.593.594.595.596,597,598,599,600,601602603,604,

495. M: Kozak (1982) How do eukaryotic ribosomes recognize the unique AUG initiator codon in messenger RNA? Biochem SocSymp, 47: 113-128.'

496. M. Kozak (1984) Selection of initiation'sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res, 12(9): 38733893.

497. M. Kozak (1984) Point mutations close to the AUG-initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature, 308(5956): 241-246.

498. M. Kozak (1986) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci USA, 83(9): 2850-2854.

499. M. Kozak (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell, 44(2): 283-292.

500. M. Kozak (1986) Regulation of protein synthesis in virus-infected animal cells. Adv Virus Res, 31:229-292.

501. M. Kozak (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells.JMol Biol, 196(4): 947-950.

502. M. Kozak (1988) Leader length and secondary structure modulate mRNA function under conditions of stress. Mol Cell Biol, 8(7): 2737-2744.

503. M. Kozak (1994) Features in the 5' non-coding sequences of rabbit alpha and beta-globin mRNAs that affect translational efficiency. J Mol Biol, 235(1): 95-110.

504. S.E. Dmitriev, D.E. Andreev, Z.V. Ad'ianova, I.M. Terenin, and I.N. Shatskii (2009) Efficient cap-dependent in vitro and in vivo translation of mammalian mRNAs with long and highly structured 5'-untranslated regions. Mol Biol (Mosk), 43(1): 119-125.

505. K.S. Vassilenko, O.M. Alekhina, S.E. Dmitriev, I.N. Shatsky, and A.S. Spirin, Precise temporal parameters of eukaryotic ribosomal scanning of mRNA 2010.

506. J.S. Nanda, Y.N. Cheung, J.E. Takacs, P. Martin-Marcos, A.K. Saini, A.G. Hinnebusch, and J.R. Lorsch (2009) elFl controls multiple steps in start codon recognition during eukaryotic translation initiation. J Mol Biol, 394(2): 268-285.

507. W.V. Gilbert (2010) Alternative ways to think about cellular internal ribosome entry. J Biol Chem, 285(38): 29033-29038.

508. N.Shatsky, S.E. Dmitriev, I;M. Terenin, and D.E. Andreev (2010) Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells, 30(4): 285-293.

509. A. Pacheco and E. Martinez-Salas (2010) Insights into the biology of IRES elements through riboproteomic approaches./ Biomed Biotechnol, 2010: 458927.x ,

510. O. Roberts and.E. Groppelli (2009) An atypical IRES within the 5" UTR of a dicistrovirus genome. Virus Res, 139(2): 157-165.

511. P.j: Lukavsky (2009) Structure andTunction ofHCV IRES domains. Virus Res, 139(2): 166-171.

512. K.D. Fitzgerald and B.L. Semler (2009) Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim BiophysActa, 1789(9-10): 518-528.

513. M.E. Filbin and J.S. Kieft (2009) Toward a structural understanding of IRES RNA function.- Curr Opin Struct Biol, 19(3): 267-276.

514. O. Fernandez-Miragall, S. Lopez de Quinto, and E. Martinez-Salas (2009) Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Res, 139(2): 172-182.

515. L. Balvay, R. Soto Rifo, E.P. Ricci, D. Decimo, and T. Ohlmann (2009) Structural and functional diversity of viral IRESes. Biochim BiophysActa, 1789(9-10): 542-557.

516. S.M. Lewis and M. Holcik (2008) For IRES trans-acting factors, it is all about location. Oncogene, 27(8): 1033-1035.

517. J.S. Kieft (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci, 33(6): 274-283.

518. T.V. Pestova and C.U. Hellen (2001) Preparation and activity of synthetic unmodified mammalian tRNAi(Met) in initiation of translation in vitro. RNA, 7(10): 1496-1505.

519. M. Sprinzl, C. Horn, M. Brown, A. Ioudovitch, and S. Steinberg (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res, 26(1): 148-153.

520. N. Watson (1988) A new revision of the sequence of plasmid pBR322. Gene, 70(2): 399-403.

521. G.S. Kopeina, Z.A. Afonina, K.V. Gromova, V.A. Shirokov, V.D. Vasiliev, and A.S. Spirin (2008) Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA Nucleic Acids Res, 36(8): 2476-2488.

522. O.M. Alekhina, K.S. Vassilenko, and A.S. Spirin (2007) Translation of non-capped mRNAs in a eukaryotic cell-free system: acceleration of initiation rate in the course of polysome formation. Nucleic Acids Res, 35(19): 6547-6559.

523. V.V. Zeyenko, L.A. Ryabova, D.R. Gallie, and A.S. Spirin (1994) Enhancing effect of the 3'-untranslated region of tobacco mosaic virus RNA on protein synthesis in vitro. FEBS Lett, 354(3): 271-273.

524. M. Wakiyama, T. Futami, and K. Miura (1997) Poly(A) dependent translation in rabbit reticulocyte lysate. Biochimie, 79(12): 781-785.

525. T.M. Wilson, K. Saunders, M.J. Dowson-Day, D.E. Sleat, H. Trachsel, and K.W. Mundry (1990) Post-transcriptional control- of gene expression. NATO ASI Series, ed. J.E. McCarthy and M.F. Tuite. Berlin/Heidelberg, Springer Verlag.

526. T.V. Pestova, C.U. Hellen, and I.N. Shatsky (1996) Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol, 16(12): 68596869.

527. B.D. Stern, M. Wilson, and R. Jagus (1993) Use of nonreducing SDS-PAGE for monitoring renaturation of recombinant protein synthesis initiation factor, eIF-4 alpha Protein Expr Purif, 4(4): 320-327.

528. Л.А. Остерман (1981) Методы исследования белков и нуклеиновых кислот, ed. Г.П. Георгиев. Москва, Наука.623.624.625.626.627.628.629.630,631.632.633.634,635,636637,638,639,640,

529. O.M. Griffith, Techniques of Preparative, Zonal, and Continious Flow Ultracentrifugation. 1975: Application Research Department, Spinco Division, Beckman Instruments, Inc.

530. J. Sambrook, E.F. Fritsch, and T. Maniatis (1989) Molecular Cloning. A laboratory Manual., ed. Cold Spring Harbour, CSHL Press.

531. H. Inoue, H. Nojima, and H. Okayama (1990) High efficiency transformation of Escherichia coli. with plasmids. Gene, 96(1): 23-28.

532. D.E. Draper, S.A. White, and J.M. Kean (1988) Preparation of Specific Ribosomal RNA Fragments. Methods Enzymol, 164: 221-237.

533. V.V. Gurevich (1996) Use of bacteriophage RNA polymerase in RNA synthesis. Methods Enzymol, 275: 382-397.

534. V.V. Gurevich, I.D. Pokrovskaya, T.A. Obukhova, and S.A. Zozulya (1991) Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal Biochem, 195(2): 207-213.

535. J.F. Milligan and O.C. Uhlenbeck (1989) Synthesis of Small RNAs Using T7 RNA Polymerase. Methods Enzymol, 180: 52-58.

536. J.R. Wyatt, M. Chastain, and J.D. Puglisi (1991) Synthesis and purification of large amounts of

537. RNA oligonucleotides. Biotechniques, 11(6): 764-769.

538. A.C. Anderson, S.A. Scaringe, B.E. Earp, and C.A. Frederick (1996) HPLC purification of RNA for crystallography and NMR. RNA, 2:110-117.

539. H. Schurer, K. Lang, J. Schuster, and M. Mori (2002) A universal method to produce in vitro transcripts with homogeneous 3' ends. Nucleic Acids Res, 30(12): e56.

540. O.V. Skabkina, D.N. Lyabin, M.A. Skabkin, and L.P. Ovchinnikov (2005) YB-1 autoregulates translation of its own mRNA at or prior to the step of 40S ribosomal subunit joining. Mol Cell Biol, 25(8): 3317-3323.

541. N.E. Shirokikh, E.Z. Alkalaeva, K.S. Vassilenko, Z.A. Afonina, O.M. Alekhina, L.L. Kisselev, and A.S. Spirin (2009) Quantitative analysis of ribosome-mRNA complexes at different translation stages. Nucleic Acids Res.

542. R.J. Jackson and T. Hunt (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol, 96: 50-74.

543. V.A. Shirokov, A. Kommer, V.A. Kolb, and A.S. Spirin (2007) Continuous-exchange protein-synthesizing systems. Methods Mol Biol, 375:19-55.

544. A.S. Spirin (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol, 22(10): 538-545.

545. A. Ryabova, I. Morozov, and A.S. Spirin (1998) Continuous-flow cell-free translation, transcription-translation, and replication-translation systems. Methods Mol Biol, 77:179-193.

546. A.S. Spirin (1992) Gene expression in cell-free systems on a preparative scale. Bioorg Khim; 18(10-11): 1394-1402.

547. V.I. Baranov, I. Morozov, S.A. Ortlepp, and A.S. Spirin (1989) Gene expression in a cell-free system on the preparative scale. Gene, 84(2): 463-466.

548. A.S. Spirin, V.I. Baranov, L.A*. Ryabova, S.Y. Ovodov, and Y.B. AIakhov(1988) A continuous cellfree translation system capable of producing polypeptides in high yield. Science, 242(4882): 1162-1164.

549. V.A. Kolb, E.V. Makeyev, and A.S. Spirin (1994) Folding of firefly luciferase during translation in a cell-free system; EMBO J, 13(15): 3631-3637.

550. H. Schagger and G. von Jagow (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from»l to lOO kDa. Anal Biochem, 166(2): 368-379.

551. N.E. Shirokikh, E.Z. Alkalaeva, K.S. Vassilenko, Z.A. Afonina, O.M. Alekhina, L.L. Kisselev, and A.S. Spirin (2010) Quantitative analysis of ribosome-mRNA complexes at different translation stages. Nucleic Acids Res, 38(3): el 5.

552. D. Hartz, D.S. McPheeters, R. Traut, and L. Gold (1988) Extension inhibition analysis of translation initiation complexes. Methods Enzymol, 164: 419-425.

553. D. Hartz, D.S. McPheeters, and L. Gold (1989) Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev, 3(12A): 1899-1912.

554. D.D. Anthony and W.C. Merrick (1992) Analysis of 40 S and 80 S complexes with mRNA as measured by sucrose density gradients and primer extension inhibition. J Biol Chem, 267(3): 1554-1562.

555. M. Kozak (1998) Primer extension analysis of eukaryotic ribosome-mRNA complexes. Nucleic Acids Res, 26(21): 4853-4859.

556. R.G. Crystal, A.W. Nienhuis, P.M. Prichard, et al. (1972) Initiation of globin synthesis. FEBS Lett, 24(3): 310-314.

557. D.A. Shafritz, P.M. Prichard, J.M. Gilbert, W.C. Merrick, and W.F. Anderson (1972) Separation of reticulocyte initiation factor M 2 activity into two components. Proc Natl Acad Sci USA, 69(4): 983-987.

558. W.C. Merrick, N.H. Lubsen, and W.F. Anderson (1973) A ribosome dissociation factor from rabbit reticulocytes distinct from initiation factor M3. Proc Natl Acad Sci USA, 70(8): 22202223.

559. D.J. Picciano, P.M. Prichard, W.C. Merrick, D.A. Shafritz, H. Graf, R.G. Crystal, and W.F. Anderson (1973) Isolation of protein synthesis initiation factors from rabbit liver. J Biol Chem, 248(1): 204-214.

560. S.L. Adams, B. Safer, W.F. Anderson, and1 W.C. Merrick (1975) Eukaryotic initiation complex formation. Evidence for two distinct pathways. J Biol Chem, 250(23): 9083-9089.

561. W.C. Merrick and W.F. Anderson (1975) Purification and characterization of homogeneous protein synthesis initiation factor Ml from rabbit reticulocytes. J Biol Chem, 250(4): 11971206.

562. W.C. Merrick, W.M. Kemper, and W.F. Anderson (1975) Purification and characterization of homogeneous initiation factor M2A from rabbit reticulocytes. J Biol Chem, 250(14): 55565562.

563. W.C. Merrick, W.M. Kemper, J.A. Kantor, and W.F. Anderson (1975) Purification and properties of rabbit reticulocyte protein synthesis elongation factor 2. J Biol Chem, 250(7): 2620-2625.

564. C. Nombela, N.A. Nombela, S. Ochoa, W.C. Merrick, and F. Anderson (1975) Nature of eukaryotic proteins required for joining of 40S and 60S ribosomal subunits. Biochem Biophys Res Commun, 63(2): 409-416.

565. B. Safer, S.L. Adams, W.F. Anderson, and W.C. Merrick (1975) Binding of MET-TRNAf and GTP to homogeneous initiation factor MP.J Biol Chem, 250(23): 9076-9082:

566. B. Safer, W.F. Anderson; and W.C. Merrick (1975) Purification and physical properties of homogeneous initiation factor MP from rabbit reticulocytes./Biol Chem, 250(23): 9067-9075.

567. W. Filipowicz, J.M. Sierra, C. Nombela, S. Ochoa, W.C. Merrick, and W.F. Anderson (1976) Polypeptide chain initiation in eukaryotes: initiation factor requirements for translation of natural messengers. Proc Natl Acad Sci U SA, 73(1): 44-48.

568. W.M. Kemper, K.W. Berry, and W.C. Merrick (1976) Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. / Biol Chem, 251(18): 5551-5557.

569. W.M. Kemper, W.C. Merrick, B. Redfield, C.K. Liu, and H. Weissbach (1976) Purification and properties of rabbit reticulocyte elongation factor 1. Arch Biochem Biophys, 174(2): 603-612.

570. C. Nombela, N.A. Nombela, S. Ochoa, B. Safer, W.F. Anderson, and W.C. Merrick (1976) Polypeptide chain initiation in eukaryotes: mechanism of formation of initiation complex Proc Natl Acad Sci USA, 73(2): 298-301.

571. D.A. Shafritz, J.A. Weinstein, B. Safer, W.C. Merrick, L.A. Weber, E.D. Hickey, and C. Baglioni (1976) Evidence for role of m7G5'-phosphate group in recognition of eukaryotic mRNA by initiation factor IF-M3. Nature, 261(5558): 291-294.

572. W.M. Kemper and W.C. Merrick (1979) Preparation of protein synthesis elongation factors from rabbit reticulocytes. Methods Enzymol, 60: 638-648.

573. A.K. Falvey and T. Staehelin (1970) Structure and function of mammalian ribosomes. I. Isolation and characterization of active liver ribosomal subunits./Mol Biol, 53(1): 1-19.

574. M.H. Schreier, B. Erni, and T. Staehelin (1977) Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors./ Mol Biol, 116(4): 727-753;

575. H. Trachsel, B. Erni, M.H. Schreier, and T. Staehelin (1977) Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J"Mol Biol, 116(4): 755-767.

576. L.P. Ovchinnikov, A.S. Spirin, B. Erni, and T. Staehelin (1978) RNA-binding proteins of rabbit reticulocytes contain the two elongation factors and some of the initiation factors of translation. FEBS Lett, 88(1): 21-26.

577. H. Trachsel and T. Staehelin (1978) Binding and release of eukaryotic initiation factor eIF-2 and GTP during protein synthesis initiation. Proc Natl Acad Sci USA, 75(1): 204-208.

578. R. Benne and J.W. Hershey (1976) Purification and characterization of initiation factor IF-E3 from rabbit reticulocytes. Proc Natl Acad Sci USA, 73(9): 3005-3009.673.674.675.676.677.678679.680681682.683,684,685686,687,688

579. R. Benne, C. Wong, M: Luedi, and J.W. Hershey (1976) Purification and: characterization of. initiation factor IF-E2 from rabbit reticulocytes. J Biol Chem; 251(23): 7675-7681.

580. R. Benne, M. Luedi, and-J.W. Hershey (1977) Purification and characterization of initiation»* factors IF-E4 and IF-E6 from rabbit reticulocytes./ Biol Chem, 252(16): 5798-5803:

581. R'., Benne, M.L. Brown-Luedi, and J.W. Hershey (1978) Purification andi characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes./ Biol Chem, 253(9): 3070-3077.

582. R. Benne and J.W. Hershey (1978) The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes./ Biol Chem, 253(9): 3078-3087.

583. M. Zasloff and S. Ochoa (1972) Polypeptide chain initiation in eukaryotes: functional identity of supernatant factor from various sources. Proc Natl Acad Sci U SA, 69(7): 1796-1799.

584. G.L. Dettman and W.M. Stanley, Jr. (1973) The ternary complex of initiation factor IF-I, MET-tRNA Met f and GTTP. An aurintricarboxylate-sensitive intermediate in the initiation of eukaryotic protein synthesis. Biochim BiophysActa, 299(1): 142-147.

585. W. Filipowicz, J.M. Sierra, and S. Ochoa (1975) Polypeptide chain initiation in eukaryotes: initiation factor MP in Artemia salina embryos. Proc Natl Acad Sci U S A, 72(10): 3947-3951.

586. W. Filipowicz, Y. Furuichi, J.M. Sierra, S. Muthukrishnan, A.J. Shatkin, and S. Ochoa (1976) A protein binding the methylated 5'-terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proc Natl Acad Sci USA, 73(5): 1559-1563.

587. D.S. Kennedy and S.M. Heywood (1976) The role of muscle and reticulocyte initiation factor 3 on the translation of myosin and globin messenger RNA in a wheat germ cell-free system. FEBS Lett, 72(2): 314-318.

588. R.S. Ranu and I.G. Wool (1976) Preparation and characterization of eukaryotic initiation factor EIF-3. Formation of binary (EIF-3-Met-tRNAf) and ternary (EIF-3-Met-tRNAf-GTP) complexes./ Biol Chem, 251(7): 1926-1935.

589. H.H. Dahl, E. Truelsen, and G.E. Blair (1977) The purification and properties of two low-molecular-weight proteins required for the initiation of translation in ascites tumour cells. Eur JBiochem, 77(1): 209-216.

590. M. Padilla, D. Canaani, Y. Groner, J.A. Weinstein, M. Bar-Joseph, W. Merrick, and D.A. Shafritz (1978) Initiation factor eIF-4B (IF-M3)-dependent recognition and translation of capped versus uncapped eukaryotic mRNAs. / Biol Chem, 253(17): 5939-5945.

591. N. Sonenberg and A.J. Shatkin (1978) Nonspecific effect of m7GMP on protein-RNA interactions./Biol Chem, 253(19): 6630-6632.

592. R. Benne, H. Amesz, J.W. Hershey, and H.O. Voorma (1979) The activity of eukaryotic initiation factor eIF-2 in ternary complex formation with GTP and Met-tRNA. / Biol Chem, 254(9): 32013205.

593. W.C. Merrick (1979) Assays for eukaryotic protein synthesis. Methods Enzymoi, 60:108-123.

594. D.T. Peterson, W.C. Merrick, and B. Safer (1979) Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80 S initiation complex formation. / Biol Chem, 254(7): 25092516.

595. S.E. Dmitriev, A.V. Pisarev, M.P. Rubtsova, Y.E. Dunaevsky, and I.N. Shatsky (2003) Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting. FEBS Lett, 533(1-3): 99-104.

596. M.A. Skabkin, O.V. Skabkina, V. Dhote, A.A. Komar, C.U. Hellen, and T.V. Pestova (2010) Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes Dev, 24(16): 1787-1801.

597. A.V. Pisarev, A. Unbehaun, C.U. Hellen, and T.V. Pestova (2007) Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol, 430: 147-177.

598. R.A. Fekete, M.J. Miller, and D.K. Chattoraj (2003) Fluorescently labeled oligonucleotide extension: a rapid and quantitative protocol for primer extension. Biotechniques, 35(1): 90-94, 97-98.

599. W. Yindeeyoungyeon and M.A. Schell (2000) Footprinting with an automated capillary DNA sequencer. Biotechniques, 29(5): 1034-1036,1038,1040-1041.

600. M.S. Sachs, Z. Wang, A. Gaba, P. Fang, J. Belk, R. Ganesan, N. Amrani, and A. Jacobson (2002) Toeprint analysis of the positioning of translation apparatus components at initiation and termination codons of fungal mRNAs. Methods, 26(2): 105-114.

601. P.S. Gould, H. Bird, and A.J. Easton (2005) Translation toeprinting assays using fluorescently labeled primers and capillary electrophoresis. Biotechniques, 38(3): 397-400.

602. H. Du and P. Babitzke (1998) trp RNA-binding attenuation protein-mediated long distance RNA refolding regulates translation of trpE in Bacillus subtilis .J Biol Chem, 273(32): 20494-20503.

603. L.A. Shaloiko, I.E. Granovsky, T.V. Ivashina, V.N. Ksenzenko, V.A. Shirokov, and A.S. Spirin (2004) Effective non-viral leader for cap-independent translation in a eukaryotic cell-free system. Biotechnol Bioeng, 88(6): 730-739.

604. A.T. Gudkov, M.V. Ozerova, V.M. Shiryaev, and A.S. Spirin (2005) 5'-poly(A) sequence as an effective leader for translation in eukaryotic cell-free systems. Biotechnol Bioeng, 91(4): 468473.

605. B. Moss (2001) Poxviruses and their replication. In Fields virology, D.M. Knipe and P.M. Howley, EditorAEditors. Philadelphia, PA, Lippincott, Williams and Wilkins, 2849-2884.

606. S.C. Harrison, B. Alberts, E. Ehrenfeld, et al (2004) Discovery of antivirals against smallpox. Proc Natl Acad Sei USA, 101(31): 11178-11192.

607. E. Jenner (1798) An Inquiry into the Causes and Effects of the Variolae Vaccinae, ed. Birmingham, AL, CLASSICS OF MEDICINE LIBRARY; Facsimile reprint of the 1798 edition, edition (January 1,1978).

608. J.B. Buist (1886) The life-history of the micro-organisms associated with variola and vaccinia. Proc. R. Soc. Edinburgh, 13: 603-615.

609. J. Siegel (1905) Untersuchungen über d. Ätiologie d. Pocken u. d. Maul- u. Klauenseuche, ed. Berlin.

610. P. Remlinger and 0. Nouri (1905) Le virus vaccinal traverse la bougie Berkefeld V. C. R. de la Soc. de Biol., 1: 895.

611. W. Resch, K.K. Hixson, R.J. Moore, M.S. Lipton, and B. Moss (2007) Protein composition of the vaccinia virus mature virion. Virology, 358(1): 233-247.226

612. R.C. Condit, N. Moussatche, and P. Traktman (2006) In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res, 66: 31-124.

613. B. Moss (2006) Poxvirus entry and membrane fusion. Virology, 344(1): 48-54.

614. G.L. Smith, A. Vanderplasschen, and M. Law (2002) The formation and function of extracellular enveloped vaccinia virus./ Gen Virol, 83(Pt 12): 2915-2931.

615. N. Tolonen, L. Doglio, S. Schleich, and J. Krijnse Locker (2001) Vaccinia virus DNA1 replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol Biol Cell, 12(7): 20312046.

616. S. Shuman (1995) Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol, 50:101-129.

617. B.S. Schnierle, P.D. Gershon, and B. Moss (1992) Cap-specific mRNA (nucleoside-02'-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. Proc Natl Acad Sci USA, 89(7): 2897-2901.

618. R. Kent (1989) Transcription in vaccinia virus. Microbiologia, 5(2): 69-77.

619. S.S. Broyles (2003) Vaccinia virus transcription. / Gen Virol, 84(Pt 9): 2293-2303.

620. Z. Yang, D.P. Bruno, C.A. Martens, S.F. Porcella, and B. Moss (2010) Simultaneous highresolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci USA, 107(25): 11513-11518.

621. C. Bertholet, E. Van Meir, B. ten Heggeler-Bordier, and R. Wittek (1987) Vaccinia virus produces late mRNAs by discontinuous synthesis. Cell, 50(2): 153-162.

622. B. Schwer, P. Visca, J.C. Vos, and H.G. Stunnenberg (1987) Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5' poly(A) leader. Cell, 50(2): 163-169.

623. D.D. Patel and D.J. Pickup (1987) Messenger RNAs of a strongly-expressed late gene of cowpox virus contain 5'-terminal poly(A) sequences. EMBO/, 6(12): 3787-3794.

624. C.F. Wright and B. Moss (1987) In vitro synthesis of vaccinia virus late mRNA containing a 5' poly(A) leader sequence. Proc Natl Acad Sci USA, 84(24): 8883-8887.

625. B. Schwer and H.G. Stunnenberg (1988) Vaccinia virus late transcripts generated in vitro have a poly(A) head. EMBO J, 7(4): 1183-1190.

626. L. de Magistris and H.G. Stunnenberg (1988) Cis-acting sequences affecting the length of the poly(A) head of vaccinia virus late transcripts. Nucleic Acids Res, 16(8): 3141-3156.

627. B.S. Ink and D.J. Pickup (1990) Vaccinia virus directs the synthesis of early mRNAs containing 5' poly(A) sequences. Proc Natl Acad Sci USA, 87(4): 1536-1540.

628. M. Schrom and R. Bablanian (1979) Inhibition of protein synthesis by vaccinia virus. I. Characterization of an inhibited cell-free protein-synthesizing system from infected cells. Virology, 99(2): 319-328.

629. F. Ben-Hamida and G. Beaud (1978) In vitro*inhibition of protein synthesis by purified cores from vaccinia virus. Proc Natl Acad Sci USA, 75(1): 175-179.

630. H. Rosemond-Hornbeak and B. Moss (1975) Inhibition-of host-protein synthesis by vaccinia' virus: fate of cell mRNA and synthesis of small poly (A)-rich polyribonucleotides in the presence of actinomycin D.J Virol, 16(1): 34-42.

631. B. Moss (1968) Inhibition of HeLa cell protein synthesis by the vaccinia virion. . Virol, 2(10): 1028-1037.

632. R. Bablanian and A.K. Banerjee (1986) Poly(riboadenylic acid) preferentially inhibits in vitro translation of cellular mRNAs compared with vaccinia virus mRNAs: possible role in vaccinia virus cytopathology. Proc Natl Acad Sci USA, 83(5): 1290-1294.

633. N. Cacoullos and R. Bablanian (1993) Role of polyadenylated RNA sequences (POLADS) in vaccinia virus infection: correlation between accumulation of POLADS and extent of shut-off in infected cells. Cell Mol Biol Res, 39(7): 657-664.

634. N. Cacoullos and R. Bablanian (1991) Polyadenylated RNA sequences produced in vaccinia virus-infected cells under aberrant conditions inhibit protein synthesis in vitro. Virology, 184(2): 747-751.

635. M.J. Su and R. Bablanian (1990) Polyadenylated RNA sequences from vaccinia virus-infected cells selectively inhibit translation in a cell-free system: structural properties and mechanism of inhibition. Virology, 179(2): 679-693.

636. R. Bablanian, S.K. Goswami, M. Esteban, and A.K. Banerjee (1987) Selective inhibition of protein synthesis by synthetic and vaccinia virus-core synthesized poly(riboadenylic acids). Virology, 161(2): 366-373.

637. R. Bablanian, G. Coppola, P.S. Masters, and A.K. Banerjee (1986) Characterization of vaccinia virus transcripts involved in selective inhibition of host protein synthesis. Virology, 148(2): 375-380.

638. C.R. Damaso and N. Moussatche (1992) Proteins released from vaccinia cores are probably not involved in protein synthesis inhibition in vitro. BrazJ Med Biol Res, 25(2): 115-124.

639. J. Mulder, M.E. Robertson, R.A. Seamons, and G.J. Belsham (1998) Vaccinia virus protein synthesis has a low requirement for the intact translation initiation factor eIF4F, the cap-binding complex, within infected cells./ Virol, 72(11): 8813-8819.

640. G.A. Kassavetis, P.G. Zentner, and E.P. Geiduschek (1986) Transcription at bacteriophage T4 variant late promoters. An application of a newly devised promoter-mapping method involving-RNA chain retraction. J Biol Chem, 261(30): 14256-14265.

641. P.R. Cunningham, C.J. Weitzmann, and J. Ofengand (1991) SP6 RNA polymerase stutters when initiating from an AAA. sequence. Nucleic Acids Res, 19(17): 4669-4673.

642. R. Kiyama and M. Oishi (1996) In vitro- transcription of a poly(dA) x poly(dT)-containing sequence is inhibited by interaction between the template and its transcripts. Nucleic Acids Res, 24(22): 4577-4583.

643. B.Y. Ahn and B. Moss (1989) Capped poly(A) leaders of variable lengths at the 5' ends of vaccinia virus late mRNAs./ Virol, 63(1): 226-232.

644. A. Sarabhai and S. Brenner (1967) A mutant which reinitiates the polypeptide chain after chain termination.JMolBiol, 27(1): 145-162.

645. W.V. Gilbert, K. Zhou, T.K. Butler, and J.A. Doudna (2007) Cap-independent translation is required for starvation-induced differentiation in yeast Science, 317(5842): 1224-1227.

646. H.A. Thompson, I. Sadnik, J. Scheinbuks, and K. Moldave (1977) Studies on native ribosomal subunits from rat liver. Purification and characterization of a ribosome dissociation factor. Biochemistry, 16(10): 2221-2230.

647. D.J. Goss, D. Rounds, T. Harrigan, C.L. Woodley, and A.J. Wahba (1988) Effects of eucaryotic initiation factor 3 on eucaryotic ribosomal subunit equilibrium and kinetics. Biochemistry, 27(5): 1489-1494.

648. H. Trachsel and T. Staehelin (1979) Initiation of mammalian protein synthesis. The multiple functions of the initiation factor eIF-3. Biochim Biophys Acta, 565(2): 305-314.

649. A. Thomas, H. Goumans, H.O. Voorma, and R. Benne (1980) The mechanism of action of eukaryotic initiation factor 4C in protein synthesis. Eur J Biochem, 107(1): 39-45.

650. H.R. Pelham and R.J. Jackson (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem, 67(1): 247-256.

651. M.S. Svetlov, A. Kommer, V.A. Kolb, and A.S. Spirin (2006) Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family. Protein Sci, 15(2): 242-247.

652. V.A. Kolb, E.V. Makeyev, A. Kommer, and A.S. Spirin (1995) Cotranslational folding of proteins. . Biochem Cell Biol, 73(11-12): 1217-1220.

653. M.R. Adhin and J. van Duin (1990) Scanning model for translational reinitiation in eubacteria. J Mol Biol, 213(4): 811-818.

654. W. Saenger, ed. Principles of Nucleic Acid Structure. 1984, Springer: New York.

655. C. Cantor and P. Schimmel (1980) Biophysical Chemistry, ed. San Francisco, Freeman.

656. G. Yusupova, L. Jenner, B. Rees, D. Moras, and M. Yusupov (2006) Structural basis for messenger RNA movement on the ribosome. Nature, 444(7117): 391-394.

657. S. Parrish, W. Resch, and B. Moss (2007) Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sei USA, 104(7): 2139-2144.

658. G.A. Kausche, E. Pfankuch, and H. Ruska (1939) Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop Naturwissenschaften, 27(18): 292-299.

659. I.-B. Eriksson-Quensel and T. Svedberg (1936) Sedimentation4 and electrophoresis of, the tobacco-mosaic virus protein./. Am. Chem. Soc., 58:1863-1867.

660. A. Mayer (1886) Über die Mosaikkrankheit des Tabaks. Die Landwirtschaftliche Versuchsstationen, 32: 451-467.

661. D. Iwanowski (1892) Über die Mosaikkrankheit der Tabakspflanze. St Petersb. Acad. Imp. Sei. Buh, 35: 67-70.

662. M.J. Beijerinck (1898) Über ein contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblätter. Verhandelingen der Koninkyke akademie Wettenschapppen te Amsterdam, 65: 321.

663. D.K. Clare and E.V. Orlova (2010) 4.6A Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k x 4k CCD camera .J Struct Biol, 171(3): 303-308.

664. K. Namba and G. Stubbs (1986) Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly. Science, 231(4744): 1401-1406.

665. J.D. Watson (1954) The structure of tobacco mosaic virus. I. X-ray evidence of a helical arrangement of sub-units around the longitudinal axis. Biochim Biophys Acta, 13(1): 10-19.

666. M.E. Bergmann and I. Fankuchen (1951) X-ray diffraction studies of inclusion bodies found in plants infected with tobacco mosaic virus. Science, 113(2937): 415.

667. J.D. Bernal and 1. Fankuchen (1941) X-Ray and Crystallographic Studies of Plant Virus Preparations. Iii .J Gen Physiol, 25(1): 147-165.

668. R.E. Franklin and K.C. Holmes (1956) The helical arrangement of the protein subunits in tobacco mosaic virus. Biochim Biophys Acta, 21(2): 405-406.

669. R.E. Franklin and A. Klug (1956) The nature of the helical groove on the tobacco mosiac virus particle; x-ray diffraction studies. Biochim Biophys Acta, 19(3): 403-416.

670. R.E. Franklin (1955) Structure of tobacco mosaic virus. Nature, 175(4452): 379-381.

671. G.E. Jones and W.O. Dawson (1978) Stability of mutations conferring temperature sensitivity on tobacco mosaic virus. Intervirology, 9(3): 149-155.

672. T.M. Wilson, R.N. Perham, and P.J. Butler (1978) Intermediates in the disassembly of tobacco mosaic virus at alkaline pH Infectivity, self-assembly, and translational activities. Virology, 89(2): 475-483.

673. D. Zimmern (1976) The region of tobacco mosaic virus RNA involved in the nucIeation<of assembly. Philos Trans R Soc Lond B Biol Sei, 276(943): 189-204.

674. A.N. Creager, K.B. Scholthof, V. Citovsky, and H.B. Scholthof (1999) Tobacco mosaic virus. Pioneering research for a century. Plant Cell, 11(3): 301-308.

675. A.S. Spirin, L.P. Gavrilova, S.E. Bresler, and M.I. Mosevitskii (1959) Studies on macro-molecular structures of infectious ribonucleic acid from tobacco mosaic virus.. Biokhimiia, 24: 938-947.

676. L.P. Gavrilova and A.S. Spirin (1959) Infective ribonucleic acid in tobacco mosaic virus and its behavior during the process of the loss ofinfectivity.. Biokhimiia, 24(3): 503-513.

677. P. Goelet, G.P. Lomonossoff, P.J. Butler, M.E. Akam, M.J. Gait, and J. Karn (1982) Nucleotide sequence of tobacco mosaic virus RNA Proc Natl Acad Sci USA, 79(49): 5818-5822.

678. J. Keith and H. Fraenkel-Conrat (1975) Tobacco mosaic virus RNA carries 5'-terminal triphosphorylated guanosine blocked by 5'-linked 7-methyIguanosine. FEBS Lett, 57(1): 31-34.

679. B. Oberg and L. Philipson (1972) Binding of histidine to tobacco mosaic virus RNA Biochem Biophys Res Commun, 48(4): 927-932.

680. A. van Belkum, J.P. Abrahams, C.W. Pleij, and L. Bosch (1985) Five pseudoknots are present at the 204 nucleotides long 3' noncoding region of tobacco mosaic virus RNA Nucleic Acids Res, 13(21): 7673-7686.

681. K. Rietveld, K. Linschooten, C.W. Pleij, and L. Bosch (1984) The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J, 3(11): 2613-2619.

682. J.G. Shaw, K.A. Plaskitt, and T.M. Wilson (1986) Evidence that tobacco mosaic virus particles disassemble contranslationally in vivo. Virology, 148(2): 326-336.

683. T. Michael and A. Wilson (1984) Cotranslational disassembly increases the efficiency of expression of TMV RNA in wheat germ cell-free extracts. Virology, 138(2): 353-356.

684. T.M. Wilson (1984) Cotranslational disassembly of tobacco mosaic virus in vitro. Virology, 137(2): 255-265.

685. X. Wu and J.G. Shaw (1997) Evidence that a viral replicase protein is involved in the disassembly of tobacco mosaic virus particles in vivo. Virology, 239(2): 426-434.

686. G. Stubbs (1999) Tobacco mosaic virus particle structure and the initiation of disassembly. Philos Trans RSoc Lond B Biol Sci, 354(1383): 551-557.

687. K.W. Buck (1999) Replication of tobacco mosaic virus RNA Philos Trans R Soc Lond B Biol Sci, 354(1383): 613-627.

688. T. Nilsson-Tillgren (1970) Studies on the biosynthesis of TMV. 3. Isolation and characterization of the replicative form and the replicative intermediate RNA Mol Gen Genet, 109(3): 246-256.

689. N. Takamatsu, Y. Watanabe, T. Meshi, and Y. Okada (1990) Mutational analysis of the pseudoknot region in the 3' noncoding region of tobacco mosaic virus RNA J Virol, 64(8): 3686-3693.

690. T.A. Osman and K.W. Buck (1996) Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase./ Virol, 70(9): 6227-6234.

691. C.M. Deom, M.J. Oliver, and R.N. Beachy (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement Science, 237(4813): 389-394.

692. D.A. Leonard and M. Zaitlin (1982) A temperature-sensitive strain of tobacco mosaic virus defective in cell-to-cell movement generates an altered viral-coded protein. Virology, 117(2): 416-424.

693. H. Fraenkel-Conrat and R.C. Williams (1955) Reconstitution of Active Tobacco Mosaic Virus from Its Inactive Protein and Nucleic Acid Components. Proc Natl Acad Sci USA, 41(10): 690698.

694. A. Klug (1999) The tobacco mosaic virus particle: structure and assembly. Philos Trans R Soc Lond B Biol Sci, 354(1383): 531-535.

695. B.A. Kukla, HiA. Guilley, G.X. Jonard, K.E. Richards, and K.W. Mundry (1979)' Characterization of long guanosine-free RNA sequences from the Dahlemense and U2 strains of tobacco mosaic virus. Eur J Biochem, 98(1): 61-66;

696. A. Gibbs (1999) Evolution and origins of tobamoviruses. Phiios Trans R Soc Lond B Biol Sci, 354(1383): 593-602.

697. D.R. Gallie and V. Walbot (1992) Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. Nucleic Acids Res, 20(17): 4631-4638.

698. D.R. Gallie, D.E. Sleat, J.W. Watts, P.C. Turner, and T.M. Wilson (1988) Mutational analysis of the tobacco mosaic virus 5'-leader for altered ability to enhance translation. Nucleic Acids Res, 16(3): 883-893.

699. M. Altmann, S. Blum, T.M. Wilson, and H. Trachsel (1990) The 5'-leader sequence of tobacco mosaic virus RNA mediates initiation-factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. Gene, 91(1): 127-129.

700. D.E. Sleat, D.R. Gallie, R.A. Jefferson, M.W. Bevan, P.C. Turner, and T.M. Wilson (1987) Characterisation of the 5'-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene, 60(2-3): 217-225.

701. K. Tyc, M. Konarska, H.J. Gross, and W. Filipowicz (1984) Multiple ribosome binding to the 5'-terminal leader sequence of tobacco mosaic virus RNA. Assembly of an 80S ribosome X mRNA complex at the AUU codon. Eur J Biochem, 140(3): 503-511.

702. D.R. Gallie (2002) The 5'-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res, 30(15): 3401-3411.

703. N.V. Tzareva, V.I. Makhno, and I.V. Boni (1994) Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions. FEBS Lett, 337(2): 189-194.

704. D.R. Gallie and C.I. Kado (1989) A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc Natl Acad Sci USA, 86(1): 129-132.

705. D.E. Sleat, R. Hull, P.C. Turner, and T.M. Wilson (1988) Studies on the mechanism of translational enhancement by the 5'-leader sequence of tobacco mosaic virus RNA Eur . Biochem, 175(1): 75-86.

706. D.R. Gallie, D.E. Sleat, J.W. Watts, P.C. Turner, and T.M. Wilson (1987) The 5'-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res, 15(8): 3257-3273.

707. W. Saejung, K. Fujiyama, T. Takasaki, M. Ito, K. Hori, P. Malasit, Y. Watanabe, I. Kurane, and T. Seki (2007) Production of dengue 2 envelope domain III in plant using TMV-basedk vector system. Vaccine, 25(36): 6646-6654.

708. J. Schmitz, D. Prüfer, W. Rohde, and E. Tacke (1996) Non-canonical translation-mechanisms in plants: efficient in- vitro and in plantaf initiation at AUU codons of the tobacco mosaic virus enhancer sequence. Nucleic Acids Res, 24(2): 257-263.

709. D.R. Gallie, V. Walbot, and J.W. Hershey (1988) The ribosomal« fraction mediates the translational enhancement associated with the 5'-leader of tobacco mosaic virus. Nucleic Acids Res, 16(17): 8675-8694.

710. W. Filipowicz and A.L. Haenni (1979) Binding of ribosomes to 5'-terminal leader sequences of eukaryotic messenger RNAs. Proc Natl Acad Sei USA, 76(7): 3111-3115.

711. I.G. Ivanov, R.A. Alexandrova, B.P. Dragulev, and M.G. AbouHaidar (1995) A second putative mRNA binding site on the Escherichia coli ribosome. Gene, 160(1): 75-79.

712. T. Carr, Y. Wang, Z. Huang, J.M. Yeakley, J.B. Fan, and S.A. Whitham (2006) Tobamovirus infection is independent of HSP101 mRNA induction and protein expression. Virus Res, 121(1): 33-41.

713. R. Turner and G.D. Foster (1995) The potential exploitation of plant viral translational enhancers in biotechnology for increased gene expression. Mol Biotechnol, 3(3): 225-236.

714. V. Bloomfield, D. Crothers, and I. Tinoco (1974) Physical Chemistry of Nucleic Acids, ed. New York, Harper & Row.

715. C. Cantor and P. Schimmel (1980) The behavior of biological macromolecules. In Biophysical Chemistry, Part III, EditorAEditors. San Francisco, Freeman, 1109-1180.

716. J.R. Fresco, L.C. Klotz, and E.G. Richards (1963) A new spectroscopic approach to the determination of helical secondary structure in ribonucleic acids. Cold Spring Harbor Symp. Quant Biol., 28: 83-90.

717. A.S. Spirin, L.P. Gavrilova, and A.N. Belozerskii (1959) On the problem of the nature and methods of quantitative evaluation of "hyperchromic effect" of nucleic acids.. Biokhimiia, 24: 600-611.

718. A.S. Spirin (1961) The "temperature effect" and macromolecular structure of high-polymer ribonucleic acids of various origin. Biokhimiia, 26: 454-463.

719. T. Svedberg (1947) Molecular sedimentation in the ultracentrifuge. Endeavour, 6(22): 89-95.

720. R.A. Kyle and M.A. Shampo (1997) Theodor Svedberg and the ultracentrifuge. Mayo Clin Proc, 72(9): 830.

721. T. Svedberg and J.B. Nichols (1923) Determination>of size and distribution of size of particle by centrifugal methods./. Amer. Chem. Soc., 45: 2910-2917.

722. R. Romer and R. Hach (1975) tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential, melting curves. Eur . Biochem, 55(1): 271-284.

723. B.G. Forget and S.M1. Weissman (1967) Low molecular weight RNAfcomponents from KB cells. Nature, 213(5079): 878-882.

724. B.R. Szymczyna, N.E. Shirokikh, S.C. Agalarov, J.R. Williamson, andi A.S. Spirin, Unpublished results. 2010.

725. F. Aboul-ela, J. Karn, and G. Varani (1995) The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. / Mol Biol, 253(2): 313332.

726. S. Feng and E.C. Holland (1988) HIV-1 tat trans-activation requires the loop sequence within tar. Nature, 334(6178): 165-167.

727. D.H. Mathews, D.H. Turner, and M. Zuker (2007) RNA secondary structure prediction. Curr Protoc Nucleic Acid Chem, Chapter 11: Unit 1112.

728. M. Zuker (1989) Computer prediction of RNA structure. Methods Enzymol, 180: 262-288.

729. M. Zuker and P. Stiegler (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res, 9(1): 133-148.

730. A.V. Efimov and A.S. Spirin (2009) Intramolecular triple helix as a model for regular polyribonucleotide CAA)(n). Biochem Biophys Res Commun, 388(1): 127-130.

731. R.K. Hartmann, A. Bindereif, A. Schon, and E. Westhof (2008) Handbook of RNA Biochemistry. Student Edition, ed. Weinheim, Wiley-VCH.

732. C.W.J. Smith (1998) RNA: Protein Interactions. A Practical Approach, ed. Oxford, Oxford University Press.

733. N.E. Shirokikh, S. Agalarov, and A.S. Spirin (2010) Chemical and enzymatic probing of spatial structure of the omega leader of tobacco mosaic virus RNA Biochemistry (Mosc), 75(4): 405411.

734. D.A. Peattie and W. Gilbert (1980) Chemical probes for higher-order structure in RNA Proc Natl Acad Sci U S A, 77(8): 4679-4682.

735. V. Mandiyan and M. Boublik (1990) Structural analysis of the 5' domain of the HeLa 18S nbosomal RNA by chemical and enzymatic probing. Nucleic Acids Res, 18(23): 7055-7062.

736. A.M. Maxam and W. Gilbert (1977) A new method for sequencing DNA Proc Natl Acad Sci USA, 74(2): 560-564.

737. N.J. Leonard, J.J. McDonald, R.E. Henderson, and M.E. Reichmann (1971) Reaction of diethyl pyrocarbonate with nucleic acid components. Adenosine. Biochemistry, 10(18): 3335-3342.234

738. K.M. Weeks and D.M. Crothers 1993) Major groove accessibility of RNA. Science, 261(5128): 1574-1577.

739. R.E. Lockard and A. Kumar (1981) Mapping tRNA structure in solution using double-strand-specific ribonuclease VI from cobra venom. Nucleic Acids Res, 9(19): 5125-5140.

740. J. Kop, A.M. Kopylov, L. Magrum, R. Siegel, R. Gupta, C.R. Woese, and H.F. Noller (1984) Probing the structure of 16 S ribosomal RNA from Bacillus brevis.JBiol Chem, 259(24): 15287-15293.

741. T. Hartshorne and N. Agabian (1994) A common core structure for U3 small nucleolar RNAs. Nucleic Acids Res, 22(16): 3354-3364.

742. C.E. Дмитриев, И.М. Теренин, М.П. Рубцова и И.Н. Шатский (2003) Незначительные вариации вторичной структуры 5'-нетранслируемойобласти мРНК (3-глобина изменяют требования к концентрации фактора инициации eIF2. Молекулярная биология, 37(3): 494-503.

743. Я благодарю С.Ч. Агаларова за крайне важное для выполнения этой работы сотрудничество, массу полезных советов и обсуждений.

744. Искренне благодарю Л.П. Гаврилову и В.Д. Васильева за советы, сотрудничество и оказанную чрезвычайно теплую и незаменимую моральную поддержу.

745. Я благодарю О.М. Алехину и К.С. Василенко за плодотворные дискуссии, многочисленные случаи взаимовыручки, которыми я им обязан, сотрудничество и неизбывно доброжелательное общение.

746. Выражаю глубочайшие благодарность и признательность А.Г. Рязанову за бесценные советы, обсуждения и реактивы, без которых данной работы просто не было бы.

747. Я благодарю мою жену и всех близких родственников, которые с пониманием отнеслись к процессу написания данной работы и всемерно помогали мне.